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Dimensional Changes in Crystals Caused by Dislocations
E. A. Tovem, U. 5. Naval Research Laboralory, Washinglon, D. C.

AKD
R. 5. Rivims, Brows Universily, Providence, Rhode [sland

According to the classical linear elasticity theory, if one or more dislocations are introduced into a body
of elastic material, the average value of each of the infinitesimal strain components is zero; in particular, the
change in volume is zero. This result seems not to be in accord with experimental data on cold worked
metals. In this paper we use nonlinear elasticity theory to show how changes in the average dimensions of
elastic bodies, either isotropic or anisetropic, resulting from the introduction of dislocations, can be calcu-
lated. In particular, we derive an explicit relation between the resultant change in volume, the stored
energy, and the pressure derivatives of the elastic moduli.

1. INTRODUCTION

CCORDING to classical elasticity theory, if one

or more dislocations are introduced into a body
of elastic material, the average value of each of the
infinitesimal strain components in a rectangular Car-
tesian coordinate system is zero. It follows that the
change of volume is zero; that in a prism of the material
the change of cross-sectional area and the average
change of length are zero; that in a rectangular block
the average changes in the dimensions parallel to the
edges are zero. These results do not, of course, prove
that the changes are in fact zero physically. They
merely imply that the classical elasticity theory pro-
vides an inadequate basis for their calculation.

In the present paper we make use of the second-order
elasticity theory to show how changes in the average
dimensions of elastic bodies, either isotropic or aniso-
tropic, caused by the introduction of dislocations, can
be calculated when the displacement gradients produced
by the dislocations are sufficiently small.

It is first shown in Sec. 2 that the average value of
each of the stress components, in a rectangular Car-
tesian coordinate system, is zero. This result iz then
used, within the framework of the second-order theory,
to obtain an expression for the average value of each of
the infinitesimal strain components as the average value
of an expression of second degree in the displacement
gradients, which are associated with the dislocations in
the body according to the classical theory. From these
results, the dimensional changes can in principle be
calculated in a number of cases. In Appendices 1 and 2,

Fie. 1.

it is shown how these formulas may be specialized when
the material considered has some particular symmetry,
by illustrations from the isotropic case and from the case
of cubic symmetry of the hextetrahedral, gyroidal, and
hexoctahedral classes.

In Sec. 6 we considered the particular problem of the
change in volume, resulting from the introduction of dis-
locations, of a cubic crystal of one of these classes, The
formula derived can be easily specialized to the case
when the material is isotropic and the result obtained is
in agreement with that which Zener! obtained by a very
different procedure.

Finally, in Sec. 7 we have employed our result for the
cubic case to make certain qualitative predictions re-
garding the effect of dislocations on the volume of
crystals of silver, gold, and copper.

2. AYERAGE STRESS

Consider an elastic body which in the undeformed
state has the form shown schematically in Fig. 1, Let
E; denote the region of space occupied by this body and
let Ss denote the complete boundary of Ry. Let the body
be deformed in such a way that certain portions of S
are brought into contact with each other and bonded
together as shown in Fig, 2, the external forces required
to bring the surfaces together then being removed. The
body is then in a state of deformation without external
forces acting on it.

Let R denote the region occupied by the deformed
body. Let § denote the external surface of the deformed

Fic, 2.

'C. Zener, Trans. Am, Inst. Mining Met. Engrs. 147, 361
(1942). e



body and let ¢ denote the bonded surfaces in the de-
formed body, which we may call the dislocation surfaces.
Then, the displacement and stress fields have dis-
continuities on ¢, while the stress vector acting on ¢ is
continuous across.o.

Let #;; denote the stress components in a rectangular
Cartesian coordinate system x at a point x; of the de-
formed body. Since no external forces act on the body,
we have*

0t:;/dx;=0 throughout R, (2.1)
and
(2.2)

where #n; denotes the unit normal to S at the point
considered.

Let #; and #;® be the limiting values of the stress
#;; at a point of the dislocation surface ¢ as we approach
it from its two sides, which we may call sides 1 and 2.
Then, since the stress vector is continuous on o,

;i —1;V)n;=0 on o,

t;im;=0 on S,

(2.3)

where #; is the unit vector to ¢ drawn in the sense from
2 to 1 (say).

We note that, if dV is an element of volume of the
deformed body R and dS and do are elements of area
of the surfaces .S and o, using the divergence theorem
and the relations (2.2) and (2.3), we have

d
f——-—(xkt,‘,‘)dv=kat¢,%,d5
R 9%; 8

+f xk(tij(z)—t,-,-(l))n,da=0. (24)

We thus have, with (2.1),

i
f (t.-,,+xk——’)dv= f tadV=0.  (2.5)
R ax; R

Equation (2.5) expresses the following theorem: the
average value of each of the siress components in a rec-
tangular Cartesian coordinate system in a body, which is
held in equilibrium without external forces being applied,
1s zero.

We note that in deriving this result no assumption is
made regarding the magnitude of the deformation, nor
does the elastic nature of the material of the body enter
explicitly.

3. SOME BASIC RESULTS IN SECOND-ORDER
ELASTICITY THEORY

We consider a deformation of an elastic material, in
which a generic particle initially at X;in the rectangular
Cartesian coordinate system x moves to x; in the same

* Here and throughout this paper, lower case Latin indices take

the values 1, 2, 3 and the summation convention is applicable to
them.

coordinate system. If u; are the components of the dis-
placement for the particle, then

xi=Xt+u;. 3.1

The stored elastic energy W per unit of deformed
volume, or strain-energy function, then depends on the
displacement gradients #; j, and we shall assume that
this dependence is polynomial. We use the notation ;
to denote partial differentiation with respect to the
coordinate X ;. The components of stress ¢;; are given by

1 ow

b= ity —. (3.2)
" lax/oxX| Buin

If dV and dV, denote corresponding elements of volume
in the deformed and undeformed states, we have

dV/dV,=|8x/0X|. (3.3)

From (3.2), (3.3), and (2.5), we see that if a body of
elastic material is held in a deformed state, without
external forces, by the introduction of dislocations,

thent
aw
f] ¢3x/6X|t,;,dVo=f:ch,,c dV,y=0. (3.4)
au,-,,,
W may be expressed in the form,
W= W1+W2+W3+ Y (35)

where Wy, W, W3, - - - are homogeneous polynomials of
the first, second, third, - - - degrees in the displacement
gradients. It can be shown that if the stress components
are zero when the displacement gradients are zero,
W1=0. Then, if the displacement gradients are suffi-
ciently small, W=W, provides a first approxima-
tion to the strain-energy function (that of classical
elasticity theory) and W=W,+W; provides a second
approximation.

If we take W=W,, we are neglecting in W terms of
higher degree than the second in the displacement
gradients. From (3.2) it is seen that this implies the
neglect, in the expressions for the stress components, of
terms of higher degree than the first in the displace-
ment gradients. With this approximation, we obtain
from (3.4),

f (0W /03 ) AV =0, (3.6)

If we take W =W+ W3, we are neglecting in W terms
of higher degree than the third in the displacement
gradients. This implies the neglect, in the expressions
for the stress components, of terms of higher degree than
the second in the displacement gradients. With this

1 Here and subsequently integrals with respect to Vy are con-
sidered to be evaluated over the domain Ro.



approximation, we obtain from (3.4),
oW, oWs oW,
S
3‘14;','

4. THE GENERAL ANISOTROPIC CASE

3.7

Uj,k

au,-,k

i j

The strain-energy function W cannot have arbitrary
dependence on the displacement gradients, but must
depend on them through the components E;; of the
finite strain tensor defined by

(4.1)

Eij=3(wn, xvx, j— 8:) = €5+ tijy
where
(4.2)

e;; are the components of infinitesimal strain of the
classical linear elasticity theory, and it is noted that
e; and a;; are homogeneous of first and second degrees,
respectively, in the displacement gradients.

By taking W to be a polynomial in the components
E.;, we may write

W= aijuiEsi;ExitbijkimnEiiExiBnnt- -+, (4.3)

where @5 and byjkims are constants. From (3.5), (4.1),
and (4.3), we obtain

;=% (i +u;,:) and  ay=Fu, M, j.

(4.4)

W= aijriesien,
and
4.5)

It is easily seen that in (4.4) we may, without loss of
generality, take @x; to be unaltered by permutation of
zand j, of kand / and of 45 and %L Also, in (4.5), we may
take bijkima to be unaltered by permutation of ¢ and j,
of kand /, of m and n, and of 75, k/ and mn. We may then
write (4.4) as

W s=bijkimnii€rimnt ijpi(€ionrtertis).

Wo= aijutti, jur, 1, (4.6)

and (4.5) as

W= bijklmneijeklemn',' Zaijklei;akl
= bijklmnui, Wk, 1Um, n+aijkluz', Um, kUm, 1.

4.7
By introducing (4.4) into (3.6), we obtain

a,'jszekdeo=O. (48)

By bearing in mind the symmetry of ex; and of a;jx1, we
see that (4.8) represents six simultaneous equations in
the six independent quantities /"¢xidVo. From these we

readily obtain
fe;,ld Vo =0.

Equations (4.8) and (4.9) are, of course, valid with the
approximation that terms of second and higher degrees
in the displacement gradients are neglected; i.e., they
are valid within the framework of classical elasticity
theory.

(4.9)

We obtain a second approximation to fe.dV, from
(4.6), (4.7), and (3.7). This yields

Zaiimnfemndvo':‘ _'Zf(aikmnuj,k+ajkmnut‘,k)um,ﬂdvo
— Qijmn f U mUi, AV o
—3bijkimn f Uk, Wm,ndVo. (4.10)

This provides six independent equations for the deter-
mination of the six quantities ./ em.dVo. These can be
calculated in the following manner. Let us denote the
pairs of subscripts 11, 22, 33, 23 or 32, 31 or 13, 12 or
21 by 1, 2, 3, 4, 5, 6, respectively. We define the elastic
compliances .5 (e, 8=1,2, -++, 6) byl

25a888y= 50,7. (4. 1 l)

We therefore have

f a8V o=25,505y f e, 3V,

where 2ag,./ ¢,dV is given by (4.10). This expression
can be used to calculate the average values of the
changes in the dimensions of the material due to the
introduction of dislocations. For example, suppose the
body considered has the shape of a prism with its length
parallel to the 1 axis. Then, if 4o is the initial cross-
sectional area of the prism, the average change in
length is

(4.12)

1 2
ZfeudVo=Z:‘1pag.yfe-deo, (4.13)

208y ¢,dV o being given by (4.10).

It follows immediately from the result given in
Appendix 3 that the total change in volume V—V,
undergone by the body as a result of the introduction of
dislocations is given by

1
V—=Vo= f ekde0+5 f C(wa, )2 —thp, g4, 512V, (4.14)

with the neglect only of terms of higher degree than the
second in the displacement gradients. Again, we may
substitute from (4.12) and (4.10) for S ex:dV to obtain
an expression for the change in volume which is of the
second degree in the displacement gradients.

Each of the expressions obtained from (4.12), (4.13),
and (4.14) by substituting for g,/ €,dV¢ from (4.10) is
of the second degree in the displacement gradients
resulting from the introduction of the dislocations
according to the second-order elasticity theory for the

{ Repetition of a Greek subscript indicates summation over the
values 1, 2, ---, 6 for the subscript. This convention will be
employed only in the present section.



material. However, to the order of approximation in-
volved in the calculations, we may replace them by
those calculated from the first-order theory for the
material, and it is in this sense that we shall under-
stand them.

5. EFFECT OF STRAIN ON THE
ELASTIC MODULI

In the expression (3.2) for the stress components we
take
W = W2+ Wg,

where W, and W; are homogeneous polynomials of the
second and third degrees respectively in the displace-
ment gradients. Then, neglecting terms of higher degree
than the second in the displacement gradients, we obtain

W, W,

W,
+u,-,k .

t,'j= (l—u,,,) (51)

+

Ui, 5 aui, k Ui,j

Now, let us suppose that the displacement field is
increased by an infinitesimal displacement ;, and let us
calculate the change {;; in the stress associated with the
new displacement field #,41; on the assumption that
terms of higher degree than the first in the displacement

gradients 4;,; may be neglected. Then,

) alij )
t.'j=-—-’u,,,q.
Op.q

(5.2)

By introducing (5.1) into (5.2), we obtain

B oW, oW,
tij=———lp,pt+ Uik
0u; ; ou;
W, W,
+{(1—ur,r) + ;5
ul,jau,, q aui,kau,,.q
W,
. Tp,ge  (5.3)
Ou;, j0up,q

By introducing the expressions (4.6) and (4.7) for W
and W3 into (5.3), we obtain

bii= — 200005, (Bp, p+ 2Um, n(@itmnlhj, k3 Cstmnthi, k)
+ 2[3bpqijmnum, n+ (a'pqiluj, l+aqului, l)
Fasiqutp, 1+ (1= e, 1) @ijpo Wi, o-

This equation may be rewritten as

ii]'= 2 (aijn+ Cijrs*)'a;r, 8

(54)

(5.5)
where

Ciju* = = QijkiUk, lau"'um. n (aismnsjr'Jf' ajsmnair)
+ (3bijmnpqum, n+apqiluj. ..‘+aqului. 4
+ijquthp, 1— tr, Bijpe) Srpbaa-

(5.6)

The relation (5.5) may be rewritten in the form

8= 2(@ijretCijra) 0,/ 0%, 5.7)

where
(5.8)

Cijrs™ Cijrs*+ QijrmUs, m.

Then, 2(a;jrs+cijrs) are the elastic moduli for infini-
tesimal deformations of the material which is initially
subjected to the displacements #;. From (5.8) and (5.6),
employing the notation

35pqijra= OCijra/ My, a 5.9
we obtain immediately
3quijrs= _aiquar:_aijrsapq+aiqu8jr
+ajgpq5ir+ar3iq6jp+ a/rajqarip_l' aijsqapr
+aif1‘q6pa+ Sbiqun- (510)

By substituting in (4.10) for 3b:kima from (5.10), we
obtain

zaijmnfemnd Vo=— Zaijszum, mir, 1AV o

+aiimkf'“n, Kthm, @V o

— Sgpqijrafup,qur.kdvo- (5 1 1)

If the material has some symmetry, then we must
express this fact by determining appropriate forms for
@ik and b;jpqrs. The manner in which this may be done
conveniently is illustrated in Appendices 1 and 2 for the
cases when the material is isotropic and when it has
cubic symmetry of the hextetrahedral, gyroidal, or
hexoctahedral classes. In these appendices we also give
the special forms taken, in these cases, by the expression
(4.10) and the expression (5.4) for the stress correspond-
ing to an infinitesimal strain superposed on an initial
deformation.

Meanwhile, in the next section we shall determine the
change of volume, caused by the introduction of dis-
locations, of cubic crystals of the hextetrahedral,
gyroidal, or hexoctahedral classes. The result obtained
could have been derived from the more general
formalism given in Appendix 2. However, the method
employed in Sec. 6 takes advantage of certain algebraic
simplifications which are possible for this particular
problem.

6. CHANGE OF VOLUME FOR CUBIC CRYSTALS
(HEXTETRAHEDRAL, GYROIDAL, AND
HEXOCTAHEDRAL CLASSES)

In this section we shall determine the change of
volume, caused by the introduction of dislocations, in
cubic crystals of the hextetrahedral, gyroidal, and
hexoctahedral classes. Before doing so, however, we



shall derive certain formulas, which are generally
valid, from the results of Secs. 4 and 5.
From (4.10), we obtain, with (4.6),

Zat'imﬂfemndV(l: _4fW2dV0—aiimnfuk.muk,'ndV0

—3b;¢umnfuk,z‘um,nqu. (6.1)

By bearing in mind that

36ijklmn= acklmn/aui, 7 (6'2)

we obtain, from (5.10) and (4.6),

3Biikimntbr, hm, n=30:itimnWr, thm, a— W ot Giiithr, 1thm, m
(6.3)

= QisknWi, mUm, n— QisinUk, UL, n.

By introducing (6.3) into (4.10), we obtain

ZaiimnfemndV():—stdeo

+aiiklf(uk,mum,l—uk,lum,m)dVO
— 3bsikimn f U, thm,ndVo. (6.4)

We may obtain a convenient expression for biikimn as
the rate of change of cximn With volume, when the
material is subjected to a uniform dilatation, in the
following manner: We suppose that the fractional exten-
sions undergone by the material in the uniform dilata-
tion are 8. Then taking #; ;=p4;; in (5.6) and (5.8), we
obtain

Cijra= ﬁ(—‘ aijppsrs'l‘ aisppajr"' a'jappair
+a'ijrc+36ppijrc) .

By comparing (6.5) and (5.10), we obtain
35ppz‘jra=’ acijn/aﬁ= 3(661'1'1'0/67)),

where v is the fractional increase of volume of the mate-
rial in the uniform dilatation.

So far we have made no assumption regarding the
symmetry of the material. For cubic crystals of the
hextetrahedral, gyroidal, and hexoctahedral classes, it is
shown in Appendix 2 that the elastic moduli 2¢,4,, must
be expressible in the form,§

$01(8,50-+ 5sq8w)

6.5

(6.6)

Zapqn = (a1+ 202)8,,,13"

3
+2b1 Z Bapaaqaaraag- (67)
a==]1

§ The convention will be used that Greek subscripts take the
v}zltlues 1, 2, 3. The summation convention will not be applied to
them

By introducing this result into (6.4), we obtain
2(a+3a:+b1) f emm Vo
=-=3 f WadV,
‘—(ax+3az+b1)f[(um,m)2~u,,.,,,u,;,m:ldVo
—3biikimn f Ui, hom,n AV o.  (6.8)

By using the result obtained in Appendix 3, we see that
neglecting terms of higher degree than the second in the
displacement gradients, the change in volume V'~V of
the crystal due to the introduction of dislocations is
given by

2(ar+3a:+8) (V—Vy)

='—3szdVo—36,‘.‘kzmnfuk,lum.ndV0- (6'9)

We note that if the cubic crystal undergoes a uniform
dilatation, it remains cubic and consequently the elastic
moduli 2(@peretCpgrs) for infinitesimal deformations of
this deformed crystal are given by

2 (apqrc+cpqrn) = (d1+262)6,,,16,.—- 3a, (5praqn+ap36qr)

3
+251 Z aapaaqéaraal;

a=1

(6.10)

where d,, @, and b, depend on the fractional increase in
volume v, and are equal to a1, @2, and b, when v=0,
From (6.10) and (6.6), we obtain

25ppiinf“i,j“r,sto

(aal ) f (#e,2)%dV o

1 da,
- (uk,muk.m"'_uk,mum.k)dVO
2 Jv
+2—" Z f(ua u) dVO (6.11)
0v a=1
On defining k, &, and # by
=3(@1+3@:+b1), 25=26,—a, and s=—8;, (6.12)

and denoting by £, u and » the values of k, & and # when



2=0, we can rewrite’Eq. (6.11) as

Bz:piin f Ui, e, o8V o
ok 1
=— WDdVo‘l‘——stdVo
adv
+-— f WdVo, (6.13)
where
= 5k (Um, m)?,

3 (sm, m)?],

Ws= V’[% (um. nUm, n+um, nUn, m) -

and

3
Ws'= V[% (“m.n“m,n‘l‘um,n“n.m)—z (ua.a)2:]' (614)
a=1

Also, we see from (6.7) and (4.6) that, for the cubic
crystals considered,

W,= Qpgrathp,qlhr,s = % (al+ 20'2) (’um,m) 2

3
—'i‘a’l(“m,num,n+um.nun,m)+bl Z (ua,a)z' (615)
a=1
It is then easily seen that
Wao=Wp+Ws+Wg'. (6.16)

By introducing (6.13) and (6.16) into (6.9), we obtain

[(1+;3;)pr(1170
(1+- —) f WsdVo
+( +1ﬁ) f Ws’dVo] 6.17)

We can specialize this result to the case of an isotropic
material by taking b,=5,=0. We then obtain Zener’s

result!
V- Vo"'——[( +- ——)fWDdVo
k k Ov
+( +- ——)stdVo] (6.18)

7. A QUALITATIVE DEDUCTION

V‘—' Vo-_-

In general, in order to obtain an explicit value for
V —V, from Egs. (6.17) or (6.18), we need to know the

displacement field which is associated with the dis-
locations according to classical elasticity theory. How-
ever, it is easily seen that Wg, Wp, and Wy’ are
essentially positive. Thus, if for a given material the
coeflicients of all three of the terms /"W sdVo, S 'WpdV,,
and S'Wg'dV, in (6.17) have the same signs, we can
predict whether a body of the material will increase or
decrease in volume when dislocations are introduced.

Daniels and Smith? have determined the dependence
on applied hydrostatic pressure of the speeds of propaga-
tion of plane waves in crystals of copper, silver, and
gold. These crystals are all of the type considered in
Sec. 6. The wave speeds measured in a crystal are, of
course, simply related to the values of k, f, and 7 for
the crystal.

If p denotes the applied hydrostatic pressure, we have

o op o )

7.1
dv dvap ap )

We can therefore write (6.17) in the alternative form,

11 70k
V—Vo=;[(a—P—1)fWDdV0
(; 5—1)stdVo
k 3
+(;6_P.—1)st dVo]. (7.2)

From the results of Daniels and Smith, the values
given in Table I are obtained for the coefficients
ok/ap—1, (k/u)oa/dp—1 and (k/v)d3/3p— 1.

Since these coefficients are all positive, it follows that
for each of the metals, the introduction of dislocations
should produce an increase in volume.

We easily can establish upper and lower bounds for
the change of volume in terms of the total elastic energy
S WadV, stored in the deformed body in these cases.
For example, for copper and silver, we see from the

TaBLE 1.
ak kom k o7
—_1 ———1 -——1
ap x4 . v ap
Copper 4,59 2.404 3.685
Silver 5.18 3.332 4.611
Gold 5.43 4.139 7.545

2W. B. Daniels and C. S. Smith, ONR. Tech. Rept. No. 1,
Contract Nonr-1141(05), Project NR017-309 (1958).



table that

(1.3)

With (7.2) and (6.16), we obtain immediately

1
;(———l)szdVo>V Vo
ki
—(————l)szdVo
nép

8. APPENDIX 1. ISOTROPIC MATERIALS

(7.4)

For an isotropic material, W must be expressible as a
polynomial in J, J; and J; defined by

Ji=Eu, Ja=3[(Ew)*—E;E;],
(8.1)

and
Js=3[2EuEw;Eji—3EwEE; i+ (Ew)*].

Thus retaining terms up to the third degree in E;;, the
expression (4.3) for W takes, for an isotropic material,
the form,||

W=a1J 40T 12+ asS 1) Haud ¥+ asTs.
From (8.2) and (4.3), we obtain

170 o o 3
Gora) Garras)”
4\3E,, 9E,,/ \OE,, 9E.,

= (01+ 2(12)51,,15”— %a'l (6pr6qs+ 5p36qr)7

17 @ a a 9
o))
8\3Enn OE.m/ \OE,; 9Ky,

a 9
Gt )

= (3a3+ 604+ @5)8mnbpobrs
—1(as+a5)[8mn(8sp0rgtB2gBrp)
+ 00 (Omadnrt8mrdns)
+874(BmaBnptOngdms) ]
+2105[8,g(8ambpnt 84ndpm)
+8:p(8qmbrnt0gnbrm)
815 (Bemdgnt-Oendom)

+53q(’3pmafﬂ+51’"5”")]

(| This is substantially the result given by F. D. Murnaghan,
Am. J. Math. 59, 235 (1937).

(8.2)

20 pgrs=

Er1=0

(8.3)
and

6bmnpqra

Epp=0

By introducing (8.3) into (4.10), we obtain

(a1+2a2)6,~,-fem,,,dVo—alfei,dVo

=—%(2a1+4a2—aa—as)fum,,,.(u;,,--l—uj,,-)dVo
+i(a3+aﬁ)fum,nu‘n.m3ﬁdvﬂ
—%(3aa+6a4+a5)f(u,,.,m)zé;jdVo

+i (2(11 - aﬁ)f (u'o',mum,j_"uj,mum,i"" um.i’“’m,j)dVO

+4(4a:1—as) f Ui, mthi,m@V 0
—% (2a1+4a2— az;— (15) fum,num, n(sinVo. (84)

Introducing (8.3) into (5.4), we obtain

b= (a1+2a2)0y, p0si— 301 (s, 5+, 2)
—_- (201+ 402— 3(13—‘ 6(1»4 - (15)5,']"14];, ,c'cl,,, »
+ (Bart2a:—3as—3as)[ (i i+, )05, »
+ttp, (G, i+, 5) ]
+ (@14 202— 205— 305) 0% m, nlim, n
- % (a3+05)61‘ﬂ¢m. n’dn, m
— 3 (a1—3as)[ (wj, v tus, ;) (@i, 1+, )
+ (uti, 100, 5) (5, 2, )

—3a1(wj, s xt-ui, 455,1).  (8.5)

9. APPENDIX 2. CUBIC CRYSTALS (HEXTETRA-
HEDRAL, GYROIDAL, AND HEX-
OCTAHEDRAL CLASSES)

For cubic crystals of the hextetrahedral, gyroidal, and
hexoctahedral classes, the axes of which are in the
directions of the axes of the coordinate system x, it has
been shown® that the strain-energy function may be
expressed as a polynomial in Jy, Jg, and Js, defined by
(8.1), and I, I, and I, defined by

I=Ey*+Ey’+ E332,

Iy=EynEgEs;, 9.1)
and

I;= E11E232+ E22E312+E33E122,

together with certain further invariants of higher degree
than the third in E;;. Retaining terms up to the third
degree in E;;, the strain-energy function W then takes
the form

W= W'+ b111+ b2]1]1+b3[2+ 6413, (9.2)

where W’ denotes the expression for W given in (8.2).

( 3 G‘) F. Smith and R. S. Rivlin, Trans. Am. Math, Soc, 88, 175
1958).



We obtain immediately

1( a3 L d )( a3 ' i} )
4\9E,, oE,,) \9E,, 9E,,

3
=2dpqul+2b1 Z aapaaqaaraal)
a=1

W=2a,4rs
Ep1=0

and

17 9 F a9
o))
8\0En, 0FEum/ \OE,, OE,,

a 9
x( + )W

aEn 6Esr

3
=6bmnpqral+2b2 Z (6mn5apaaq5ar6as
a=1

= 6bmnpqn
Ek1=0

(9.3)

+ apqﬁaraaaaamaan—{_ 5ra6am6an6ap6aq)

3

+b X

a,B,y=1

TapydamOandppdpeyrdys

3
+ibe X

a,B,y=1
X (88:87s81+885)
+8apbag(8:0vet-8y:08s) (3pmdynt Symbsn)
+3arbas(Bsmdyn~t8ymdpn) (35014 8v5084) ],

where w3, is the permutation symbol defined by
mapy=1 if afy is a permutation of 1, 2, 3 and 7ag,=0
otherwise¥|; apgrs’ and bmnpers’ are used to denote the
values of @pgrs and bynpers given by (8.3).

On introducing (9.3) into (4.10) and using e; to
denote ¢;; in Eq. (8.4), we obtain

Taﬁ‘y[‘sumsan(aﬂpavq"'_ 57p5ﬂq)

((11+2(12)5-,‘jfemdeo_alfeijdVO

3
+261 Z 5ai5ajfeaadV0
a=1

= (a1+2a2)5;,-femm'dVo—a1fe¢j'dVo
3
- Z {Zbl(aaiuj,aua.m'i‘60:}'“1'.«““.4)
a=1

+b18aibastés,atbr, atbo 0:j(#a,a)?
+28aibajlha,athp, p ]t 50T apyBaibaitts thy,y
+ 304 apr[ Saidaj(ths,y+y,6)°
+20ta,a (88845t 0viBp;) (s, ty,0) J}@Vo.  (9.4)

9 We note that Greek subscripts are assumed to take the values
1, 2, 3, and the summation convention is not applied to them.

Introducing (9.3) into- (5.4) and using ¢ to denote
the expression for ¢;; given in (8.5), we obtain

3
bj=1if+2b1 Y Saibastia,a
a=]

3
+ Z [— 2(b1_ b2) aaisuj(ua,adp,p+up,pﬂa,d)

a=]1

+Zbl (6aiuj,a+ aaﬂ‘i.a)ﬁa,u

+2blua,a(5wﬂzj,u+ aaﬂzz’,a)+2b15ai6ajup,aﬁp,a

3
+2b9bithe,alia,a ]t X {DsTaprBaibaitts sy,

a,fB,v=1
+ 10 agr0aibai(4g,y+1hy,p) (g, 1y, 5)

31047 a8y (8aidpit 08:0ai) [ (%a,p+25,0)hy, v

+Foby,y(Fa,pt3p,0) ]} (9.5)
10. APPENDIX 3
If A is any 3X3 matrix, then
detA= [ (trA)*—3trAtrA2+2trA%]. (10.1)

If in a deformation of a body, a point initially at X;in a
rectangular Cartesian coordinate system x moves to x;
in the same system, the ratio between the volume dV
of an element in the deformed state to its volume &V in
the undeformed state is given by

dV/dVo= lxi,j] . (10.2)
With (10.1), we obtain
— =3[ (20, 1)*— 3%s,1%p,o¥q,pH 2%p, o¥q,1¥r, 5 ].  (10.3)

0

Writing x;= X ;+#; and assuming that the displacement
gradients %, ; are sufficiently small so that we may
neglect terms of higher degree than the second in them,
we obtain, from (10.3),

av
——= 14ty 5 (Ur, ) 2= Ft4p, ghg, -
(]

(10.4)
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