
HAL Id: hal-00851915
https://hal.science/hal-00851915

Submitted on 22 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Relational Trace Logic for Vector Addition Systems
with Application to Context-Freeness

Jérôme Leroux, M. Praveen, Grégoire Sutre

To cite this version:
Jérôme Leroux, M. Praveen, Grégoire Sutre. A Relational Trace Logic for Vector Addition Systems
with Application to Context-Freeness. CONCUR 2013 - 24th International Conference on Concur-
rency Theory, Aug 2013, Buenos Aires, Argentina. pp.137-151, �10.1007/978-3-642-40184-8_11�. �hal-
00851915�

https://hal.science/hal-00851915
https://hal.archives-ouvertes.fr

A Relational Trace Logic for Vector Addition
Systems with Application to Context-Freeness?

Jérôme Leroux, M. Praveen, and Grégoire Sutre

Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

Abstract. We introduce a logic for specifying trace properties of vector
addition systems (VAS). This logic can express linear relations among
pumping segments occurring in a trace. Given a VAS and a formula in
the logic, we investigate the question whether the VAS contains a trace
satisfying the formula. Our main contribution is an exponential space
upper bound for this problem. The proof is based on a small model
property for the logic. Compared to similar logics that are solvable in
exponential space, a distinguishing feature of our logic is its ability to
express non-context-freeness of the trace language of a VAS. This allows
us to show that the context-freeness problem for VAS, whose complexity
was not established so far, is ExpSpace-complete.

1 Introduction

Vector addition systems (VAS), or equivalently Petri nets, are well-studied for
the modeling and analysis of concurrent systems. Despite their fairly large ex-
pressive power, many verification problems for VAS are decidable: coverability,
boundedness, reachability, liveness, regularity, etc. [4]. The complexity of many
of these decision problems has also been established.

Known decidable problems for VAS can be broadly classified into two classes.
The first one, that we call CRP, consists of those problems that are equivalent
to the reachability problem in terms of computational complexity. Examples of
problems in CRP include reachability, liveness, model checking some fragments of
linear temporal logic, etc. The exact complexity of these problems is still open.
The best known lower bound is ExpSpace-hardness [9]. There is no known
upper bound, except that these problems are decidable [10, 6].

The second class of problems, that we call CKM, are those that can be de-
cided using the Karp & Miller coverability graph [5]. Examples of problems in
CKM include coverability, boundedness, regularity, etc. In general, the size of the
coverability graph can be Ackermann in the size of the VAS. Still, most of the
problems in CKM can be decided in exponential space, by applying a technique
introduced by Rackoff [13], or extending this technique [1–3].

The question whether the set of traces of a VAS is context-free is also in the
class CKM. It was shown to be decidable by Schwer in [14], based on the cover-
ability graph. Recently, we showed in [8] that non-context-freeness of the set of

? This work was supported by the ANR project ReacHard (ANR-11-BS02-001).

traces can always be witnessed by a regular bounded language u1σ
∗
1 · · ·ukσ∗k that

has a non-context-free intersection with the set of traces. Like context-freeness,
for most of the properties in CKM, we can find violating witnesses that are given
by regular bounded languages of the form u1σ

∗
1 · · ·ukσ∗k. Equivalently, we con-

sider, in this paper, witnesses that are given as traces satisfying an iterability
condition. Intuitively, a self-covering sequence is a trace u1σ1 · · ·ukσk such that,
for every n ≥ 0, there is a trace in u1σ

≥n
1 · · ·ukσ≥nk . The words σ1, . . . , σk are

called pumping segments, as they can be iterated. To witness the violation of
a given property, the displacements of the pumping segments are required to
additionally satisfy some linear relations depending on the property under con-
sideration.

Contributions. We introduce a relational logic over self-covering sequences. This
logic can express positive Boolean combinations of linear relations among the
displacements of pumping segments. We show that many properties in CKM can
be expressed by the logic, in particular: coverability, boundedness, simultaneous
unboundedness, regularity, and recurrence. Our main technical result is a small
model property: we show that if there is a self-covering sequence satisfying a for-
mula of the logic, then there is one of size at most doubly-exponential. This gives
an exponential space upper bound for the problem whether a given VAS satisfies
a given formula. Then, we focus on the context-freeness problem. We prove that
the presence of self-covering sequences witnessing non-context-freeness can be
expressed in our logic. We thus derive an exponential space upper bound for the
context-freeness problem, whose complexity was still open.

Extensions of the technique introduced by Rackoff [13] are not enough for
proving the small model property mentioned above. Our approach is based on
reversibility domains [7]. The reversibility domain of an action is the set of
configurations from which the effect of the action can be canceled by a word of
actions. A doubly exponential bound on the minimal elements of these upward
closed sets is derived in [7]. This result is central in our approach.

Related work. Other logics that can be checked in exponential space have been
investigated before. The fragment of Yen’s path logic [17] introduced by Atig
and Habermehl [1], the fragment of computational tree logic by Blockelet and
Schmitz [2] and the generalized unboundedness properties of Demri [3] are in
this category. All of these impose conditions that are incompatible with context-
freeness. We provide a more detailed comparison with related work at the end
of the paper.

Outline. We recall in Section 2 some basic notions on VAS and define self-
covering sequences. Section 3 introduces our relational trace logic. We show in
Section 4 that many classical problems on VAS can be expressed in this logic. We
establish in Sections 5, 6, and 7 the exponential space complexity of the problem
whether a given VAS satisfies a given formula. Section 8 applies the results of
the previous sections to the context-freeness problem for VAS. We conclude in
Section 9 with a detailed comparison with related work.

2

2 Vector Addition Systems

We let N and Z denote the sets of natural numbers and integers respectively.
For X ∈ {N, Z} and # ∈ {<,≤,≥, >}, we write X#0 = {x ∈ X | x# 0}. Vectors
and sets of vectors are typeset in bold face. The ith component of a vector v is
written v(i). The zero vector is written 0. We let ei denote the ith unit vector,
defined by ei(i) = 1 and ei(j) = 0 for every index j 6= i. Given a vector v, we
write ‖v‖+, ‖v‖− and ‖v‖0 for the sets of indices i such that v(i) > 0,v(i) < 0
and v(i) = 0, respectively. We denote by ‖v‖∞ the infinite norm maxi |v(i)|.
Given a finite set V of vectors, we introduce ‖V ‖∞ = maxv∈V ‖v‖∞. A word is
a finite sequence σ = v1 · · ·vn of vectors in Zd. We let |σ| denote the length n
of the word σ. The displacement of σ is the sum

∑n
j=1 vj , denoted by ∆(σ).

We now recall the main concepts of vector addition systems (VAS). Consider
a dimension d ∈ N, with d > 0. A configuration is a vector c ∈ Nd, and an
action is a vector a ∈ Zd. Informally, a vector addition system moves from
one configuration to the next by adding an action. This operational semantics
is formalized by the labeled transition relation → ⊆ Nd × Zd × Nd defined by
c

a−→ c′ if c′ = c + a. In particular, notice that an action a is enabled in a
configuration c if, and only if, c+ a ≥ 0. A run is a finite, alternating sequence
(c0,a1, c1, . . . ,an, cn) of configurations and actions, satisfying ci−1

ai−→ ci for

all i. We write c0
a1···an−−−−−→ cn when the intermediate configurations are not

important. The word a1 · · ·an is called the label of the run. A trace from a
configuration c is the label of some run that starts with c. Given an initial
configuration cinit ∈ Nd, we let T (cinit) denote the set of all traces from cinit.

A vector addition system is a pair 〈A, cinit〉 where A is a finite subset of Zd
and cinit ∈ Nd is an initial configuration. Its operational semantics is obtained
by restricting the labeled transition relation → to actions in A. Accordingly, a
trace of a VAS 〈A, cinit〉 is a trace from cinit that is contained in A∗. The set
of all traces of 〈A, cinit〉, written T (A, cinit) = T (cinit) ∩A∗, is called the trace
language of 〈A, cinit〉.

In this paper, we consider verification properties that can be checked through
witnesses that are traces satisfying some pumping conditions. These are called
self-covering sequences, and defined as follows.

Definition 2.1. A self-covering sequence for a VAS 〈A, cinit〉 is a non-empty
sequence (u1, σ1, . . . , uk, σk) of words such that u1σ1 · · ·ukσk is a trace and

‖∆(σh)‖− ⊆
⋃h−1
j=1 ‖∆(σj)‖+ for all h ∈ {1, . . . , k}.

The words σ1, . . . , σk are called pumping segments, k is the number of pump-
ing segments, and |u1| + |σ1| + · · · + |uk| + |σk| is the size of the self-covering
sequence. If k = 1 in the above definition and ‖∆(σ1)‖+ 6= ∅, we get the standard
self-covering sequences, which are known to witness unboundedness of VAS [5].
The next lemma states a property of self-covering sequences that explains the
name given to the words σ1, . . . , σk.

3

Lemma 2.2. A sequence (u1, σ1, . . . , uk, σk) of words is self-covering for a VAS
〈A, cinit〉 if, and only if, u1σ1 . . . ukσk is a trace and for every n ∈ N, there exist
n1, . . . , nk ≥ n such that u1σ

n1
1 · · ·ukσ

nk
k is a trace.

3 A Relational Logic to Express Properties of Traces

In this section, we introduce a logic that can express properties of VAS such
as unboundedness, place unboundedness, and non-regularity (see Section 4 for
examples). The logic has terms t and formulas φ of the following syntax:

t ::= zδj(i) | t+ t, z ∈ Z, j ≥ 1, 1 ≤ i ≤ d
φ ::= t ≥ n | φ ∨ φ | φ ∧ φ, n ∈ N

In the above syntax, δj are variables that have to be interpreted. The norm
‖t‖1 of a term t is defined inductively as follows: ‖zδj(i)‖1 = |z|, ‖t1 + t2‖1 =
‖t1‖1 + ‖t2‖1. The norm ‖φ‖1 of a formula φ is defined by ‖t ≥ n‖1 = ‖t‖1 + n,
‖φ1 ∨ φ2‖1 = ‖φ1 ∧ φ2‖1 = ‖φ1‖1 + ‖φ2‖1.

Definition 3.1. A self-covering sequence (u1, σ1, . . . , uk, σk) satisfies a formula
φ if φ is true according to the usual laws of arithmetic when δj is set to ∆(σj)
for j ≤ k and δj is set to 0 for j > k.

A VAS satisfies a formula φ if it admits a self-covering sequence satisfying φ.
The model-checking problem for this logic asks whether a given VAS satisfies a
given formula.

Remark 3.2. The satisfaction of the formula does not depend on the words
u1, . . . , uk. However, without these words, the reachability problem for vector
addition systems can be easily reduced to the model-checking problem for the
logic. Recall that the reachability problem consists in deciding if a given con-
figuration is the last configuration of a run starting from the initial one. This
problem is known to be decidable[10, 6] but no complexity upper-bound is known.
An adaptation of the proof of [1, Theorem 3] shows that the reachability prob-
lem for VAS can be reduced to the model-checking problem for our logic by
additionally requiring that u1, . . . , uk are empty words. ut

The model-checking problem for our logic can be solved by constructing the
Karp & Miller coverability graph [5]. However, the size of the coverability graph
can be Ackermann in the size of the VAS. We will show in Sections 5 up to 7
that this problem can be solved in exponential space. Before that, let us present
some applications of our logic.

4 Examples and Short Extensions

In this section, we show that classical problems can be reduced to the model-
checking problem for our logic. We prove that unboundedness, place unbounded-
ness and non-regularity can be directly encoded with formulas. We also provide

4

short extensions of the logic based on simple encodings that can express recur-
rence and coverability. All these problems are recalled in this section.

We first present problems that can be directly reduced to the model-checking
problem for our logic. Recall that a configuration c is reachable if there is a run
from the initial configuration to c. The set of reachable configurations is called
the reachability set. A vector addition system is bounded if its reachability set
is finite. The boundedness problem was proved to be decidable by Karp and
Miller in [5]. The decidability comes from a characterization of unbounded vec-
tor addition systems; a vector addition system is unbounded if, and only if,
there exists a self-covering sequence (u1, σ1) such that ‖∆(σ1)‖+ 6= ∅. Karp and
Miller provided a way for deciding this property based on the computation of
a tree (the Karp & Miller coverability tree). The complexity of this algorithm is
non-primitive recursive [11]. Lipton proved in [9] that the boundedness problem
requires exponential space. In [13], Rackoff provided an exponential space upper
bound based on a doubly-exponential bound on self-covering sequences witness-
ing unboundedness. We observe that a vector addition system is unbounded if,
and only if, it satisfies the following formula:

d∨
i=1

δ1(i) ≥ 1

The boundedness problem was generalized by introducing variants like the
place boundedness problem that asks which components (also called places for
Petri nets) are unbounded. The place boundedness problem requires exponen-
tial space. The proof is by a simple reduction from the boundedness problem.
Whereas the place boundedness problem was considered in different papers, no
upper bound of complexity was published until recently in [3]. In that paper,
Demri introduced a more general problem, useful for reducing different problems,
called the simultaneous unboundedness problem. A vector addition system is si-
multaneously unbounded on a set I ⊆ {1, . . . , d} of indexes, if, for every bound
b ∈ N, there exists a reachable configuration c such that c(i) ≥ b for every i ∈ I.
Demri proved that a vector addition system is simultaneously unbounded on I
if, and only if, it satisfies the following formula:

∧
i∈I

d∨
j=1

δj(i) ≥ 1

A vector addition system is called regular when its trace language is regular.
In [16], Valk and Vidal-Naquet provided a characterization of non-regularity for
vector addition systems. Since the characterization is based on the Karp & Miller
coverability graph [5], the Valk and Vidal-Naquet algorithm is non-primitive re-
cursive. In [1], Atig and Habermehl observed that the regularity problem cannot
be expressed in their fragment of Yen’s path logic that is decidable in exponential
space, and left the complexity open. Based on the simultaneous unboundedness
approach, Demri proved in [3] that the regularity problem is decidable in expo-
nential space. This upper bound is obtained by observing that the trace language

5

of a VAS is non-regular if, and only if, the VAS satisfies the following formula:

d∨
i=1

−δd+1(i) ≥ 1

Till now, we proved that some classical problems can be reduced to the model-
checking problem for our logic. For other problems, we need short extensions that
require simple encodings. In the remainder of this section, we show the kind of
extensions that can be useful for deciding recurrence and coverability problems.

A set of actions T of a vector addition system is said to be recurrent if
there exists a self-covering sequence (u1, σ1) such that T is the set of actions
occurring in σ1. The verification of LTL properties and some other properties
like promptness detection (see, e.g., [1, 15]) can be reduced to the recurrence
problem. The latter problem can be reduced to the model-checking problem for
our logic by introducing extra components, one for each action, counting the
number of times an action is executed. Let us consider a VAS 〈A, cinit〉 and a
subset T ⊆ A. We assume that A = {a1, . . . ,an}. Recall that e` is the unit
vector defined by e`(`) = 1 and e`(i) = 0 if i 6= `. We introduce the VAS
〈A′, c′init〉 of dimension d + n defined by A′ = {(a`, e`) | 1 ≤ ` ≤ n} and
c′init = (cinit,0). Observe that T is recurrent for the VAS 〈A, cinit〉 if, and only
if, 〈A′, c′init〉 satisfies the following formula:∧

j|aj∈T

δ1(d+ j) ≥ 1 ∧
∧

j|aj 6∈T

−δ1(d+ j) ≥ 0

The same transformation provides a simple way for encoding more complex
relations between numbers of occurrences in different pumping segments of self-
covering sequences. For instance, the strong promptness detection (see, e.g., [1])
can be encoded with the previous formula by replacing δ1 by δd.

One can also check coverability properties with the help of an additional
component. Recall that a configuration c ∈ Nd is coverable if there exists a
reachable configuration larger than or equal to c, i.e., a reachable configuration in
c+Nd. The coverability problem asks whether a given configuration is coverable
in a given VAS. Lipton derived an exponential space lower bound in [9] and
Rackoff provided an exponential space upper bound in [13]. The coverability
problem can be reduced to the place boundedness problem as follows. Given a
vector addition system 〈A, cinit〉 and a configuration c, we consider the vector
addition system 〈A′, c′init〉 defined by A′ = (A × {0}) ∪ {(−c, 2), (c,−1)} and
c′init = (cinit, 0). Just observe that c is coverable in 〈A, cinit〉 if, and only if, the
last component of the VAS 〈A′, c′init〉 is unbounded. Therefore, the coverability
problem can be reduced to the model-checking problem for our logic. With a
similar transformation, we can encode more complex properties that require
multiple coverings along the pumping segments of a self-covering sequence.

6

5 Small Model Property

In this section, we show that if there is a self-covering sequence satisfying a
formula, there is one whose length is bounded in terms of the sizes of the VAS and
the formula. As a consequence, we get ExpSpace-completeness for the model-
checking problem for our logic.

The bound we give for the size of satisfying self-covering sequences depends
in a specific way on how conjunctions are distributed in a formula. We define
below two measures of formulas that will be used in our bound.

Definition 5.1. For a formula φ, the conjunction rank r(φ) is defined induc-
tively as follows: r(t ≥ n) = 1, r(φ1 ∨φ2) = max{r(φ1), r(φ2)} and r(φ1 ∧φ2) =
r(φ1) + r(φ2). By k(φ) we denote the maximal j such that δj occurs in φ.

Intuitively, r(φ) is a bound on the number of terms that need to be satisfied
simultaneously to satisfy φ.

Theorem 5.2. If there is a self-covering sequence in 〈A, cinit〉 satisfying φ,

there is one of size at most (‖A‖∞ + ‖φ‖1)r(φ)c
(d·k(φ))3

where c is a constant.

The proof is in two parts. The first part is bounding the lengths of u1, . . . , uk
that occur in between the pumping segments σ1, . . . , σk. We will make use of the
following result, which is an easy consequence of some proofs given in [13].

Lemma 5.3. Suppose that cinit
σ−→ c1 and c1 ≥ c. Then there is a sub-word σ′

of σ such that cinit
σ′−→ c′1, c′1 ≥ c and |σ′| ≤ (‖A‖∞ + ‖c‖∞)(d+1)!.

Proof. Follows easily from a close observation of [13, Proof of Lemma 3.4]. ut

Lemma 5.4. Consider a run cinit
u1−→ c1

σ1−→ c′1 −→ · · · uk−→ ck
σk−→ c′k of

〈A, cinit〉, with |σ1| + · · · + |σk| ≤ l. Then there are words u′1, . . . , u
′
k such that

u′1σ1 · · ·u′kσk is a trace and |u′1|+ · · ·+ |u′k| ≤ (2l‖A‖∞)((d+1)k+1)!.

Proof (Sketch). For any word σ, let cσ be the unique minimal configuration
that enables σ. Since cj ≥ cσj for all j, 1 ≤ j ≤ k, cσj are all coverable
from cinit. Let ckinit be the vector obtained by adjoining k copies of cinit and
let c′′ be the vector obtained by adjoining cσ1 , . . . , cσk . We can now think of a
suitably defined new VAS where c′′ is coverable from the initial configuration
ckinit. From Lemma 5.3, we infer that there is a sub-word of the original covering
sequence that also covers c′′, whose length is bounded. From this short covering
sequence, we extract words u′1, . . . , u

′
k of the original VAS satisfying the length

requirements. ut

Now it is enough to bound the length of the pumping segments. Suppose
cinit

u1−→ c1
σ1−→ c′1 −→ · · ·

uk−→ ck
σk−→ c′k. Indices in ‖σ1‖+ can potentially reach

arbitrarily high values (by repeating σ1 many times). We want to momentarily
forget the exact value of these indices and emphasize that they can be as large
as needed. This is done by allowing values to be ω.

7

Definition 5.5. Let Nω = N ∪ {ω}. Let ω ≥ n and ω − n = ω + n = ω for all
n ∈ N. An extended configuration is a vector x ∈ Ndω. The labeled transition

relation → is extended to →⊆ Ndω × Zd × Ndω defined by x
a−→ x′ if x′ = x + a.

We denote by ‖x‖ω the set of indices i such that x(i) = ω.

Let x1 be the extended configuration that is the same as c1 except in indices
that are increased by σ1, where x1 has ω. That is, let x1(i) = ω for i ∈ ‖∆(σ1)‖+
and x1(i) = c′1(i) = c1(i) for i ∈ ‖∆(σ1)‖0 (‖∆(σ1)‖− = ∅). Similarly, let
x2(i) = ω for i ∈ ‖σ1‖+ ∪ ‖σ2‖+ and x2(i) = c′2(i) = c2(i) for i ∈ ‖∆(σ2)‖0 \
‖σ1‖+ (‖∆(σ2)‖− ⊆ ‖∆(σ1)‖+). The extended configurations x3, . . . ,xk are
similar.

We have xj
σj−→ xj for all j, 1 ≤ j ≤ k, which can be thought of as x

σ−→ x in a
suitably defined (kd)-dimensional VAS. Hence, σ is a cycle on x in this new VAS.
Note that ∆(σ) is not necessarily 0, since x may have some omega components.
The fact that σ1, . . . , σk are pumping segments satisfying φ can be encoded into a
linear system of the form Z∆(σ) ≥ n. We prove in the next section that if there
are cycles satisfying such a condition, there will be similar cycles of bounded
length. From such a short cycle, we can extract words σ′1, . . . , σ

′
k of the original

VAS meeting the length requirements of Theorem 5.2.

6 Short Cycles via Reversibility Domains

In this section, we show that for every cycle x
σ−→ x satisfying a linear system,

there exists a similar short cycle x
σ′−→ x. The proof is based on the following two

theorems providing bounds related to reversible words. These results are proved
in [7]. Given an implicit VAS 〈A, cinit〉, a word u ∈ A∗ is said to be reversible

on an extended configuration c if there exists a word v ∈ A∗ such that c
uv−→ c

and such that ∆(uv) = 0. The domain of reversibility of an action a ∈ A is the
set of extended configurations c on which a is reversible.

Theorem 6.1 ([7, Theorem 10.1]). Let u ∈ A∗ be a reversible word on an
extended configuration c. There exists u′ ∈ A∗ reversible on c such that ∆(u) =

∆(u′) and |u′| ≤ 17d2x15d
d+2

, where x = (1 + ‖A‖∞)(1 + ‖c‖∞ + ‖∆(u)‖∞).

Theorem 6.2 ([7, Theorem 11.1]). For every extended configuration c in the
domain of reversibility of an action a ∈ A, there exists a configuration c′ ≤ c
in the domain of reversibility of a such that ‖c′‖∞ ≤ (102d2‖A‖2∞)(15d

d+2)d+2

.

To show the existence of such short cycles, we need to introduce some no-
tations and a technical result regarding minimal solutions of linear diophantine
systems. For an integer vector v, let ‖v‖1 denote the sum

∑
i |v(i)|. For a finite

set of vectors V , ‖V ‖1 denotes maxv∈V {‖v‖1}. For an integer matrix Z, let
‖Z‖1,∞ denote maxi{

∑
j |Z(i, j)|}. For z ∈ Z, let zv denote the vector such

that (zv)(i) = z · v(i) for all i. Let Nv denote the set of vectors {nv | n ∈ N}.
For two sets of vectors V 1,V 2 of the same dimension, let V 1 + V 2 denote the
set of vectors {v1 + v2 | v1 ∈ V 1,v2 ∈ V 2}.

Based on [12], one can easily derive the following lemma.

8

Lemma 6.3. Let Z be a r × d integer matrix and let b ∈ Zr be a vector. The
set of all integer vectors ρ such that Zρ ≥ b is a finite union of sets of the form
p0 +Np1 + · · ·+Npm, where m ∈ N and p0,p1, . . . ,pm are integer vectors such
that ‖p0‖1, ‖p1‖1, . . . , ‖pm‖1 ≤ (2 + ‖Z‖1,∞ + ‖b‖∞)r.

Now we are ready to prove the existence of short cycles.

Lemma 6.4. Let A ⊆ Zd be a finite set and x ∈ Ndω be an extended configura-

tion. Suppose there is a word σ ∈ A∗ such that x
σ−→ x and Z∆(σ) ≥ n, where

Z ∈ Zr×d is an integer matrix with r rows, d columns and n ∈ Nr is a vector of

natural numbers. Then there is a word σ′ ∈ A∗ such that x
σ′−→ x, Z∆(σ′) ≥ n

and |σ′| ≤ (‖Z‖1,∞ + ‖A‖∞ + ‖n‖∞)rc
d3

2 for some constant c2.

Proof. Since x
σ−→ x, ∆(σ)(i) = 0 for all i /∈ ‖x‖ω. We can encode these con-

ditions as additional inequalities in Z∆(σ) ≥ n, by adding at most 2d rows to
Z and n. Let Z ′∆(σ) ≥ n′ be the resulting system. By Lemma 6.3, the set
of all vectors ρ ∈ Zd satisfying Z ′ρ ≥ n′ is a finite union of sets of the form
p0 +Np1 + · · ·+Npm, where m ∈ N and p0,p1, . . . ,pm are integer vectors such
that ‖p0‖1, ‖p1‖1, . . . , ‖pm‖1 ≤ (2 + ‖Z‖1,∞ + ‖n′‖∞)r+2d. Since Z ′p0 ≥ n′

and n′ is a vector of natural numbers, we have Z ′(ip0) ≥ n′ for all i ≥ 1.
Hence, we can assume without loss of generality that the sets are of the form
p0 + Np0 + Np1 + · · · + Npm. Since Z ′p0 ≥ n′, p0(i) = 0 for i /∈ ‖x‖ω. Since
Z ′(p0 + pj) ≥ n′ for all j ∈ {1, . . . ,m}, (p0 + pj)(i) = 0 for i /∈ ‖x‖ω. Hence,
pj(i) = 0 for i /∈ ‖x‖ω and j ∈ {1, . . . ,m}. In words, this means that vectors
p0,p1, . . . ,pm have value 0 in indices that are not ω in x.

Suppose ∆(σ) = p0 + i0p0 + · · ·+ impm. Let Ã = A∪ {−p0, . . . ,−pm}. We

have x
−p0−−−→ x

(−p0)
i0 ···(−pm)imσ−−−−−−−−−−−−−→ x, written as x

−p0−−−→ x
u−→ x for simplicity.

By our choice of i0, . . . , im, we get ∆(u) = p0. This means the action −p0
is reversible on the extended configuration x. Hence, by Theorem 6.2, there
exists a configuration c′ ≤ x such that −p0 is reversible on c′ and ‖c′‖∞ ≤
(102d2ã2)(15d

d+2)d+2

, where ã = ‖Ã‖∞. Now we have c′
−p0−−−→ c′′

u′−→ c′, so
∆(u′) = p0. The word u′ is reversible on the configuration c′′. By Theorem 6.1,
there exists another word u′′ reversible on c′′ such that ∆(u′′) = ∆(u′) = p0
and |u′′| ≤ 17d2x15d

d+2

, where x = (1 + 2‖Ã‖∞)(1 + ‖c′′‖∞ + ‖∆(u′)‖∞).
Let σ′ be the word obtained from u′′ by retaining only the actions in A. We

get ∆(u′′) = ∆(σ′)− i′0p0 − · · · − i′mpm by introducing i′j , the number of times
−pj occurs in u′′. Hence ∆(σ′) = p0 + i′0p0 + · · ·+ i′mpm, since ∆(u′′) = p0.

It follows that Z ′∆(σ′) ≥ n′ and so Z∆(σ′) ≥ n. Recall that c′ ≤ c ≤ x
and that c′

−p0−−−→ c′′
u′′−−→ c′. Since σ′ is obtained from u′′ by removing some

actions in Ã \ A and since those actions have value 0 in indices where x is

not ω, we infer that x
−p0−−−→ x

σ′−→ x. It remains to bound the length of σ′

to conclude the proof. We have x = (1 + 2‖Ã‖∞)(1 + ‖c′′‖∞ + ‖∆u′‖∞) and

|σ′| ≤ |u′′| ≤ 17d2x15d
d+2

. After some simplifications, it can be infered that

|σ′| ≤ (‖Z‖1,∞ + ‖A‖∞ + ‖n‖∞)rc
d3

2 for a suitably chosen constant c2. The

9

simplification involves calculations that are a bit tedious and can be found in
the appendix. ut

In Lemma 6.4 above, n is a vector of natural numbers in the linear sys-
tem Z∆(σ) ≥ n. It is unlikely that a similar result about short cycles can be
proved when n is an integer vector, since that would imply short witnesses for
reachability, as shown by the following remark.

Remark 6.5. Let cinit
u−→ c be a run in a VAS 〈A, cinit〉. We associate to every

action a the action ã = (a, 0) with an extra component equal to zero. We also
introduce the set Ã = {ã | a ∈ A} ∪ {(cinit, 2), (−c, 3)}. From the word u =
a1 . . .ak we get the word ũ = ã1 . . . ãk. Now observe that σ = (cinit, 2)ũ(−c, 3)

and x = (0, ω) satisfies x
σ−→ x and ∆(σ)(d + 1) = 5, which can be encoded

by two inequalities provided that we allow comparisons with negative integers

(as we only permit ≥). Moreover from any word σ′ ∈ Ã∗ such that x
σ′−→ x

and ∆(σ′)(d + 1) = 5 we derive a word u′ ∈ A∗ such that |u′| = |σ′| − 2 and

cinit
u′−→ c. In fact, we observe that u′ contains one occurrence of (cinit, 2) and

one occurrence of (−c, 3). By removing these occurrences from σ′, we get u′. ut

7 Small Pumping Segments through Short Cycles

In this section, we use the result of the previous section to prove Theorem 5.2.
We first provide a bound on the pumping segments.

Lemma 7.1. Suppose there is a self-covering sequence (u1, σ1, . . . , uk, σk) sat-
isfying φ. Then there is a self-covering sequence (u′1, σ

′
1, . . . , u

′
k, σ
′
k) satisfying φ

such that |σ′1|+ · · ·+ |σ′k| ≤ (‖A‖∞ + ‖φ‖1)r(φ)c
(d·k(φ))3
1 where c1 is a constant.

Proof (Sketch). A self-covering sequence (u1, σ1, . . . , uk, σk) satisfies a formula
t ≥ n if, and only if, z � (∆(σ1), . . . ,∆(σk)) ≥ n, where z ∈ Zd·k is an inte-
ger vector that only depends on t, � is the usual dot product. The conditions
‖∆(σj)‖− ⊆ ∪1≤j′<j‖∆(σj′)‖+ can also be expressed as a set of inequalities of
the previous form. By suitably defining a (kd)-dimensional VAS, we can think
of a word σ whose displacement is (∆(σ1), . . . ,∆(σk)). The combination of all
the satisfied terms of φ and the condition for self-covering sequences gives rise
to a linear system Z∆(σ) ≥ n, where Z is an integer matrix and n is a vector
of natural numbers.

Using the result of the previous section, we find a short cycle labeled by σ′

whose displacement also satisfies Z∆(σ′) ≥ n. From this short cycle, we can
extract words of the original VAS which are pumping segments satisfying the
length requirements of the lemma. ut

We now have the necessary ingredients to prove our main result, Theorem 5.2.
Assume that 〈A, cinit〉 admits a self-covering sequence (u1, σ1, . . . , uk, σk) satis-
fying φ. By Lemma 7.1, there exists a self-covering sequence (u′1, σ

′
1, . . . , u

′
k, σ
′
k)

satisfying φ such that |σ′1|+ · · · + |σ′k| ≤ (‖A‖∞ + ‖φ‖1)r(φ)c
(k(φ)·d)3
1 . We derive

10

from Lemma 5.4 that there exists a self-covering sequence (u′′1 , σ
′
1, . . . , u

′′
k , σ
′
k)

such that |u′′1 |+· · ·+|u′′k | ≤ (2‖A‖∞(‖A‖∞+‖φ‖1)r(φ)c
(k(φ)·d)3
1)((d+1)k(φ)+1)!. Sim-

plifying this, we get |σ′1|+· · ·+|σ′k|+|u′′1 |+· · ·+|u′′k | ≤ (‖A‖∞+‖φ‖1)r(φ)c
(k(φ)·d)3

for a suitably chosen constant c, which concludes the proof of the theorem.

We now define the size of a VAS and a formula and state a complexity
theoretic consequence of the small model property obtained above. The size of
a VAS is the obvious one, where integers are encoded in binary. The size |t| of
a term t is defined inductively as follows: |zδj(i)| = log(|z| + 1) and |t1 + t2| =
1+|t1|+|t2|. The size |φ| of a formula φ is defined by |t ≥ n| = |t|+1+log(n+1),
|φ1 ∨ φ2| = |φ1|+ 1 + |φ2| and |φ1 ∧ φ2| = |φ1|+ 1 + |φ2|.
Corollary 7.2. Given a VAS 〈A, cinit〉 and a formula φ, the problem of checking
whether there is a self-covering sequence satisfying φ is ExpSpace-complete.

Proof. For the exponential space lower bound, we have seen in Section 4 that we
can reduce the boundedness problem to checking a formula of our logic. Since the
boundedness problem is ExpSpace-hard [9], checking whether a given formula
is satisfied by a given VAS is ExpSpace-hard.

For the exponential space upper bound, a non-deterministic Turing machine
can guess and verify the existence of a self-covering sequence of length at most

(‖A‖∞ + ‖φ‖1)r(φ)c
(d·k(φ))3

. The Turing machine needs to maintain a counter

to count (in binary) up to a maximum of (‖A‖∞ + ‖φ‖1)r(φ)c
(d·k(φ))3

and store
at most 2k intermediate configurations. The memory requirement is therefore
O(r(φ)c(d·k(φ))

3

(log ‖A‖∞ + log ‖φ‖1)). It is easy to see that the size of the
VAS is an upper bound on log ‖A‖∞ and the size |φ| of the formula φ is an
upper bound on log ‖φ‖1. Hence, the well-known Savitch’s theorem then gives a
deterministic Turing machine that works in exponential space. ut

8 Complexity of the Context-Freeness Problem for VAS

We have shown in the previous sections that the model-checking problem for our
logic can be solved in exponential space. As an application, we now focus on the
context-freeness problem for VAS, and characterize its complexity.

The context-freeness problem asks whether the trace language of a given
VAS is context-free. This problem was shown to be decidable by Schwer in [14].
Since it is based on the coverability graph, the resulting algorithm’s complexity
is non-primitive recursive. Recently, we revisited the context-freeness problem
for VAS, and gave a simpler proof of decidability [8]. Our approach is based on
regular bounded languages having a non-context free intersection with the set
of traces. In this section, we briefly recall this characterization. Then, we show
how to express it by a formula in our logic, thereby providing an exponential
space upper bound for the context-freeness problem.

A pair (v1,v2) of vectors in Zd such that v1 ≥ 0 and v2 6≥ 0 is called a
matching pair. For every matching pair (v1,v2), there exists a maximal non-
negative rational number λ ≥ 0 such that v1 + λv2 ≥ 0. We call this rational

11

number the ratio of the matching pair (v1,v2), and we denote it by rat(v1,v2).
We define the excess of (v1,v2) as the vector exc(v1,v2) = v1 + rat(v1,v2) · v2.
Note that exc(v1,v2) ≥ 0.

A matching scheme is a tuple (σ1, . . . , σk, U) where σ1, . . . , σk are words in
(Zd)∗ and U is a nested binary relation on {1, . . . , k} such that (∆(σs), ∆(σt))
is a matching pair for every (s, t) ∈ U . Here, by nested, we mean that U satisfies
the two following conditions:

(s, t) ∈ U ⇒ s ≤ t (1)

(r, t) ∈ U ∧ (s, u) ∈ U ⇒ ¬(r < s < t < u) (2)

The excess of a matching scheme (σ1, . . . , σk, U) is the vector exc(σ1, . . . , σk, U) =∑
(s,t)∈U exc(∆(σs), ∆(σt)).

Definition 8.1. A witness of non-context-freeness for a VAS 〈A, cinit〉 is a tu-
ple (u1, σ1, . . . , uk, σk, U), where ui, σi are words in A∗ and (σ1, . . . , σk, U) is a
matching scheme, such that:

1. The word u1σ1 · · ·ukσk is a trace of 〈A, cinit〉,
2. It holds that ∆(σk) 6≥ 0 and ‖∆(σk)‖− ⊆ ‖exc(σ1, . . . , σk, U)‖+, and
3. For every (s, t) ∈ U with t < k, there exists (r, t) ∈ U such that r ≤ s and
‖∆(σt)‖− ⊆ ‖∆(σr)‖+.

Theorem 8.2 ([8]). The trace language of a VAS 〈A, cinit〉 is not context-free
if, and only if, 〈A, cinit〉 admits a witness of non-context-freeness.

Our objective is to express non-context-freeness by a formula in our relational
trace logic. However, the conditions of Definition 8.1 cannot be translated, as
is, in the logic. Firstly, the number k of pumping segments is not, a priori,
bounded. Secondly, the sequence (u1, σ1, . . . , uk, σk) need not be a self-covering
sequence. Lastly, membership of a given index in the set ‖exc(σ1, . . . , σk, U)‖+
is not linear1 in ∆(σ1), . . . ,∆(σk) since it requires comparing ratios between
components. To overcome this difficulty, we show that it is enough to look for
witnesses of non-context-freeness satisfying additional, simplifying requirements.

Formally, a witness of non-context-freeness (u1, σ1, . . . , uk, σk, U) is called
perfect if k ≤ 3d + 1, the tuple (u1, σ1, . . . , uk, σk) is a self-covering sequence,
and rat(∆(σs), ∆(σt)) ∈ {0, 1} for every (s, t) ∈ U .

Proposition 8.3. The trace language of a VAS 〈A, cinit〉 is not context-free if,
and only if, 〈A, cinit〉 admits a perfect witness of non-context-freeness.

Proof (Sketch). We show that every witness of non-context-freeness can be
transformed into a perfect one. The proposition then follows from Theorem 8.2.
Consider a witness of non-context-freeness (u1, σ1, . . . , uk, σk, U), and assume,
w.l.o.g., that U is minimal with respect to inclusion. We can show that U contains

1 Given a matching pair (v1,v2) and an index i such that v2(i) ≤ 0, it holds that
i ∈ ‖exc(v1,v2)‖+ if, and only if, v1(i) · v2(j) < v1(j) · v2(i) for some index j 6= i.

12

at most two pairs for each index i ∈ ‖exc(σ1, . . . , σk, U)‖+, hence, the support
S = {s, t | (s, t) ∈ U} of U has a cardinality of at most 3d. Obviously, we may
transform the witness by keeping only the pumping segments σi for i ∈ S ∪{k}.
The remaining pumping segments are merged together with the words ui that
surround them. By construction, the resulting witness of non-context-freeness is
a self-covering sequence with at most 3d + 1 pumping segments since |S| ≤ 3d.
It remains to enforce the ratios to be in {0, 1}. Pick a pair (s, t) ∈ U such that
rat(∆(σs), ∆(σt)) is a positive rational number, written p

q . Observe that

rat(n1v1, n2v2) =
n1
n2
· rat(v1,v2)

exc(n1v1, n2v2) = n1 · exc(v1,v2)

for every matching pair (v1,v2) and positive natural numbers n1 and n2. So
we define σ′s = σqs , σ

′
t = σpt and σ′i = σni for i 6∈ {s, t}, where n is equal

to p or q. We derive from Lemma 2.2 that there exists u′1, . . . , u
′
k such that

(u′1, σ
′
1, . . . , u

′
k, σ
′
k, U) is a witness of non-context-freeness. This transformation

guarantees that rat(∆(σ′s), ∆(σ′t)) = 1, however, it may also change the ratios
of other pairs involving s (if n = p) or t (if n = q). Still, as (σ1, . . . , σk, U) is a
matching scheme, it is possible to process the pairs (s, t) ∈ U in an appropriate
order that prevents such conflicts. ut

Example 8.4. Consider the VAS 〈A, cinit〉 given by A = {a, b} and cinit = (2, 2),
where a = (−2, 3) and b = (3,−2). The tuple (ε,ab, ε,a, ε, b, U), with U =
{(1, 2), (1, 3)}, is a witness of non-context-freeness. This witness is not perfect
since rat(∆(ab), ∆(a)) = rat((1, 1), (−2, 3)) = 1

2 . Replacing ab by abab in the
witness makes it perfect. ut

We now explain how to encode by a formula in our logic the conditions of
perfect witnesses of non-context-freeness. Consider a positive natural number k
and a nested relation U on {1, . . . , k}. Firstly, we express that (∆(σs), ∆(σt)) is
a matching pair with ratio in {0, 1} for every (s, t) ∈ U , by the following formula:

∧
(s,t)∈U

(
d∧
i=1

δs(i) ≥ 0 ∧
d∨
i=1

−δt(i) ≥ 1 ∧ (ρ0(s, t) ∨ ρ1(s, t))

)

where ρ0(s, t) and ρ1(s, t) are formulas, expressible in our logic, specifying that
the matching pair (∆(σs), ∆(σt)) has ratio 0 and 1, respectively.

Secondly, we encode the requirements of Definition 8.1. The condition that
∆(σk) 6≥ 0 is expressed by the formula

∨d
i=1−δk(i) ≥ 1. For the encoding of the

condition ‖∆(σk)‖− ⊆ ‖exc(σ1, . . . , σk, U)‖+, we exploit the property that the
ratio of each matching pair (∆(σs), ∆(σt)) is either 0 or 1, as follows:

d∧
i=1

 δk(i) ≥ 0 ∨
∨

(s,t)∈U

(ρ0(s, t) ∧ δs(i) ≥ 1) ∨ (ρ1(s, t) ∧ δs(i) + δt(i) ≥ 1)


13

The last condition of Definition 8.1 is expressed by the following formula:

∧
(s,t)∈U,t<k

 ∨
(r,t)∈U,r≤s

d∧
i=1

δt(i) ≥ 0 ∨ δr(i) ≥ 1


Let ϕ(k, U) be the conjunction of the above formulas, and let ψ denote the
disjunction of all ϕ(k, U) where 1 ≤ k ≤ 3d + 1 and U is a nested relation
on {1, . . . , k}. As intended, the formula ψ expresses non-context-freeness of the
trace language. We derive the complexity of the context-freeness problem for
VAS from the analysis of our logic developed in the previous sections.

Theorem 8.5. The context-freeness problem for VAS is ExpSpace-complete.

Proof. By construction, 〈A, cinit〉 admits a perfect witness of non-context-freeness
if, and only if, 〈A, cinit〉 satisfies ψ. It follows from Proposition 8.3 that the trace
language of 〈A, cinit〉 is not context-free if, and only if, 〈A, cinit〉 satisfies ψ. It
is readily seen that |ψ| is at most exponential in the dimension d, and that the
conjunction rank of ψ is bounded by a polynomial in d. We derive from Theo-
rem 5.2, with the same arguments as in Corollary 7.2, that the context-freeness
problem for VAS can be solved in exponential space. The exponential space lower
bound is obtained by a reduction from the boundedness problem for VAS. ut

9 Discussion and Future Work

We introduced a logic that can express positive Boolean combinations of lin-
ear relations among the displacements of pumping segments in self-covering
sequences. We showed that if a VAS satisfies a formula, there are witnessing
self-covering sequences whose size is at most doubly-exponential in the size of
the VAS and the formula. This gives an exponential space upper bound for the
model-checking problem for our logic, which in turn gives an exponential space
upper bound for the context-freeness problem.

Yen introduced a logic similar to ours in [17], interpreted over all traces in-
stead of self-covering sequences like we do. Atig and Habermehl showed in [1]
that the problem of checking whether there is a trace satisfying a given formula in
Yen’s path logic is in the class CRP (i.e., equivalent to the reachability problem).
They also give a fragment of Yen’s path logic that can be checked in exponential
space. This fragment imposes the condition that the total displacement of the
words under consideration is greater than or equal to 0, which is incompara-
ble with our restriction to self-covering sequences and also incompatible with
witnesses of non-context-freeness.

A logic similar to ours was introduced by Demri in [3], interpreted over self-
covering sequences. In place of t ≥ n in our logic, the conditions allowed in [3]
can constrain a variable to be inside any interval of integers. However, we allow
combining ∆(σ1), . . . ,∆(σk) in a single term, which is not allowed in [3]. Hence,

14

the two logics are incomparable. The inability of the logic in [3] to combine
∆(σ1), . . . ,∆(σk) in a single term renders it unable to express the presence of
witnesses of non-context-freeness.

Blockelet and Schmitz introduced in [2] a fragment of computational tree
logic enriched with formulas in Presburger arithmetic for expressing properties of
coverability graphs. An exponential space upper bound is provided for a fragment
of this logic by imposing a so-called eventually increasing condition that is similar
to the one imposed in [1], but for trees instead of paths. Again, this condition is
incompatible with witnesses of non-context-freeness.

It will be interesting to see if the techniques used in the above collection of
incomparable logics can be unified to define a logic that extends all of them and
that can still be checked in exponential space.

References

1. M. F. Atig and P. Habermehl. On Yen’s path logic for Petri nets. Int. J. Found.
Comput. Sci., 22(4):783–799, 2011.

2. M. Blockelet and S. Schmitz. Model checking coverability graphs of vector addition
systems. In Proc. MFCS, volume 6907 of LNCS, pages 108–119, 2011.

3. S. Demri. On selective unboundedness of VASS. In Proc. INFINITY, volume 39
of EPTCS, pages 1–15, 2010.

4. J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey. Bulletin
of the EATCS, 52:244–262, 1994.

5. R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147 – 195, 1969.

6. S. R. Kosaraju. Decidability of reachability in vector addition systems. In
Proc. STOC, pages 267–281. ACM, 1982.

7. J. Leroux. Vector addition system reversible reachability problem. Logical Methods
in Computer Science, 9(1), 2013.

8. J. Leroux, V. Penelle, and G. Sutre. On the context-freeness problem for vector
addition systems. In Proc. LICS. IEEE, 2013. To appear.

9. R. J. Lipton. The reachability problem requires exponential space. Technical
Report 62, Yale University, 1976.

10. E. W. Mayr. An algorithm for the general Petri net reachability problem. In
Proc. STOC, pages 238–246. ACM, 1981.

11. E. W. Mayr and A. R. Meyer. The complexity of the finite containment problem
for Petri nets. J. ACM, 28(3):561–576, July 1981.

12. L. Pottier. Minimal solutions of linear diophantine systems: Bounds and algo-
rithms. In Proc. RTA, volume 488 of LNCS, pages 162–173, 1991.

13. C. Rackoff. The covering and boundedness problems for vector addition systems.
Theoretical Computer Science, 6(2):223–231, 1978.

14. S. R. Schwer. The context-freeness of the languages associated with vector addition
systems is decidable. Theor. Comput. Sci., 98(2):199–247, 1992.

15. R. Valk and M. Jantzen. The residue of vector sets with applications to decidability
problems in Petri nets. Acta Inf., 21:643–674, 1985.

16. R. Valk and G. Vidal-Naquet. Petri nets and regular languages. Journal of Com-
puter and System Sciences, 23(3):299–325, 1981.

17. H-C. Yen. A unified approach for deciding the existence of certain Petri net paths.
Inf. Comput., 96(1):119–137, 1992.

15

A Proofs of Section 2

The following lemma will be used in the proof of Lemma 2.2.

Lemma A.1. Let (v1, . . . ,vk) be a sequence of vectors in Zd such that ‖vh‖− ⊆⋃h−1
j=1 ‖vj‖+ for every h ∈ {1, . . . , k}. There exist positive integers p1, . . . , pk

such that xh =
∑h
j=1 pjvj satisfies xh ≥ 0 and ‖xh‖+ =

⋃h
j=1 ‖vj‖+ for every

h ∈ {1, . . . , k}.

Proof. The lemma is proved by induction over k. The case k = 0 is imme-
diate. Assume the lemma proved for some k ∈ N and let us consider a se-
quence (v1, . . . ,vk+1) of vectors in Zd such that ‖vh‖− ⊆

⋃h−1
j=1 ‖vj‖+ for every

h ∈ {1, . . . , k + 1}. By induction, there exist positive integers p1, . . . , pk such

that xh =
∑h
j=1 pjvj satisfies xh ≥ 0 and ‖xh‖+ =

⋃h
j=1 ‖vj‖+ for every

h ∈ {1, . . . , k}. Since ‖vk+1‖− ⊆
⋃k
j=1 ‖vj‖+ and this last set is equal to ‖xk‖+,

we deduce that there exists n ∈ N>0 such that xk+1 = nxk + vk+1 satisfies

xk+1 ≥ 0 and ‖xk+1‖+ =
⋃k+1
j=1 ‖vj‖+. The induction is proved by considering

p′1, . . . , p
′
k+1 defined by p′k+1 = 1 and p′h = nph for every h ∈ {1, . . . , k}. ut

Lemma 2.2. A sequence (u1, σ1, . . . , uk, σk) of words is self-covering for a VAS
〈A, cinit〉 if, and only if, u1σ1 . . . ukσk is a trace and for every n ∈ N, there exist
n1, . . . , nk ≥ n such that u1σ

n1
1 · · ·ukσ

nk
k is a trace.

Proof. Assume first that u1σ1 . . . ukσk is a trace and for every n ∈ N, there
exist n1, . . . , nk ≥ n such that u1σ

n1
1 · · ·ukσ

nk
k is a trace. Let h ∈ {1, . . . , k}

and i 6∈
⋃h−1
j=1 ‖∆(σj)‖+. We prove that ∆(σh)(i) ≥ 0 by introducing a positive

natural number n such that cinit(i)+∆(u1)(i)+· · ·+∆(uh)(i) < n. By definition,
there exist n1, . . . , nk ≥ n such that u1σ

n1
1 . . . uhσ

nh
h is a trace, since this word

is a prefix of the trace u1σ
n1
1 . . . ukσ

nk
h . Hence, cinit + ∆(u1) + · · · + ∆(uh) +

n1∆(σ1) + · · · + nh∆(σh) ≥ 0. Since ∆(σj)(i) ≤ 0 for every j ∈ {1, . . . , h − 1}
we derive the inequality nh∆(σh)(i) > −n. Thus ∆(σh)(i) > −1. We get the
inequality ∆(σh)(i) ≥ 0 which proves that (u1, σ1, . . . , uk, σk) is a self-covering
sequence.

Conversely, let us assume that (u1, σ1, . . . , uk, σk) is a self-covering sequence.
Let us consider a run of the following form where c′0 = cinit:

c′0
u1−→ c1

σ1−→ c′1 · · ·
uk−→ ck

σk−→ c′k

Assume that ‖∆(σh)‖− ⊆
⋃h−1
j=1 ‖∆(σj)‖+ for every h ∈ {1, . . . , k}. Lemma A.1

shows that there exists p1, . . . , pk ∈ N>0 such that xh =
∑h
j=1 pj∆(σj) satisfies

xh ≥ 0 for every h ∈ {0, . . . , k}.
Note that xh−1 + ph∆(σh) ≥ 0 since this vector is equal to xh. As xh−1 ≥ 0

we deduce that xh−1 + p∆(σh) ≥ 0 for every 0 ≤ p ≤ ph. As there exists a
run from ch labeled by σh, by monotony we deduce that there exists a run from
ch + xh−1 + p∆(σh) labeled by the same word. Thus:

ch + xh−1 + p∆(σh)
σh−−→ ch + xh−1 + (p+ 1)∆(σh)

16

We deduce that that there exists a run ch + xh−1
σ
ph
h−−→ ch + xh. By induction

over m ∈ N, we get ch +mxh−1
σ
mph
j−−−→ ch +mxh. We get the following run:

c′0 +mx0
u1−→ c1 +mx0

σ
mp1+1
1−−−−−→ c′1 +mx1 · · ·

uk−→ ck +mxk−1
σ
mpk+1

k−−−−−→ c′k +mxk

Finally, for every n ∈ N, there exists m ∈ N such that mpj + 1 ≥ n for every
j. We introduce nj = mpj + 1. We have proved the lemma since x0 = 0. ut

B Proofs of Section 5

Lemma 5.4. Consider a run cinit
u1−→ c1

σ1−→ c′1 −→ · · · uk−→ ck
σk−→ c′k of

〈A, cinit〉, with |σ1| + · · · + |σk| ≤ l. Then there are words u′1, . . . , u
′
k such that

u′1σ1 · · ·u′kσk is a trace and |u′1|+ · · ·+ |u′k| ≤ (2l‖A‖∞)((d+1)k+1)!.

Proof. The main idea here is to combine k paths into a single path of a suitably
constructed VAS with additional indices. For a d-dimensional VAS A, following
is an illustration of the ((d+ 1)k)-dimensional VAS Ak↓, which is formalized in
the definition that follows.

a(1)
...

a(d)

 in A⇒



a(1)
...

a(d)
...

a(1)
...

a(d)

a(1)
...

a(d)

0



,



a(1)
...

a(d)
...

a(1)
...

a(d)

0

0



, . . . ,



a(1)
...

a(d)
...

0

0

0



in Ak↓

The last k indices of Ak↓ are thought of as grouped into one, which are left
unchanged by all actions. The rest of the (k · d) indices are thought of as being
divided into k groups of d indices each. An action a of A gives rise to k actions
ak↓k, . . . ,ak↓1 in Ak↓. The action ak↓k duplicates the action of a on the first
k groups of indices. The action ak↓(k−1) duplicates the action of a on the first
(k − 1) groups of indices, leaving the rest unchanged and so on.

Definition B.1. For a ∈ Zd and j ∈ {1, . . . , k}, a(k↓j) is the ((d + 1)k)-
dimensional vector that results in a when projected to the indices {(i − 1)d +

17

1, . . . , (i − 1)d + d} for any i between 1 and j, and has the value 0 in all other
indices. Given A ⊆ Zd and 1 ≤ j ≤ k, A(k↓j) = {a(k↓j) | a ∈ A} and
A(k↓) = ∪1≤j≤kA(k↓j).

For a word σ, let cσ be the unique minimum configuration that enables σ.
For every j between 1 and k, let aj be the ((d + 1)k)-dimensional vector such
that

1. aj(kd+ j) = 1,
2. when aj is projected to the indices {(i − 1)d + 1, . . . , (i − 1)d + d} where

1 ≤ i ≤ k − j, the result is ∆(σj) and
3. aj has the value 0 in all other indices.

Let uk↓k−j+1
j be the word obtained from uj by replacing each action a of uj with

ak↓k−j+1. Let ck+dinit be the vector obtained by adjoining k copies of cinit and the
d-dimensional vector 〈0, . . . , 0〉. Let c be the configuration obtained by adjoining
the vectors cσk , . . . , cσ1

, 1d, where 1d is the d-dimensional vector all of whose

values are 1. We have by definition, ck+dinit

uk↓k1 a1u
k↓k−1
2 a2···uk↓1k ak−−−−−−−−−−−−−−−−−→ c′ such that c′ ≥

c. Following is an illustration, where uk1 is written as 〈u1, u1, . . . , u1, 0, 0, . . . , 0〉,
a1 is written as 〈∆(σ1), ∆(σ1), . . . ,0, 1, 0, . . . , 0〉 and so on.

cinit
cinit

...
cinit

0
0
...
0



u1
u1
...
u1
0
0
...
0

∆(σ1)
∆(σ1)

...
0
1
0
...
0

u2
u2
...
0
0
0
...
0

∆(σ2)
∆(σ2)

...
0
0
1
...
0

· · ·
uk
0
...
0
0
0
...
0

0
0
...
0
0
0
...
1



≥ cσk
≥ cσk−1

...
≥ cσ1

1
1
...
1


By Lemma 5.3, we infer that there is a sub-word u′k↓k1 a1u

′k↓k−1
2 a2 · · ·u′k↓1k ak

of uk↓k1 a1u
k↓k−1
2 a2 · · ·uk↓1k ak of length at most (2l‖A‖∞)((d+1)k+1)! such that

ck+dinit

u′k↓k1 a1u
′k↓k−1
2 a2···u′k↓1k ak−−−−−−−−−−−−−−−−−−→ c′′ and c′′ ≥ c. The actions a1, . . . ,ak will be

definitely present in the sub-word since they are the only ones that can increase
the value of the indices kd + 1, . . . , kd + k respectively. For each j between 1
and k, let u′j be the action obtained from u′k↓k−j+1

j by replacing each action

ak↓k−j+1 of u′k↓k−j+1
j by a. We have cinit

u′1σ1−−−→ c′′1
u′2σ2−−−→ · · · u

′
kσk−−−→ c′′k . Hence

the lemma is proved. ut

C Proofs of Section 6

Lemma 6.3. Let Z be a r × d integer matrix and let b ∈ Zr be a vector. The
set of all integer vectors ρ such that Zρ ≥ b is a finite union of sets of the form
p0 +Np1 + · · ·+Npm, where m ∈ N and p0,p1, . . . ,pm are integer vectors such
that ‖p0‖1, ‖p1‖1, . . . , ‖pm‖1 ≤ (2 + ‖Z‖1,∞ + ‖b‖∞)r.

18

Proof. For two matrices Z1,Z2 of the same dimensions, the Hadamard product
Z1 ◦Z2 is a matrix of the same dimensions whose elements are (Z1 ◦Z2)(i, j) =
Z1(i, j) ·Z2(i, j) for all i, j. Let π ∈ {−1,+1}d (we think of π as a vector that
permutes the sign of some of its indices). Let πr be the r × d matrix such that
every row of πr is equal to π.

{ρ ∈ Zd | Zρ ≥ b}

=
⋃

π∈{−1,+1}d
{π ◦ ρ′ | ρ′ ∈ Nd, [πr ◦Z]ρ′ ≥ b} (3)

Let −Ir be the r × r identity matrix multiplied by −1. Let θ be a natural
number vector of dimension r. Let t be a temporary variable ranging over the
set of natural numbers. Let [πr ◦Z;−Ir;−b] be the matrix of r rows obtained
by adjoining πr ◦Z,−Ir and −b. We have the following equality.

{ρ′ ∈ Nd, [πr ◦Z]ρ′ ≥ b} =

{ρ′ ∈ Nd | [πr ◦Z;−Ir;−b]

ρ′θ
t

 = 0,θ ∈ Nr, t = 1} (4)

From [12, Theorem 1], we get〈ρ′,θ, t〉 ∈ Nd+r+1 | [πr ◦Z;−Ir;−b]

ρ′θ
t

 = 0

 =
∑
q∈Cπ

Nq (5)

where Cπ ⊆ Nd+r+1 is a finite set of natural number vectors such that ‖Cπ‖1 ≤
(1 + ‖[Z;−Ir;−b]‖1,∞)r. Let C1π = {ρ′ ∈ Nd | ∃θ ∈ Nr, 〈ρ′,θ, 1〉 ∈ Cπ} and
C0π = {ρ′ ∈ Nd | ∃θ ∈ Nr, 〈ρ′,θ, 0〉 ∈ Cπ}. We get the following from (3).

{ρ ∈ Zd | Zρ ≥ b}

=
⋃

π∈{−1,+1}d
{π ◦ ρ′ | ρ′ ∈ Nd, [πr ◦Z]ρ′ ≥ b}

=
⋃

π∈{−1,+1}d,p′∈C1π

{π ◦ p′ +
∑
q′∈C0π

N(π ◦ q′)}

Since ‖[Z;−Ir;−b]‖1,∞ ≤ ‖Z‖1,∞ + 1 + ‖b‖∞, we get ‖C1π‖1, ‖C0π‖1 ≤ (2 +
‖Z‖1,∞ + ‖b‖∞)r and this proves the lemma. ut

Lemma 6.4. Let A ⊆ Zd be a finite set and x ∈ Ndω be an extended configura-

tion. Suppose there is a word σ ∈ A∗ such that x
σ−→ x and Z∆(σ) ≥ n, where

Z ∈ Zr×d is an integer matrix with r rows, d columns and n ∈ Nr is a vector of

natural numbers. Then there is a word σ′ ∈ A∗ such that x
σ′−→ x, Z∆(σ′) ≥ n

and |σ′| ≤ (‖Z‖1,∞ + ‖A‖∞ + ‖n‖∞)rc
d3

2 for some constant c2.

19

Proof (Continued).

x = (1 + 2‖Ã‖∞)(1 + ‖c′′‖∞ + ‖∆u′‖∞)

≤ (1 + 2ã)(1 + ‖c′‖∞ + ‖p0‖∞ + ‖p0‖∞)

≤ (1 + 2ã)(1 + ‖c′‖∞ + 2ã)

≤ 2(1 + 2ã+ ‖c′‖∞)

≤ 2
[
1 + 2ã+ (102d2ã2)(15d

d+2)d+2
]

≤ 2
[
(104d2ã2)(15d

d+2)d+2
]

≤ (208d2ã2)(15d
d+2)d+2

≤ (30ã)60
10d3

ã = ‖Ã‖∞ = max{‖A‖∞, ‖p0‖∞, ‖p1‖∞, . . . , ‖pm‖∞}
≤ max{‖A‖∞, ‖p0‖1, ‖p1‖1, . . . , ‖pm‖1}
≤ max{‖A‖∞, (2 + ‖Z‖1,∞ + ‖n′‖∞)r+2d}
≤ (2 + ‖Z‖1,∞ + ‖A‖∞ + ‖n‖∞)r+2d

x ≤ (30ã)60
10d3

≤ (30(2 + ‖Z‖1,∞ + ‖A‖∞ + ‖n‖∞))(r+2d)6010d
3

|σ′| ≤ |u′′| ≤ 17d2x15d
d+2

≤ 17d2(30(2 + ‖Z‖1,∞ + ‖A‖∞ + ‖n‖∞))(r+2d)15dd+26010d
3

≤ [c3(‖Z‖1,∞ + ‖A‖∞ + ‖n‖∞)]rc
c5d

3

4

for suitably chosen constants c3, c4 and c5.
If ‖Z‖1,∞ = 0 (resp. ‖A‖∞ = 0), all entries of Z (resp.A) are zero, which is a

trivial case. Hence, we can assume that ‖Z‖1,∞, ‖A‖∞ ≥ 1 and hence ‖Z‖1,∞+

‖A‖∞ ≥ 2. Hence, we can conclude that |σ′| ≤ (‖Z‖1,∞ + ‖A‖∞ + ‖n‖∞)rc
d3

2

for a suitably chosen constant c2. ut

D Proofs of Section 7

Lemma 7.1. Suppose there is a self-covering sequence (u1, σ1, . . . , uk, σk) sat-
isfying φ. Then there is a self-covering sequence (u′1, σ

′
1, . . . , u

′
k, σ
′
k) satisfying φ

such that |σ′1|+ · · ·+ |σ′k| ≤ (‖A‖∞ + ‖φ‖1)r(φ)c
(d·k(φ))3
1 where c1 is a constant.

20

Proof. For each disjunctive sub-formula of φ, one of the disjuncts is satisfied by
u1σ1 · · ·ukσk. By choosing such satisfied disjuncts, we are left with a conjunction
of at most r(φ) terms, where r(φ) is the conjunction rank of φ. In the following,
we will write r in place of r(φ). Each of these r terms can be encoded as a linear
inequality of the form z � δ ≥ n. We next add some linear inequalities that
encode the conditions of a self-covering sequence. For each j between 1 and k
and each i between 1 and d such that ∆(σj)(i) ≥ 1, add the inequality δj(i) ≥ 1.
For each j between 1 and k and each i between 1 d such that ∆(σj)(i) = 0, add
the inequalities δj(i) ≥ 0 and −δj(i) ≥ 0. The resulting linear system Z ′δ ≥ n′
has at most r + 3kd rows.

Now our goal is to check the existence of words σ1, . . . , σk satisfying a lin-
ear system. These are k different words of d-dimensional vectors in A whose
displacements should satisfy a single linear system. We reduce this to finding a
single word of (k ·d)-dimensional vectors in A(k), which is shown in the example
below and formalized in the definition that follows.

a(1)
...

a(d)

 in A⇒



a(1)
...

a(d)

0

...

0



,



0

a(1)
...

a(d)
...

0



, . . . ,



0

0

...
a(1)

...
a(d)



in A(k)

The (k · d) indices of A(k) are thought of as being divided into k groups of d
indices each. An action of A gives rise to k actions in A(k). Each one of these
k actions acts on one of the k groups of indices, leaving the indices of the other
groups unchanged.

Definition D.1. For a ∈ Zd and j ∈ {1, . . . , k}, a(k,j) is the (k ·d)-dimensional
vector that results in a when projected to the indices {(j−1)d+1, . . . , (j−1)d+d}
and has the value 0 in all other indices. Given A ⊆ Zd and 1 ≤ j ≤ k, A(k,j) =
{a(k,j) | a ∈ A} and A(k) = ∪1≤j≤kA(k,j).

Suppose the word u1σ1 · · ·ukσk we are looking for is such that cinit
u1−→ c1

σ1−→
c′1 −→ · · ·

uk−→ ck
σk−→ c′k. The idea is to think of σ1, . . . , σk as a single word in

21

(A(k))∗ as follows. 
c1
c2
...
ck

→
σ1 0 0
0 σ2 0
...

... · · ·
...

0 0 σk

→


c′1
c′2
...
c′k

 (6)

Let cinit
u1−→ c1

σ1−→ c′1 −→ · · ·
uk−→ ck

σk−→ c′k. For each j between 1 and k,
let xj(i) = ω for i ∈ ∪1≤j′<j‖∆(σj′)‖+ and xj(i) = cj(i) for i ∈ ‖∆σj‖0 \
∪1≤j′<j‖∆(σj′)‖+. Let σ

(k,j−1)
j be the word obtained from σj by replacing each

action a of σj with a(k,j−1). Let x be the vector obtained by adjoining x1, . . . ,xk

and let σ(k) = σ
(k,0)
1 · · ·σ(k,k−1)

k . We have x
σ(k)

−−→ x and Z ′∆(σ(k)) ≥ n′.
From Lemma 6.4, we infer that there is a word σ′ ∈ (A(k))∗ such that

x
σ′−→ x, Z ′∆(σ′) ≥ n′ and |σ′| ≤ (‖Z ′‖1,∞ + ‖A(k)‖∞ + ‖n′‖∞)(r+3kd)ck

3d3

2 .
We have ‖Z ′‖1,∞, ‖n′‖∞ ≤ ‖φ‖1 and ‖A(k)‖∞ = ‖A‖∞. Hence, we infer that

|σ′| ≤ (‖A‖∞+‖φ‖1)rc
k3d3

1 for a suitably chosen constant c1. For each j between
1 and k, let σ′j be the word obtained from σ′ by first restricting σ′ to actions in

A(k,j−1) and then replacing each action a(k,j−1) by a. Since ∆(σ′) is equal to
the vector obtained by adjoining ∆(σ′1), . . . ,∆(σ′k) and Z ′∆(σ′) ≥ n′, we infer
that ∆(σ′1), . . . ,∆(σ′k) satisfy φ and the conditions for self-covering sequences.

Let u′0 = u1σ
‖A‖∞|σ′1|
1 . We claim that for any j between 1 and k and any

w ∈ N>0, there exist n1, . . . , nk ∈ N>0 such that cinit
u′0σ
′n1
1 u2σ

′n2
2 ···ujσ

′nj
j−−−−−−−−−−−−−−→ c′′j

such that c′′j (i) = xj(i) for i /∈ ‖xj‖ω and c′′j (i) ≥ w for j ∈ ‖xi‖ω. The proof
of the claim is by induction on j. For the base case j = 1, we can take n1 = w.
For the induction step, we let nj = w and n1, . . . , nj−1 be those given by the
induction hypothesis with w+ ‖A‖∞(|uj |+w|σ′j |) in place of w. This completes
the induction hypothesis and hence the claim is true.

Let cinit
u′0σ
′n1
1 u2σ

′n2
2 ···ukσ

′nk
k−−−−−−−−−−−−−−−→ c′′k , where n1, . . . , nk ∈ N>0 are those given by

the claim above with w = 1. The lemma is proved by taking u′1 = u′0σ
′n1−1
1 and

u′j = ujσ
′nj−1
j for 2 ≤ j ≤ k. ut

E Proof of Proposition 8.3

We provide, in this section, a detailed proof of Proposition 8.3. The proof is
based on the following lemmas.

Lemma E.1. For every witness of non-context-freeness (u1, σ1, . . . , uk, σk, U),
there exists 1 ≤ j1 < j2 < · · · < jh = k, with h ≤ 3d+ 1, a binary relation V on
{1, . . . , h}, and h words v1, . . . , vh in A∗ such that

1. (v1, σj1 , . . . , vh, σjh , V) is a witness of non-context-freeness, and
2. (v1, σj1 , . . . , vh, σjh) is a self-covering sequence.

22

Proof. The following notation will be used in the proof. Given a binary relation
R over some set X, the support of R is the set of all elements in X that are
related by R, formally, Sup(R) = {s, t | (s, t) ∈ R}.

Let (u1, σ1, . . . , uk, σk, U) be a witness of non-context-freeness. To prove the
lemma, we may assume, w.l.o.g., that U is minimal with respect to inclusion. As
a first step, we show that Sup(U) has cardinal at most 3d. For brevity, let us write
E = ‖exc(σ1, . . . , σk, U)‖+. For each index i ∈ E, there exists a pair (si, ti) in U
such that exc(∆(σsi), ∆(σti))(i) > 0. In addition, define ri = min {s | (s, ti) ∈ U}
for every i ∈ E. We prune U into the reduced binary relation

Ur = {(ri, ti), (si, ti) | i ∈ E}

Observe that Ur ⊆ U and that |Sup(Ur)| ≤ 3d. Since Ur ⊆ U , we get that
(σ1, . . . , σk, Ur) is a matching scheme. Moreover, since (u1, σ1, . . . , uk, σk, U) is
a witness of non-context-freeness, we obtain, by construction, that

– ‖∆(σk)‖− ⊆ ‖exc(σ1, . . . , σk, U)‖+ = ‖exc(σ1, . . . , σk, Ur)‖+, and
– ‖∆(σti)‖− ⊆ ‖∆(σri)‖+ for every i ∈ E with ti < k.

It follows that (u1, σ1, . . . , uk, σk, Ur) is also a witness of non-context-freeness.
By minimality of U , we derive that U = Ur, hence, |Sup(U)| ≤ 3d.

Let us write Sup(U) ∪ {k} = {j1, . . . , jh} with 1 ≤ j1 < j2 < · · · < jh = k.
Note that 3d ≤ h ≤ 3d + 1. We define the binary relation V on {1, . . . , h} and
the words v1, τ1, . . . vh, τh in A∗ as follows:

V = {(s, t) | (js, jt) ∈ U}
τi = σji

vi = uji−1+1σji−1+1uji−1+2 · · ·σji−1uji
with the convention that j0 = 1. We show that (v1, τ1, . . . , vh, τh, V) is a witness
of non-context-freeness. It is routinely checked that (τ1, . . . , τh, V) is a matching
scheme. Let us prove that (v1, τ1, . . . , vh, τh, V) fulfills the three conditions of
Definition 8.1. Recall that these conditions are satisfied by (u1, σ1, . . . , uk, σk, U).
Notice also that U = {(js, jt) | (s, t) ∈ V }, by construction.

1. The word v1τ1 · · · vhτh is a trace since it is equal to u1σ1 · · ·ukσk, which is
a trace.

2. It holds that ‖∆(τh)‖− = ‖∆(σk)‖− 6= ∅. Moreover, it is routinely checked
that exc(τ1, . . . , τh, V) = exc(σ1, . . . , σk, U). Hence, ‖∆(τh)‖− = ‖∆(σk)‖− ⊆
‖exc(σ1, . . . , σk, U)‖+ = ‖exc(τ1, . . . , τh, V)‖+.

3. For every (s, t) ∈ V with t < h, it holds that (js, jt) ∈ U and jt < k. Hence,
there exists (jr, jt) ∈ U such that r ≤ s and ‖∆(σjt)‖− ⊆ ‖∆(σjr)‖+. We
get that (r, t) ∈ V and ‖∆(τt)‖− ⊆ ‖∆(τr)‖+.

We conclude that (v1, τ1, . . . , vh, τh, V) is a witness of non-context-freeness.

All that remains to complete the proof of the lemma is to establish that
(v1, τ1, . . . , vh, τh) is a self-covering sequence. First, observe that, by construc-
tion, Sup(V) ∪ {h} = {1, . . . , h}. Let t ∈ {1, . . . , h} such that ∆(τt) 6≥ 0. There
are two cases to consider.

23

– If t < h then t ∈ Sup(V). Since ∆(τt) 6≥ 0, we get that (s, t) ∈ V for some
s ∈ {1, . . . , h}. It follows that ‖∆(τt)‖− ⊆ ‖∆(τr)‖+ for some (r, t) ∈ V .

Hence, ‖∆(τt)‖− ⊆
⋃t−1
j=1 ‖∆(τj)‖+.

– If t = h then ‖∆(τt)‖− = ‖∆(τh)‖− ⊆ ‖exc(τ1, . . . , τh, V)‖+. Moreover, it

is readily seen that ‖exc(τ1, . . . , τh, V)‖+ ⊆
⋃h
j=1 ‖∆(τj)‖+. We derive that

‖∆(τt)‖− ⊆
⋃t−1
j=1 ‖∆(τj)‖+.

We have shown that (v1, τ1, . . . , vh, τh) is a self-covering sequence, which con-
cludes the proof of the lemma. ut

Lemma E.2. Every non-empty irreflexive nested relation R on {1, . . . , k} con-
tains a pair (ŝ, t̂) such that

{s | (s, t̂) ∈ R} = {ŝ} or {t | (ŝ, t) ∈ R} = {t̂}

Proof. Consider a non-empty binary relation R on {1, . . . , k} that is both ir-
reflexive (i.e., s 6= t for every (s, t) ∈ R) and nested (i.e., R satisfies (1) and (2)).
By contradiction, assume that the lemma condition does not hold. This means
that for every pair (s, t) ∈ R, there exists s′ 6= s and t′ 6= t such that (s′, t) ∈ R
and (s, t′) ∈ R. Since R 6= ∅, we obtain that there exists in R two distinct pairs
with the same target. Recall that R satisfies (1) and is irreflexive. We derive
that there exists s0 < s1 < t0 such that (s0, t0) ∈ R and (s1, t0) ∈ R. Since
(s1, t0) ∈ R, we obtain that there exists t1 6= t0 such that (s1, t1) ∈ R. Ob-
serve that s1 < t1 as R satisfies (1) and is irreflexive. Furthermore, it holds that
t1 < t0 as R satisfies (2). Let us replay this construction. Since (s1, t1) ∈ R,
we obtain that there exists s2 6= s1 such that (s2, t1) ∈ R. Moreover, it holds
that s1 < s2 < t1 as R satisfies (1) and (2) and is irreflexive. By iterating this
process ad infinitum, we obtain that there exists two infinite sequences (si)i∈N
and (ti)i∈N such that 0 ≤ s0 < s1 < · · · < si < · · · < ti < · · · < t1 < t0 ≤ k,
which is obviously impossible. ut

Lemma E.3. For every v1,v2 ∈ Zd and n1, n2 ∈ N, with n2 6= 0, it holds that

rat(n1v1, n2v2) =
n1
n2
· rat(v1,v2)

exc(n1v1, n2v2) = n1 · exc(v1,v2)

Proof. These two equalities are easily derived from the definitions. ut

Lemma E.4. For every matching scheme (σ1, . . . , σk, U), there exists k natural
numbers n1, . . . , nk ∈ N, with ni > 0, such that

rat(∆(σs), ∆(σt)) ∈
{

0,
nt
ns

}
for every (s, t) ∈ U .

24

Proof. By induction on the cardinal of U . The basis, where U = ∅, is trivial.
Consider a matching scheme (σ1, . . . , σk, U) with U 6= ∅. Note that, by definition,
U is a nested binary relation on {1, . . . , k}. Moreover, U is irreflexive since every
pair (s, t) ∈ U verifies ∆(σs) ≥ 0 and ∆(σt) 6≥ 0. According to Lemma E.2,
there exists a pair (ŝ, t̂) ∈ U such that:

{s | (s, t̂) ∈ U} = {ŝ} or {t | (ŝ, t) ∈ U} = {t̂}

Let V = U \ {(ŝ, t̂)}. Obviously, (σ1, . . . , σk, V) is also a matching scheme. It
follows from the induction hypothesis that there exists n1, . . . , nk ∈ N, with
ni > 0, such that rat(∆(σs), ∆(σt)) ∈ {0, ntns } for every (s, t) ∈ V . Recall that
the ratio of any matching pair is a non-negative rational number. Let us write
rat(∆(σŝ), ∆(σt̂)) = p

q where p, q ∈ N, with q 6= 0. If p = 0 then we get that

rat(∆(σs), ∆(σt)) ∈ {0, ntns } for every (s, t) ∈ U , and so we are done. Otherwise,
p > 0, and we define m1, . . . ,mk ∈ N as follows:

If {s | (s, t̂) ∈ U} = {ŝ} then mi =

{
ni · p · nŝ if i = t̂

ni · q · nt̂ if i 6= t̂

If {t | (ŝ, t) ∈ U} = {t̂} then mi =

{
ni · q · nt̂ if i = ŝ

ni · p · nŝ if i 6= ŝ

Observe that mi > 0 for all i ∈ {1, . . . , k}. To conclude the proof of the lemma, it

remains to show that every (s, t) ∈ U verifies rat(∆(σs), ∆(σt)) ∈
{

0, mtms

}
. Let

(s, t) ∈ U . If (s, t) = (ŝ, t̂) then, by definition, mtms = p
q = rat(∆(σŝ), ∆(σt̂)). Oth-

erwise, it holds that (s, t) ∈ V , which entails that rat(∆(σs), ∆(σt)) ∈ {0, ntns }.
Let us show that mt

ms
= nt

ns
. There are two cases to consider.

– If {s | (s, t̂) ∈ U} = {ŝ} then t 6= t̂ since (s, t) 6= (ŝ, t̂). Moreover, s 6= t̂ since
∆(σs) ≥ 0 and ∆(σt̂) 6≥ 0. It follows that ms = ns · q ·nt̂ and mt = nt · q ·nt̂.

– If {t | (ŝ, t) ∈ U} = {t̂} then s 6= ŝ since (s, t) 6= (ŝ, t̂). Moreover, t 6= ŝ since
∆(σt) 6≥ 0 and ∆(σŝ) ≥ 0. It follows that ms = ns ·p ·nŝ and mt = nt ·p ·nŝ.

In both cases, we obtain that mt
ms

= nt
ns

. Therefore, rat(∆(σs), ∆(σt)) ∈ {0, mtms }
for every pair (s, t) ∈ U . ut

Proposition 8.3. The trace language of a VAS 〈A, cinit〉 is not context-free if,
and only if, 〈A, cinit〉 admits a perfect witness of non-context-freeness.

Proof. The “if” direction follows from Theorem 8.2. For the converse, assume
that the trace language of 〈A, cinit〉 is not context-free. According to Theo-
rem 8.2 and Lemma E.1, 〈A, cinit〉 admits a witness of non-context-freeness
(u1, σ1, . . . , uk, σk, U) such that k ≤ 3d + 1 and (u1, σ1, . . . , uk, σk) is a self-
covering sequence. Since (σ1, . . . , σk, U) is a matching scheme, we obtain from
Lemma E.4 that there exists k natural numbers n1, . . . , nk ∈ N, with ni > 0,
such that

rat(∆(σs), ∆(σt)) ∈
{

0,
nt
ns

}
(7)

25

for every (s, t) ∈ U . By Lemma 2.2, there exists m1, . . . ,mk ≥ max {n1, . . . , nk}
such that u1σ

m1
1 · · ·ukσmkk is a trace. Define vi = uiσ

mi−ni
i for all i ∈ {1, . . . , k}.

since it is equal to u1σ
m1
1 · · ·ukσmkk . We show that (v1, σ

n1
1 , . . . , vk, σ

nk
k , U) is a

perfect witness of non-context-freeness. First, observe that

‖∆(σ
nj
j)‖− = ‖∆(σj)‖− and ‖∆(σ

nj
j)‖+ = ‖∆(σj)‖+ (8)

for all j ∈ {1, . . . , k}. Since (σ1, . . . , σk, U) is a matching scheme, we derive
from (8) that (σn1

1 , . . . , σnkk , U) is a also matching scheme. Let us prove that
(v1, σ

n1
1 , . . . , vk, σ

nk
k , U) fulfills the three conditions of Definition 8.1. Recall that

these conditions are satisfied by (u1, σ1, . . . , uk, σk, U).

1. The word v1σ
n1
1 · · · vkσ

nk
k is a trace since it is equal to u1σ

m1
1 · · ·ukσmkk ,

which is a trace.
2. It holds that ‖∆(σnkk)‖− = ‖∆(σk)‖− 6= ∅. Moreover, Lemma E.3 entails that

exc(σn1
1 , . . . , σnkk , U) ≥ exc(σ1, . . . , σk, U). Hence, ‖∆(σnkk)‖− = ‖∆(σk)‖− ⊆

‖exc(σ1, . . . , σk, U)‖+ ⊆ ‖exc(σn1
1 , . . . , σnkk , U)‖+.

3. For every (s, t) ∈ U with t < k, there exists (r, t) ∈ U such that r ≤ s and
‖∆(σntt)‖− = ‖∆(σt)‖− ⊆ ‖∆(σr)‖+ = ‖∆(σnrr)‖+.

It remains to show that (v1, σ
n1
1 , . . . , vk, σ

nk
k , U) is perfect. Recall that k ≤ 3d+1

and that (u1, σ1, . . . , uk, σk) is a self-covering sequence. Since v1σ
n1
1 · · · vkσ

nk
k is a

trace, we deduce from (8) that (v1, σ1, . . . , vk, σk) is also a self-covering sequence.
Moreover, we derive from (7) and Lemma E.3 that rat(∆(σnss), ∆(σntt)) ∈ {0, 1}
for every (s, t) ∈ U . We have shown that (v1, σ

n1
1 , . . . , vk, σ

nk
k , U) is a perfect

witness of non-context-freeness, which concludes the proof of the proposition.
ut

F Additional Material for Section 8

The formulas ρ0(s, t) and ρ1(s, t) specifying, respectively, that the matching pair
(∆(σs), ∆(σt)) has ratio 0 and 1, are defined below:

ρ0(s, t) =

d∨
j=1

−δs(j) ≥ 0 ∧ −δt(j) ≥ 1

ρ1(s, t) =

d∧
j=1

δs(j) + δt(j) ≥ 0 ∧
d∨
j=1

(−δt(j) ≥ 1 ∧ −δs(j)− δt(j) ≥ 0)

Theorem 8.5. The context-freeness problem for VAS is ExpSpace-complete.

Proof. We have already proved ExpSpace-membership. For the exponential
space lower bound, we show a reduction from the boundedness problem for
VAS, which is known to be ExpSpace-hard [9]. Consider a VAS 〈A, cinit〉 of
dimension d. We construct the VAS 〈A′, c′init〉 of dimension d+ 3 defined by

A′ = {(a, 0, 0, 0) | a ∈ A} ∪ {−ei + ed+1 | 1 ≤ i ≤ d} ∪ {b1, b2, b3}
c′init = (cinit, 0, 0, 0)

26

where b1 = −ed+1 + ed+2 + ed+3, b2 = −ed+2 and b3 = −ed+3. Let us show
that 〈A, cinit〉 is bounded if, and only if, the trace language of 〈A′, c′init〉 is
context-free. If 〈A, cinit〉 is bounded then 〈A′, c′init〉 is also bounded, hence, its
trace language is regular. Otherwise, 〈A, cinit〉 is not bounded, and it follows, by
construction, that the component at index d+ 1 can be arbitrarily large in A′,
through traces that do not use b1, b2 nor b3. Consider the language

L = T (A′, c′init) ∩ ((A′ \ {b1, b2, b3})∗ · b∗1 · b∗2 · b∗3)

Its projection on {b1, b2, b3} is the language {bn1
1 b

n2
2 b

n3
3 | n1 ≥ n2 ∧ n1 ≥

n3}, which is not context-free. Recall that the class of context-free languages is
closed under projection and under intersection with regular languages. It follows
that T (A′, c′init) is not context-free, which concludes the proof of ExpSpace-
hardness. ut

27

