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1. Introduction

In classical continuum mechanics, the motion of a material medium relative
to a rectangular Cartesian system of spatial coordinates z', £=1, 2,3, is re-

K
presented by a set of three single-valued functions Z (2, T), K =1, 2, 3, of the

K
coordinates z* and the time T. The functions Z representing a real continuous
motion are subject to the condition

K @
D=det 8,240, H=-';. R

‘K K
Every set of three values ZX¥=Z (s, T) for the functions Z serves as names for

the malerial poinis P of the continuous mediom*. Ewvery set of values for the
four space-time coordinates (2°, T) serves as names for an eveni E.

* We shall use the convention that a set of functions like g{:‘, T) will be written
with the labeling index set over the kernel letter. When we wish to regard the values
of such a set of functions as coordinates we write ZX. Thus, for example, the partial

derivatives of the functions fate again functions &; f{z‘ T) of the mdma.tes &, T.
However, from the condition (1.1), it follows that we can solve for the 2 as functions

of the ZK and T. We write the solution in the form a*‘--—.;{zh’ T). The gradients
8; Z¥ can be regarded as functions of the ZX and T, in which case we denote these fune-

tions by #ZE(ZK T)a=8; f{z'tzx, T), T). This convention avoids excessive use of
new symbols and gives a precise meaning to the two different guantities & f and & ZX,



K
The functions Z representing the motion specify the material point ZX which
experiences the event (2%, T). We restrict attention in what follows to local

K
properties of motions. We assume that the functions Z are analyfic at an event
E) with coordinates ( 5", {) Thus we assume the existence of a power series

K . K . K, . K K . ... K
Z(#, T)-—_Z(g',%‘)—}—ZAz’—g’)—{—ZAT_—%‘)—i—%Z (z’—g’) (z’—g’)—f—n-,Z,-#O, (1-2)

convergent at every event E in some neighborhood N(E ( ) of the event E In
all that follows, by ° analytlc we shall mean analytic at the event E and all

functions of the coordinates that appear will be assumed analytic at E From
(1.1) follows the existence of a unique inverse

Z =225, T). (1.3)
The functions z will be analytic at the point with coordinate values ZK VA ( Z, T)

T == T
Let A}(T) be any set of nine analytic functions of T such that

OFi A} A = 6. (1.4)

A%(T) is an orthogonal matrix. Let d*(T) be any three analytic functions of
K .
the time 7. Then in terms of a given motion Z (2!, T) we define the class of all

K . K .
motions Z'(z*, T) which differ from Z(z*, T) by a rigid motion as follows:
K K PR .
Z'(#, T)=Z(A;274d', T + constant). (1.5)

K K
Conversely, any two motions (Z 'z ) between which there exists a relation of
the form (1.5) are said to differ from each other by a rigid motion.

An important problem in classical continuum mechanics is the construction
of constitutive equations for the stress, internal energy, and heat flux. In general,
these constitutive equations depend on a motion and are required te transform
in a definite way when a motion is replaced by any motion differing from it by
a rigid motion. For example, the theory of finite deformations of elastic media
is based on constitutive equations for the stress tensor #/ having the general
form [12, 8, 11}

ij

Fih T) =T(Z( T), 0n2 ), (1.6)

if
where, for definiteness, we may assume that the functions T are analytic and

K K i
single valued in all 12 arguments.Z and 6,Z. The functional form of 11 depends
on the elastic properties of the material medium. However, for all elastic

7
materials the 7" are required to satisfy the invariance condition

kt K

ij K M . ,
T(Z',0,2') = AL(T) AT T (Z, 2 z) (1.7)



where (Z’ Z ) is any pair of motions differing from each other by a rigid motion.
Usmg known methods of invariant theory one can prove that any set of func-

tions T satisfying (1.7) is reducible to.the form

i : ] K P K
r- 2 2 B(Z,C%2), C=010z07. (1.8)
In all that precedes, we have regarded a motion as being relative to a fixed
rectangular Cartesian system of spatial coordinates z*. However, the invariant-
theoretic problems of continuum mechanics involving the class of all motions
differing from each other by a rigid motion can be attacked from another point
of view which is more convenient for our present purposes. Consider the group
of coordinate transformations

2= AT+ +d°(T),

1.
T'= T - constant, (1.9)

where A‘ (T) is an orthogonal matrix. Let Z (2%, T) represent a motion relative

to the frame (&, T). Let Z (2, T') be the scalar transform of Z(z‘ T). Thus
K .
Z'(, T =Z(z‘, T) (1.10)

according to the definition of a scalar in tensor calculus. The functions é{ "2, T
define a motion relative to the frame (2, 7’). The transformation law (1.7)
implies that

1™, Ty = AL(T) AJ(T) ¢ (2", T). (1.11)

If we define a set of 16 quantites 7%, y,v =1, 2, 3, 4 by setting

¢
o= |0 (1.12)
00

we see that the law of transformation (1.11) for # is precisely the law of trans-
formation implied by transforming the quantities 7#” as a 4-dimensional tensor
under the group of coordinate transformations (1.9) in four variables, where the

time T is regarded as the 4™ coordinate. Thus, transforming the functions f
representing a motion as a set of three scalars under the group (1.9), we see
that the fundamental assumption (1.11) of continuum mechanics assumes a
simple and familiar form in terms of a 4-dimensional tensor law of transformation
under the group (1.9).

In presenting these familiar ideas we have attempted to indicate the im-
portant role in mechanics of the theory of invariants of a motion under a group
of coordinate transformations in a 4-dimensional space. In this work we shall
introduce three such groups of transformations: the Euclidean group, the Galilean
group, and the Lorentzian group. Each of these groups of coordinate trans-
formations on 4 real variables defines a type of geometric space. In each of these
spaces, we shall define a motion of a continuous medium. We then define
Euclidean kinematics, Galilean kinematics, and Lorentzian kinematics as the



theory of the invariants of a motion in these 4-dimensional spaces. We have
attempted to design a formalism which treats these three kinematical theories
on a parallel basis. This has been done so that a comparison of classical kine-
matical concepts, definitions, and theorems with their relativistic counterparts
is made easier. Another advantage of this symmetrical treatment is that we can
borrow ideas from the more familiar classical invariant theory of a motion and
transfer them by analogy to the relativistic case. The Euclidean and Galilean
groups are firmly interlocked with classical mechanics; the Lorentzian group,
with electromagnetic theory and relativistic mechanics. However, kinematics
being the science of motion in itself, independent of the natural laws presumed
to govern the motion, we have considered here only briefly the application of
kinematical results to these more restricted theories.

2. Euclidean, Galilean, and Lorentzian space-time

So as to fix the meaning we attach to the words space, geometry, field, and
invariant, allow us to describe briefly how they shall be used.

An n-dimensional geometric space & is a set of points p such that to every
point p there corresponds a subset of points R (p) containing p which can be
placed into one to one correspondence with all the ordered sets of # real numbers
2= (a1, x%, ..., 2"} lying in some interval x" < x"—l—h" A#* >0 and such

that p corresponds to x" together with a grau{) S of allowable coordinate trans-

formations x* —x(x" ) x"—_—x(x"). The class of all coordinate systems related
by elements of the group & is called the class of allowable coordinate systems
for the points 3% (p) in the neighborhood of p. The characterization of a space &
may involve also a set of functions @,, @,, ..., Dy of the coordinates x* having
an assigned transformation law under the group ®. By choosing different groups
& and different sets of functions @ and different transformation laws for the
set @, we obtain various examples of geometric spaces. Thus ordinary 3-dimen-
sional Euclidean metric space corresponds to letting & be the group of orthogonal
transformations, where with this choice of &, the set of functions € is empty.
However, we can also let @ be the group of general analytic transformations &,
provided we append a Euclidean metric tensor field g;;(+*). The two spaces so
defined are regarded as equivalent. Curved Riemannian spaces, affinely con-
nected spaces, conformal spaces, efc., correspond to various other choices for the
group & and the functions @ together with their transformation law [3, 10].
The foregoing example of Euclidean metric space shows that different choices
of the pair of objects (&, ®) may serve to define spaces which are regarded as
equivalent.

By a field ® in a space & with'group ® we shall mean a set of functions of
the coordinates @g,(x#), 2 =1, 2, ..., N having an assigned law of transformation
under the group &. By “an assigned law of transformation’” we mean a rule
such that when the representation of the field ® by functions @,(x*) in any
one allowable coordinate system x* is given, the representation @y (x*) of
the field in any other allowable coordinate system is “uniquely determined
by the functions @, (x*) and the coordinate transformation relating the x*
and x*.



A tensor field in a space & with group ® is a set of functions of the coordinates
having a transformation law under & of the general form

o - , ox* oz @ -
DL (x7) =|(x' x)| 7 (sgn (x x))? a':” %ﬁ@g(x)’ o)

(" x) =

If v =0, ® is called a tensor field of weight w. If y =1, ® is called an axial tensor
field of weight w. If w=1y =0, ® is called an absolute tensor field. The number
of superscripts and subscripts on a tensor field determine its contravariant and
covariant rank, respectively. The rank of a tensor field is the sum of its contra-
variant and covariant ranks. Tensors of rank zero are called scalars, and tensors
of rank one are called vectors.

An affine connection is a field I having a law of transformation of the form [10]
w rxk o ox* ox ox®

e — o 2.2
Ky axt ox” 8x“+ ax* ox* ox” - (2:2)

We shall have occasion to consider only symmetric affine connections: ]7,’;, =Ik.
.If g,, is any symmetric non-singular absolute tensor field, the Christoffel symbols
based on g,, are defined by

{ﬂg} =3 g a v8ui + 3/,:ng. ai.gpv) ’ (23)

where g¢? is the inverse of g,,, g°*g;,=62. Christoffel symbols have the trans-
formation law (2.2) of an affine connection. The Riemann curvature tensor based
on an affine connection I is defined by*

Ryt (L) =20, I, + 200, (2.4)

If R;;,*(T) =0, the affine connection I is said to be flat or integrable. We denote
the Riemann curvature tensor based on the Christoffel symbols {&}. by R;;;" (g).
If Rj;;"(g9) =0, and if g,, is positive definite, the field g,, is called a Euclidean
metric tensor.

The covariant derivative of a tensor field based on an affine connection I' is
the tensor field defined by

Fur=0,8 + L@ — L O — w0 (2:5)

If the components of the affine connection are Christoffel symbols based on a
tensor g,,, then we write [7 for the operator of covariant differentiation.

An invariant property of a field @ in a spaces & with group & is a property
possessed in common by each of its representations @, (x*). The snvariants of

* Square brackets enclosing a set of indices denote the alternating sum over all
permutations of the enclosed indices divided by k!, where % is the number of such
indices. Round brackets denote the sum over all permutations divided by %!. Thaus,
for example, ap;,;=%(a;;—a;;), and ay;y=1%(a;;+ a;.).



a field consist in all of its invariant properties and in other fields which can
be defined in terms of it. The joint invariants of a set of fields ®,, ®,,.... consist
in all of the invariant properties of the fields held singly and jointly. Differential
tnvariants or joint differential invariants of a set of fields are joint invariant
algebraic relations between the components of the fields and their partial deri-
vatives of all orders with respect to the coordinates.

The geometry of a set of fields in a space % with group @ is the theory of the
joint invariants of the fields under the group .

Consider now the three 4-dimensional geometric spaces %%, %;, and S
defined by the following groups of allowable coordinate transformations on four
real variables 2%, u=1,2,3,4%*.

1. Euclidean space-time S and the group &g of Euclidean transformations:

2= Al () 4 4 d¥ (),

4

(2.6) -

2% = 2% 4 constant,

where A7 and 4 are analytic functions of z* and A{ is an orthogonal matrix.

11. Galilean space-time F and the group & of Galilean transformations:

2= A; Z1 -+ u¥ 2% 4 constant,

, (27)
2¥ = 2% -+ constant,

where A¥ is a constant orthogonal matrix and the %' are constants.

II1. Lorentzian space-time S and the group &y of Loreniz transformations:
=Lz, (2.8)
where L% is a constant matrix satisfying the equations

niw L[l" L:’ Y 1’, (29)

0
0
0

OO O -~
SO =0 =
O = O O

-1

A motion of a malerial medium M in Euclidean or Galilean space-time is defined

by any three absolute scalar fields z (), K =1, 2,3 such that the matrix (o (=)
defined by KL K L
C1=610,7 0.7 (2.10)
is positive definite.

* From this point on, Greek lower case indices will always range over the four
values 1, 2, 3, 4. Greek upper case indices will be reserved for a variable range depend-
ing on the context. Latin lower and upper case indices will always range over the
three values 1, 2, 3. The summation convention applies to all types of indices.



A motion of a material medium M in Lorentzian space-ime is defined by any

K KL
three absolute scalar fields Z(z*} su¢h that the matrix X1(z#) defined by
KL K L
X1=9p"9,Z 8,Z (2.11)

KL
is positive definite, i.e., X1V V; >0 for all Vi =0*.
The geometry of a motion in &%, ¥, and % will be called Euclidean
kinematics, Galilean kinematics, and Lorentzian kinematics, respectively.

3. Klein’s principle and general coordinates in Euclidean,
Galilean, and Lorentzian space-time

The use of curvilinear coordinates for 3-dimensional Euclidean space is
familiar in mechanics. Many authors in continuum mechanics, especially in
finite elasticity theory [11], use curvilinear and deforming spatial coordinates x*
in Galilean space-time. This type of coordinate system is related to an inertial
rectangular Cartesian coordinate system z* by a general analytic transformation
of the form ¥ = A5 ),

A
¥ = 2% - constant. G-1)

Unless the transformation (3.1) is a Galilean transformation, the spatial coordinate
system x* is said to be non-inertial or curvilinear, or both non-inertial and curvi-
linear. Non-inertial spatial coordinate systems in classical mechanics are further
classified as rigid, deforming, accelerated, rotating, efc. Though the use of non-
inertial curvilinear spatial coordinates is accepted practice in classical mechanics,
the fourth coordinate (time) is rarely transformed more generally than in a
Galilean transformation. Thus there has arisen a large body of literature [5, 7]
concerned with the invariants of a motion under the more general group of
transformations (3.1). Now the Euclidean and Galilean groups are subgroups
of the more general transformations (3.1); however, the Lorentz group is not a
subgroup of (3.1) since the fourth coordinate in a Lorentz transformation is
transformed more generally than in (3.1),. The utility of introducing a more
general class of coordinates than the z* in space-time once accepted, there seems
little motivation for giving undue special attention to the group (3.1) in this
work, which attempts a uniform treatment of Euclidean, Galilean, and Lorentzian
kinematics. What we shall do is to develop a formalism for kinematics in terms
of invariants under the group &, of unrestricted analytic transformations on all
four coordinates of evemts. General coordinates in space-time will be denoted by
x# and a typieal element of the group ®, is written in the form
=Ky, =% (x"). (3.2)
* In § 7 -we introduce a group of transformations K= (ZK) of the material
coordinates ZX. At the appropriate point in the discussion, it will be shown how a
motion in any of these spaces determines an inverse relation z“=5(ZK, 7) between
the space-time coordinate z#, the material coordinates ZX and a suitable fourth

KL KL -
variable 7. When the scalar fields C-! and X are considered as functions of the
ZK and 7, we shall write (C1)XL, (X-1)KL consistent with the fact that these quantities,
so regarded, transform as tensors under transformations of the material coordinates.



The groups ®g, ®g, and @&, are all subgroups of ®,. Once such a formalism
for the three kinematical systems has been developed, the classical problem of
introducing moving and deforming coordinates is of course solved since (3.1) is
a subgroup of (3.2). That is, any invariant of a motion under (3.2) is automati-
cally an invariant under the subgroup (3.1) of these more general transformations.
The concepts needed to construct such a forinalism for kinematics are embodied
in KLEIN's principle [10, p. 65):

If in any space with group ®, the subgroup &, is introduced, consisting in all
transformations which leave a figure (field) ®, invariant, then the geometry of a
figure ®, with respect to &, is identical with the geometry of the set of figures
(P, , P,) with respect to &, .

Let us illustrate the application of KLEIN'S principle that we intend to make
by the following familiar example. Suppose we have given a tensor field f -
in ordinary 3-dimensional Euclidean metric space where the group ®, is the
orthogonal group, i.e., fi: is a Cartesian tensor. Let @, be the group of general
analytic coordinate transformations in 3-dimensions. &, is a subgroup of &,;.
Let g;;(x*) be an absolute symmetric positive definite tensor field under ®; such
that its Riemann curvature tensor vanishes. Then in the space with group &,
we know [6, §10] that there exist preferred coordinate systems z* such that
g,;(#) =4;;. Furthermore, any such pair of coordinate systems are related to
each other by an orthogonal transformation. Thus the group ®, can be defined
as the subgroup of ®, which leaves the canonical form d,; of the Euclidean metric
field g;; invariant. Let @ (x*) be any field in the space with group ®, having
any law of transformation under &, such that

gho () = fir (29 (3.3)

in every preferred coordinate system in which g;;=9,;. According to KLrin's
principle, the theory of the invariants of the field f;:» under the group &, is
identical with the theory of the joint invariants of the fields (¢':, g;,) under
the group ®, of general analytic transformations or under any group containing
@, as a subgroup. '

Consider the group ®, of general analytic transformations (3.2) of the four
coordinates of events. Our objective is to define three sets of fields {®},, 4=E,
G, L, having an assigned law of transformation under ®, such that (1) there
exists a subclass of preferred coordinates z# in which the fields {®}, assume
certain canonical forms and (2) the subgroups ®g, ®;, and &, consist in all the
transformations of &, which leave invariant the canonical forms of the sets of
fields {®}g, {®}¢, and {P}., respectively. Once we determine such a set of
fields we invoke KLEIN’s principle and give new but equivalent definitions of
Euclidean, Galilean, and Lorentzian kinematics. That is, these three theories
can then be defined as the theories of the joint invariants of the combined sets

K
of fields Z(x*), {®},(»*) under the group ®,.

Case I. Euclidean space-time. Let £,(x")3E 0 be an absolute covariant vector
field under &, such that

duty=0. (3.4)



Let g#*(x™) be a symmetric contravariant singular absolute tensor field under
®4 such that
gl”‘tv:O! g””'b'”‘U,>0, (3'5)

for all »,==0 and not parallel to #,. The condition (3.4) is necessary and sufficient
for the existence of a scalar field #(x*) such that

t,=0,t. (3.6)

Moreover, the field #(x*) is uniquely determined by (3.6) to within an additive

constant. Let y (¥%), =1, 2, 3 be any three analytic functions of the coordinates

such that* 1.2 3
O =¢°70,y0,y0,y 8,1 0. (3.7)

From (3.7) it follows that we can solve for the coordinates x* as functions of

the variables y* and T =i (x*
¢ w0 =%, T). (3.8)

Consider the functions g'/(y*, T) defined by
7% T) =¢"(%) 8,5 3,9. (3.9)
We assume that the Riemann curvature tensor based on the positive definite

symmetric g/ (y*, T) vanishes for all values of 3 and T corresponding to the

events in N(E), Rii*(g) =0. (3.10)

These conditions are necessary and sufficient that we be able to choose functions

y*=4(y, T) such that the g/ defined with respect to the 3" have values
g"=06". Thus there exists a coordinate transformation

i
2=z (x"),

2¥ = t(x*) + constant,

(3-11)

such that in the coordinate system z* the fields g#¥' (™) and f,(z*) have the
canonical form

. £,=1(0,0,0,1). (3.12)

0
0

ny

£ 1

0

SO O -
OO =0
S O OO

Applying the assumed tensor law of transformation to these canonical forms we
then see that the Euclidean: group of transformations (2.6) can be defined as
the subgroup of @, which leaves these canonical forms invariant.

Thus Euclidean kinematics is the theory of the joint invariants under the group. .

(4 of the set of fields X
Z(x), g, L), (3.13)
* g#¥e and ¢,,,, ate-the completely antisymmetric axial tensor fields of weighté
+ 1 and — 1, respectively, whose components are 4+ 1, — 1, or 0 in every coordinate

system and &l2?34=¢,4,= + 1.



where the condition (2.10) invariant under ®g is replaced by the condition
KL KL K L

C Ve V>0, Vg0, Cl'=g9,Z98,Z. (3.14)

A coordinate system z* in Euclidean space-time such that (3.12) holds will be

called a Euclidean frame. We shall call g¢” the space metric, and we shall call ¢,

the covariant space normal.

Case II. Galilean space-time. Let I:,‘,(x”) be an affine connection under &, .
We assume that I' is a flat or integrable connection.

Ri,,;;"v(I‘) =0. (3.15)

Let g#” and ¢, be tensors under &, having the same properties assigned to these
fields as in Case I above, but which in addition satisfy the conditions

Vg =08 + T + Iy gt =0,

(3.16
Votu=84—I\t =0, )

jointly with the connection I,%. That is, the covariant derivatives of g#” and
t, based on the connection I}, vanish identically.

From (3.15) follows the existence of preferred coordinate systems in which
all of the components of the connection vanish [I, §29]. Any two such systems
are related by a linear transformation. From (3.16) it follows that, in any of
the coordinate systems in which the connection vanishes, the components of g#*
and ¢, are constants. Set z=¢(x*). This will be a linear transformation leaving
the connection zero, and by will assume its canonical form

t,=(0,0,0,1). (3.17)
From (3.5) it then follows that g#” is reduced to the form
g7 0
MY = , 3.18
g [ o 0] (3.18)

where g*/ is a constant symmetric positive definite matrix. Thus by a further
linear transformation of the first three coordinates not involving z%, preserving
the condition (3.17), and the vanishing of the connection, we can reduce g** to

its canonical form
1 0 00O

0100
0010
00 0 O

g = (3-19)

It is then an easy matter to verify that the Galilean group (2.7) is the subgroup

of ®, which leaves invariant all three canonical forms (3.17), (3.18), and I}},=0.
Thus-Galilean kinematics is the theory of the joint invariants under &, of the

set of fields K 2

Z(#), gr(x), LG L"), (3-20)

K

where the Z satisfy the invariant condition (3.14). The preferred coordinate

systems 2z in Galilean space-time in which we have (3.17), (3.19), and I,$=0

will be called Galilean frames, and I¥ will be called the Galilean connection.



Case III. Lorentzian space-time. Let 9*”(x™) be a non-singular symmetric
tensor field with signature 2 whose Riemann curvature tensor vanishes. These
are necessary and sufficient conditions for the existence of preferred coordinates
2* such that [6, § 27]

1000
01 0-0

=10 01 o (3.21)
00 0—1

The Lorentz transformations (2.8) consists in the group of all transformations
of ®, which leave the canonical form (3.21) for y#* invariant.

Thus Lorentzian kinematics is the theory of the joint tnvariants under &, of
the set of fields x
Z(x), (x4, (3-22)

where the condition (2.11Y invariant under G is replaced by the condition

KL KL K L
X_l VKI/}_> 0, VKEEO, X‘1=_=‘y“”3“Z a,,Z, (3.23)

invariant under ®,. The preferred coordinates 2 in Lorentzian space-time in
which we have (3.21) will be called Lorentz frames. The tensor field y#* and its
inverse y,, will be called the Loreniz metric.

Thus we have succeeded in formulating all three kinematical systems as
theories of the joint invariants of a motion and a suitable set of fields under a
common group of coordinate transformations @,. Quantities transforming as
a tensor under ®, will be called world fensors. An affine connection under ®,
will be called a world connection. The Galilean connection is a world connection,

X
g"’, t,, and y*” are world tensors, and the Z are world scalars.

4. Euclidean and Galilean kinematics

The results we present in this section and the following one are not intended
to represent an exhaustive, systematic study of the invariants of a motion in
S, Fs, and .. Rather, the remarks and equations in these sections are
intended merely to illustrate the world invariant formalism and to show the ease
with which familiar results, often obtained otherwise by cumbersome methods,
follow easily and elegantly.

Since the Galilean group is a subgroup of the Euclidean group and a motion
is defined in just the same way in both spaces, it is clear that any Euclideans
invariant of a motion is also a Galilean invariant. Comparing the lists of fields
(3.13) and (3.20) we see that, in the world invariant formalism, this means that
any joint invariant of the fields (3.13) is also a joint invariant of the fields (3.20).
Thus it is appropriate that we discuss these two kinematical theories simul-
taneously. Any invariant of a motion in % or & which does not depend on
the Galilean connection is a Euclidean invariant of the motion. However, if an
invariant depends explicitly on the Galilean connection, then this invariant will
be a Galilean invariant of the motion but not a Euclidean invariant of the motion.



Euclidean kinematics as we have defined it here is equivalent to an invariant
theory proposed by DEFRisk [20]. We have announced the problem somewhat
differently, but the two theories are in fact the same. The paper by DEFRISE
contains a number of geometrical results pertaining to a motion in Euclidean
space-time. Some of these will be included in the discussion here. The references
contain other sources of related material.

Consider the axial world scalar of weight 1 defined by
1 X L M
Eg( 6’”’9’3”2 3,2 391 3,t8KLM (41)
and the axial world vector of weight 1 defined by

DI":3i et g, Z 9, Z o ZSKLM (4.2)

K [ KL_
In a Euclidean frame, ® =det 9,Z = :[:]/ det C-'Z=0. Since the law of trans-
formation for D is D' = (¢’ x)~1D and (x' x) is never zero, D==0 in any coordinate
system. Thus we can define the absolute world contravariant vector field

pH = £ (43)

called the world velocity vector of the motion. The form which any werld tensor
or other type of world invariant takes in every Euclidean, Galilean, or Lorentz
frame, depending on the context, will be called its canonical form. The canonical
form of the world velocity vector v* is

" v = (vi: 1) . (44)
Since D is nevgff»'zéi'o, we can always solve for any system of general coordinates

x* in terms-of the material coordinates ZX=Z and the time T =¢(x*). Thus
we always have relations of the form

x* =%(ZK, T), (4.5)

where the functions £ are single-valued and analytic. In terms of the £ the
world velocity vector v* is given by
w2 K

w2 sy, bexn =L (4.6)
The result (4.5) serves to promote the geometric interpretation of a motion in
ferms of a congruence of lines in space-time which are nowhere tangent to the
surfaces ¢(x*) =T =constant. Such a surface is called an instantancous space.
The material coordinates ZX serve as names for the lines of the congruence and
T is an admissible parameter whose value is ‘hever statlonary as one moves
along a line of the congruence. A line of the congruence (4.5) is called the world
line of the corresponding material point ZX, Each surface #(x*) = T i#-an drdinary
3-dimensional Euclidean metric space imbedded in 4-dimensional Euclidean or

Galilean space-time. One can introduce a general system of parameters or
instantaneous space coordinates .
? ¥ =3 () (@.7)



on eacli of the one parameter family of surfaces #(x#) =T. We can also arrange
matters so that the x* are given in terms of the y* and T by functions

& =% (v, T) (4.8)

analytic in all four variables y* and T. The material coordinates ZX of a material
medium constitute one such set of instantaneous space coordinates. The induced
surface metric g*/(y*, T) defined by

gt T) =g (%) 8,58,y (4.9)
is -always Euclidean. Let the functions (C-)XL(ZM, T) be defined by (cf. the
remarks in the footnote, page 186) ’

(CYEL(ZM, T) = ¢ Cl(kz™, 1)), (4.10)

KL
where C~1 is the set of scalar functions defined in (3.14) and the £ are the functions
occurring in (4.5). If we choose material coordinates ZX for the instantaneous
space coordinates y*, the components of the instantaneous space metric gXZ(Z™, T)

are obviously given by gKL(ZM, T) = (CKE (ZM, T). 4.11)
Thus for any motion in Euclidean space-time or Galilean space-time we have
Riix" (Cpg) =0. (4.12)

The quantities (C-1)X% or the inverse Cxy, Cxr (C Y)Y =8, are called material
measures of deformation [8, p. 140].

A motion in Euclidean or Galilean space-time is called 7igid if and only if
the functions (C-)% L are independent of the time 7, i.e.,

kL _ 9(CHEE KL,
(C ) ——T—‘ =¥ 3“(: =0. (4.13)

Let g (Z¥, T) denote the inverse of g¥ L. The distance between two neiéhboring
material points ZX and ZX+dZ¥ at time T is given by

dSt =gy dZKAZE = Cy dZX dZT. (4.14)

Thus a motion is rigid if and only if S =0 for every pair of neighboring material
points. . .

The Lie derivative [10, p.106] of a tensor field ¢%+ with respect to an
absolute contravariant vector field v* is a tensor field of the same type as ¢4
defined by

EQi=vr i —glnat —  d gt ko Fwdrt gl (445)
Consider then the contravariant absolute symmetric world tensor A#” defined by
A;WE 1 £ g[u

v 4.16

= —§ (v} 98" — ¢"" v — g "), ( )

where ¢# is the world velocity vector of the motion. The tensor 4#* has the

canonical form 2
0 y . .

[ ] 3 d” ? % (3‘-1)7 + a,-v') - (4-17)



The quantities d*/ are the familiar Cartesian components of the rate of deformation
tensor [8, p. 150]. Since 4** has the canonical form (4.17), we shall call it the-
world rate of deformation tensor. Since A*” is defined independently of the Galilean
connection, it is a Euclidean invariant as well as a Galilean invariant of a motion*.

The world scalar invariant equation
KL K L
wa,Cl=—24%"9,7Z 8,Z (4.18)

can be easily verified by referring all quantities to a Euclidean frame. Thus a
sufficient condition for a motion to be rigid is that 4#*=0. This condition is
also necessary, for on referring all quantities to a Euclidean frame we get

KL .. K L K
wd,Cl=0=—2d70,Z 8,Z, detd,Z+0,_ (4.19)

from which it follows that d‘/=0. Thus every component of A#* vanishes in a
Euclidean frame if the motion is rigid. Since 4*” transforms as a tensor under
general transformations of the coordinates, its components will vanish in every
system of coordinates if the motion is rigid. Thus the vanishing of the world rate
of deformation tensor A** is a necessary and sufficient condition that a motion in
S or S berigid.
The field g defined by
1 ) » T v

g= ?!‘8;49/11 valq:gg gng oty (420)

is a world scalar of weight — 2 having the constant value g =1 in every Euclidean

frame. The familiar absolute scalar invariants of the rate of deformation tensor
d'l are given in world invariant form by the formulae

-1

6, =_g_5_8”qh Eyatp 827G AP VTR, (4.21)
-1

o, 252—'6,,@“ Eywrq B2Y AN A4 vT 1P, (4.22)
a -

Oy =1 Euar Eragy 4°° A2 AW T o7, (4.23)

The canonical form of these absolute scalars is
0, = trace d¥, , = sum of the principal minors of @/, @, =detd'’. (4.24)

. As an illustration of how the theory may be applied to problems in mechanics,
consider the world tensor z#* defined by

THY = A O, gHv 4 2 ABy — pgiv, (4.25)
The canonical form of this tensor is

i g . "
PN pio adth e g apdiT— p o, (4.26)

1:!“'=[

* In pure geometry (see, e.g., [10, p. 346]), a motion in a space characterized by
a set of fields ¢/ is a vector field w” satisfying one or more equations of the type
£¢p" =0. Thus we are using the word motion in qu1te a different sense here.

However much of the theory of motions in the sense of pure geometry can be applied
to the study of motions of continuous media.



The quantities #7 transform according to required law (1.11) under the group ®g
relating the Euclidean frames. Equations (4.26), are the familiar constitutive equa-
tions for the stress tensor of a classical linear viscous fluid, where 1 and u are the
viscosities and p is the pressure [8, p. 126]. The pressure is assumed to be some

function of the world scalars C-! and the temperature. From the point of view' of
world invariant kinematics, the stress v#? is a world tensor differential invariant of
a motion in Euclidean space-time satisfying the invariant equations 1#*= v*#, 7#?{,= 0.

The Lie derivative of the world rate of deformation tensor A*” is again a
tensor given by

A =LA = ' 5 A% — AP gt — A#F 9,0, (4.27)

The canonical form of A* is

*,
A'»v:[d” OJ, Ji_ od

dityt — @90 — @it ot (4.28)
0 0

*, .
The quantities d*/ transform as a 3-dimensional tensor under ®. We see that
the above process may be continued 1ndef1n1te1y to obtain an infinite sequence of

n)
world tensors A*?, A’“’ e, zf!”, ... All of these fields have a canomca.l form

similar to (4.28) involving a sequence of 3-dimensional tensor fields d*/, d", e
)
4", .... Such a sequence of differential invariants of a motion under the group

®y has been considered by ErickSEN & RIvLIN [12] in the formulation of consti-
tutive equations for the stress in a visco-elastic material. If v#* is any tensor
invariant of a motion in Euclidean space-time such that it has the canonical
form (4.26),, then #7 is an admissible stress tensor defined in terms of the motion
and satisfying the transformation law (1.11) under the group ®z. Thus we see
how the present formalism can be put to use in the problem of formulating
admissible consititutive relations for the stress tensor in classical continuum
mechanics. The Lie derivative of 7#” with respect to the world velocity »# has
the canonical form

*. . "
L4 i if - L . .
T = [ \O}, £4i = itT + gt of — ¢ gt — ' o (4.29)
0 0z

The quantities £ transform as a tensor under &g and have been used in formu-
lating the constitutive equations of a class of materials called hypo-elastic [16, 21].
The tensor £ is called the convected time flux of the stress tensor. The proof of
its invariance under G has been discussed from numerous points of view
[7,8,13, 14, 21].

In terms of the world tensors g#” and v* we can define the non-singular sym-
metric contravariant world tensor p#* given by

Prr=gh? — vh v, (4.30)
Let p,, denote the inverse of $#*. The canonical form of p,, is

%j =Yl detp,— —1. (4.31)

Puv= S p— R



Let {2}, denote the Christoffel symbols based on the tensor Puv- Except for
special motions, these Christoffel symbols define a world connection in Galilean
space-time which is distinct from the Galilean connection. The Riemannian
curvature’ tensor based on the {,}’,, » does not vanish except for special motions.
The Galilean connection is independent of a motion; the Christoffel symbols
based on p,, are a type of differential invariant of a motion in %% or %;. Before
proceeding, we list some invariant algebraic relations satisfied by #,,,:

p#"tvz_v#, ﬁﬂyv”:-—t’“ pugpvlgglzpuv—*—tutv' (432)

The canonical form of the Christoffel symbols is

iV i ik fiY __ df siosagsi fEY OV o aci oo cigils ’
{,-k}p—v ar, {,-4},,——(» T—y* s d°t, {44}P—_‘W_v &=t vty d,

(= —van (y=vva (=0
where o'/ =1 (6, — 87-vi).

Since adding any world tensor 52,=S¢, to the Christoffel symbols yields
another set of quantities transforming as the components of a symmetric world
connection [I, p. 6], we see that one can construct an infinity of world connec-
tions all of which are part of the Euclidean and Galilean geometry of a motion.
All that is needed is to be able to define a tensor of rank 3, $2,. in terms of the
motion, g#” and ¢,. The tensor p,,2° is one such admissible tensor, there being
an infinite number of others. Without further motivation derived from physical
applications or intuition, there seems little to recommend an intensive study of
this variety of differential invariants of a motion. DEFRISE [20] has based the
determination of a world connection in Euclidean space-time upon the intuitive
notion that the world lines of the particles of the medium shall be a system
of “parallel straight lines” in the 4-dimensional sense, plus other ideas based
on the parallel transport of tensor fields. Having determined such a connection,
DEFRISE preceeds to study in detail various other invariants of a motion that
can be defined with his connection, such as its Riemann tensor. The equations
used by DEFRISE to determine a world connection 09, (hereafter referred to as

"y

the Defrise connection) are equivalent to the following:

(4.33)

‘o Ny ur —
Gv=o0, Fgv=24v4,  Fi,=o0, (4.34)

where the operator gﬂ denotes covariant differentiation based on the Defrise

connection £¢,. These equations have a unique solution for all 64 components
of ¢, in terms of the fields g#*, {,, v* and their derivatives. The canonical form
of the Defrise connection is

) ) . . ovi o
=0, 2,=0, 4= — 90", Qh:—'é;"*‘”'ai“ (4.35)

The difference between the Defrise connection and the Christoffel symbols based
on p,, is a world tensor given by

Stz {8 — Q8w = Pua by X0+ p 2 A2, 4 p,, A28, (4.36)



The canonical form of 5¢, is

Shy=vdi*, Siy=—vv*dis, S}=-—1v's", S}=d", 437)
L=V UV @ — 20°d, Sta=v"v°dre. '
As a variant of DEFRISE’S procedure, we can solve the equations
yigr=0, vhv=0 Fi=0 Figli=0 (4.38)

for the components of yet another symmetric world connection ¥?,. According
to (4.38),, the world lines of the material points undergoing the motion will be
paths of the connection ¥¢2 [I, § 22]. The canonical form of this connection is

Wi=0, ¥h=0, Wi=o, Wi=('-d)r—20 @39
and the difference between this connection and the Defrise connection is the
world tensor U}, given by

U, =Y8 — 2, =p,, 4%+ p,, A%, (4.40)

The formulae (4.36) and (4.40) are convenient to have when one considers a
question of the type: What is the invariant significance of the absolutederivative
of the velocity field with respect to the Christoffel symbols {,f,, »? The answer
follows simply from the result (4.36). Let I, denote covariant differentiation
based on the {{£},. We then have ?

pV, v* = ,v" + {,}, 00 = 3,v* - Q¥ 10 + S¥,. (4.41)

The first two terms on the right hand side of (4.41) cancel each other by (4.34),.
Substituting from (4.36) for the 5%, yields

Vot =p, Vi (4.42)
If we multiply this equation by $”¢ and sum, we get
vl = pre Pt = Ao (4.43)

Since A**-satisfies the invariant equation A4#*¢{,=0, we have from (4.42)
vV ="p, A= —f 4 =0. (4.44)

Thus the world lines of the motion are paths of the connection {ﬂ", b
Let P, denote covariant differentiation based on the Galilean connection I}8,.
r

The world acceleration vector of a motion in Galilean space-time is defined by
ak=v" Vv (4.45)
The canonical forn' of the world acceleration vector is
= (a,0), a'= —s; + v ;0. (4.46)
The transformation law relating the components a’ and 4" in two Galilean
frames is

@' = Al d, (4.47)

Arch. Rational Mech. Anal., Vol. 1 14



where A7 is a constant orthogonal matrix. Note that the world acceleration
vector of a motion in Euclidean space-time is undefined.

Consider the world tensor W#* defined by
Wy = gt "PVZ v, (4.48)

The canonical form of this tensor is

Wrs — [w” 0], W' = 8", (4.49)
0 0
The symmetric and antisymmetric parts of W*” are world tensors
A#Y = W(#v)’ oy — W[I“'], We? — A# 4 _qu’ (4_50)
where the canonical form of 2 is
o — [“g’ g}, il =} (9,07 — 0;0). (4.51)

Since w*’ is the classical measure of vorticity, we call Q“* the world vorticity
tensor. Now the world rate of deformation tensor A#* was defined in (4.16)
independently of the Galilean connection; whereas, from (4.50) it is not im-
mediately apparent that the symmetric part of W#” can be expressed solely in
terms of the fields v*, g#” and the derivatives of these fields. That this is the
case follows from (3.16),.

Wi — gl(u 317)11) -+ g’l (e ]}12 ve, (4.52)

and from (3.16), we get
28" g = — 0,8"" (4.53)
Substituting this last result into (4.52) we verify the identity W = — Lg.

The components of the world vorticity tensor £2#* cannot in this same way be
expressed solely in terms of the fields ##, g**, ¢, and their derivatives That is,
vorticity is not a Euclidean invariant of a motion. But this is clear from an
intuitive point of view since vorticity measures a rate of rotation and rotation
does not have an invariant significance under the Euclidean group, but does
have an invariant significance under the smaller Galilean group.

5. Lorentzian kinematics

The study of invariants of a motion in Lorentzian space-time has important
applications in relativistic mechanics and electromagnetic theory. The sym-
metrical treatment of all four coordinates for events has found greater usage
and favor in relativity theory than in classical mechanics. However, as we have
seen, the formulation of classical invariant-theoretic problems in terms of a
4-dimensional geometry is easily accomplished and has some formal manipulative
advantages. There appears still to exist some misunderstanding in applied work
concerning the introduction of general coordinates in space-time and the physical
implications of such a process. The equations of classical mechanics, as well as
all of the purely kinematical considerations we have given here, can be phrased
and presented in terms of world invariants of a suitable set of fields in space-time.



This does not alter the physical hypotheses or interpretations constituting the
theory any more or less than the familiar use of curvilinear coordinates for posi-
tions in space. McVITTIE [5] has considered certain of the Galilean invariants
of a motion as limiting cases of Lorentz invariants with infinitesimal velocities.
Here we have preferred an independent development of each of these theories
of motion treating each as an exact science. One of the best sources for ideas
and results in Lorentzian kinematics is MGLLER’S book on relativity theory [9].
Following is a brief discussion of a few Lorentz invariants of a motion whose
importance, relative to others we might consider, is suggested by applications
in relativistic theories of elastic bodies and fluids.

Consider the world axial vector field of weight 1 defined by
1 va Kk L M
UMEE—!“EQ ‘anZ a‘,Z 3,.2 ExLM- (5'1)
The world scalar of weight 2 given by

0=y, 0"v (5.2)

is always #negative. This follows on substituting the definition of v* into (5.2)
and deriving the identity XL
6 = dety,, det X* <o0. (5.3)

The inequality holds since the determinant of the Lorentz metric is always

KL
negative and the determinant of X~ is by assumption always positive. The
absolute world vector defined by

w‘uE_nL Vva”wvz —1, (5.‘4)

V—%’
is called the relativistic world velocity vector of the motion.
Let the motion be referred to an arbitrary Lorentz frame. We then have

KL . K L K L
X1=618,7 8,Z — 0,2 0,2,

. K L KL K L (5'5)
00,2 0,Z =X+ 0,Z 9,Z.
Taking the determinant of both sides of this last equation yields
K KL K L
D= (det §,Z)* =det X (1 + X 8,2 9,2) >0, (5.6)

KL KL
where X is the inverse of the matrix X% Since X! is positive definite, so is its
KL

inverse, and from (5.6) we see that D2 is never zero for any motion of a material
medium in Lorentzian space-time. This means that we can always solve for the
first three Lorentz coordinates z* of a Lorentz frame in terms of the Z¥ and z*

# =3 (2K, 4. (5.7)
The canonical 'm of the axial vector v* is
o} ;
nﬂ:f@(a_;, 1) =D 1), (5.8)

14*



where o' is the “classical velocity” of a material point relative to the Lorentz
frame 2#, where we think of 24 as classical time. This is not a Lorentz invariant
notion since z* and T have different transformation laws. The canonical form
of (5.2) is .

(5-2) 8 =D (v v — 1) <0, (5.9)

where the inequality follows from (5.3). Thus we see that the hypothesis that
KL

X1 is positive definite for the motion of a material medium in Lorentzian space-
time leads to the familiar result that the “‘classical velocity” of the motion
relative to any Lorentz frame is always less than 1, where this upper limit for
the speed of any motion is identified with the speed of light in the chosen system
of units.
The components of the relativistic world velocity vector %* in a Lorentz
frame have the values
R L 2 = g g
“ (11—1;2' n-vz) CErT (5-10)
In relativistic mechanics, the fourth component of w* in a Lorentz frame less 1
is called the kinefic energy per umit of mass [4]. '
An affine connection in % is determined by the Christoffel symbols based
on the Lorentz metric. All of these symbols vanish in a Lorentz frame. Let
I7 denote covariant differentiation based on the Christoffel symbols of y,,.

The world velocity gradients are defined by V, w”. The relativistic counterparts
of the world rate of deformation tensor and the world vorticity tensor of Euclidean
and Galilean kinematics can be defined as follows:
uy __ A Ur) ory — Ale 7 ,wr} .
4=yt vyw”, Qer=y Viw, (5.11)

where we shall have the identity
A= — gy, (5.12)
analogous to the classical case (4.10), (4.50).
In the case of Euclidean or Galilean kinematics, a rigid motion can be defined
by either of the conditions v# 8,,1((){1:0, or A**=0. In the case of a motion in
Lorentzian space-time, however, the two analogous conditions

KL
w9, X1 =0, A”=0 (5.13)

are not equivalent. There exist motions for which we have (5.13); and do not
have (5.13),. In fact, if w” satisfies (5.13),, then it is a translation [10, p. 349].
Its components in a Lorentz frame will have the form (5.10), where the v* will
be constants. The motion

K. . . . .

Z(224) = AKX (29 2, AK AL =6KE, (5.14)

representing a rotation about the origin of the Lorentz frame z* is an admissible
motion in % for all values of z* and 2% such that

KL . e 2 s
X1 6KL K Lo (515)



is positive definite. This will be true for all sufficiently small values of z*. If
the time derivatives of the A{" are constants, then the first of the conditions
(5.13) is satisfied. The motion (5.14) is a rigid motion in Euclidean or Galilean
space-time. Thus it is reasonable to define a rigid motion in Lorentzian space-
time by the first of the conditions (5.13). We are aware that there has been con-
siderable debate as to what a useful and appropriate definition of a rigid motion
in relativistic kinematics should be. We see that the conditions (5.13), would
be too restrictive since they rule out all but the uniform translations. Pursuing
the analogy with Euclidean kinematics, consider the functions (X1)KL(ZK, 24)
defined by KL _
(XKL (ZXK, 24 = X125 (25, 24, 24), (5.16)

where the functions # are those occurring in (5.7). Thus, treating 2% as a parameter,
we can construct the Riemann curvature tensor Ry 3% (Xg 1), X (X )Y =6Y.
MorL1ER [9] calls a motion in & satisfying the conditions

Ri ¥ (Xpg) =0 (5.17)

a Euclidean motion. The rigid motion (5.14) is not a Euclidean motion. Equation
(5.17) is to be compared with its classical counterpart (4.12), which holds for
any motion in 9% or ;. Moreover, {4.12) is a Euclidean and Galilean invariant
property of any motion in % or &;; whereas, if (5.17) is satisfied by a motion
relative to one Lorentz frame, it need not be satisfied by the same motion
referred to another Lorentz frame. That is, since z*is not an invariant para-
meter in (5.17) under Lorentz transformations, this condition is not Lorentz
invariant. '

In special relativity theory, the equations representing conservation of energy,
conservation of momentum, conservation of angular momentum, and the equi-
valence of momentum and energy flux take the form [4]

v, Pr=o0, Pr=pw, (5.18)

where P** is the stress-energy-momentum tensor. It is customary to write P**
in the form
Pry =gt — g w* w?, (5.19)

" where 7#* embodies the relativistic counterparts of the classical stress, internal
energy, and heat flux. In classical mechanics, it is customary to provide con-
stitutive equations for all of these quantities in terms of the motion, the tem-
perature, the electromagnetic field, efc., and to require their invariance under
various groups of transformations such as the rigid motions. But in relativity
theory, owing to the open question of a proper definition of a rigid motion which
is not a uniform translation, a clear and concise statement of the class of ad-
missible constitutive equations for 7#* depending on a motion cannot, to our
knowledge, be found in the literature. The relativistic counterpart of the funda-
mental assumption (1.11) of classical continuum mechanics has not been enunciated.
It would seem that a sound relativistic generalization of, say, classical elasticity
theory rests on questions of this nature.



6. Convected coordinates in Euclidean and Galilean space-time

Given a motion in Galilean or Euclidean space-time, there are, in addition
to the Galilean and Euclidean frames, other classes of preferred coordinates
defined in a natural way in terms of the motion [12, 14]. One such class of
coordinate systems are the convected coordinates belonging to a motion [11, 7].
A convected coordinate system of a motion in % or % can be defined as any
coordinate system x9 (we use upper case Greek indices to indicate convected
coordinates) in which the world velocity vector * and the covariant space nor-
mal ¢, have the convected form

v =1(0,0,0,1), {,=1(0,0,0,1). (6.1)

The existence of such coordinate systems is easy to perceive. Let XK (Z%) be any
three functionally independent functions of the Z*. If we transform the com-
ponents * and ¢, in an arbitrary system of coordinates #* to the coordinate
system x“ determined by .
K =X(Z(x),

6.2
=t =T, 62)

we conclude immediately that the coordinate system (x%, T) is a convected
coordinate system. Any two convected coordinate systems x? and x? are
related by a transformation having the general form

XK =X (xK),

4

x*¥ = x* + constant.

From (3.5), it follows immediately that in a convected frame
ght=g'"=0, (6.4)
KL
and from the definition of the scalars C~' we have

K L
I({,‘L-l — gMN 0z ez . (6.5)
S axM N
K K
If we consider the special case in which X=27, we have the simpler relation
KL .
Ct=ghL, (6.6)
Thus the non-vanishing components of g"* in a convected frame x%=Z¥ of a motion

are equal respectively to the six material measures of deformation I&‘L”l. Some workers
in elasticity theory [11] who employ convected coordinates almost exclusively
refer to the quantities Ck; as the metric tensor. The result (6.6) provides the
principal motivation for the use of such terminology. However, it must be realized
that the equality (6.6) holds only in a restricted class of coordinate systems.

Consider next the rate of deformation tensor 4“*, whose components in a
general frame are given by (4.16). Substituting the convected form of the velocity
vector into this formula, we conclude that

1 3gKL

A =M=0, A'=—o . (6.7)
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More generally, we have for the series of world tensors A**, ..., A4**, ... [cf. (4.27)]

1 o KL
5 S (6.8)

Pha_ Mo et
A= fio =g, Akr—_

Since the covariant derivatives of g#” and #, with respect to the Galilean
connection vanish in an arbitrary coordinate system, we have

dota — Iop by =0, ©6.9)
3wgeg+rws‘?dg4@+pwzgaa=o. (6.10)
Fiom (6.9) and (6.1), it follows that, in a convected frame,

I =o0. : (6.11)
From (6.10) we obtain the equations

1 agKL
I},Ifll:{LlJ{VI}g’ I;(l{l(gL)AI:_Z oT =AKL; (612)

where the I7%, are the Christoffel symbols based on g1, gk g~ =6Y.
The components of the world vorticity tensor 2%¥ in a convected frame are

given by Q94— — 400, QKL MIK[L (6.13)
The world acceleration vector has components given by
a*=0, a¥=TIK. (6.14)

The formulae of this section are useful for the interpretation of any system
of deforming and accelerated coordinates in Euclidean or Galilean space-time
not necessarily associated with the motion of a material medium. That is, consider
the class of all coordinate systems in & or &; in which we have t,=(0,0,0,1).
Equation (6.7) then gives an interpretation of the time dependence of the non-
vanishing components of the space metric g*” in one of these general types of

KL
coordinate systems. —% 98_" is a measure of the rate of deformation of the

coordinate system. Similarly, the formulae (6.12), {6.13), and (6.14) provide an
interpretation of the non-vanishing components of the Galilean connection in
such a system of coordinates.

7. The geometry of the space of material pcints and material symmetry

In continuum mechanics we assign a geometry to the 3-dimensional space
& with coordinates ZX by introducing a group ®y; of allowable material coordinate
transformations. A typical element of this group has the form

ZK = AX' 7L 4 DX, (7.1)

where, in all of the applications with which we are familiar, it is sufficiently
general to assume that &y is some subgroup of the 3-dimensional orthogonal
group. Thus the matrix of coefficients in (7.1) is an orthogonal matrix. By
demanding invariance of constitutive equations under ®&y we obtain further
restrictious on the form of these equations. The group &y determines the material



symmetry of the medium. Let us see how this relation between the group of
material coordinate transformations ® and the idea of material symmetry

arises. It is customary to require that, for some instant 7j, the functions g (%, T)
representing a motion relative to a Euclidean or Galilean frame (2%, T) reduce
to the form ) K _
=067 (¢ Tp) = 8y, Z%. (7.2

That is, the material coordinates ZX at the instant 7, coincide with the Cartesin
coordinates z*. Now if the material points are all identical and arranged in space
in a uniform homogeneous array, the intuitive notion is that we cannot in this
way ascribe unique names to each material point, but that the names (material
coordinates ZX) are determined only to within an arbitrary orthogonal trans-
formation. This is the intuitive picture of an isotropic homogencous material
medium. Thus the appropriate group &y for a material with this symmetry is
the complete orthogonal group. If some of the material points have different
properties than others, such as in a crystal, and if they are arranged in space
in some non-uniform or inhomogeneous array at the instant i, the class of
equivalent (allowable) material coordinate systems Z¥ will be smaller than the
corresponding class for isotropic homogeneous materials, Thus the group &y
in the general case will be some proper subgroup of the orthogonal group. The
continuum theory of elastic homogeneous crystals is based on constitutive
equations for the stress which are invariant under ‘a group of material coordinate
transformations ,,, where the set of matrices 4% in (7.1) constitute the elements
of one of the 32 crystallographic subgroups of the orthogonal group characteristic
of the point symmetry of the crystal. In the theory of finite elastic deformations
of crystals and in the classical linear theory of elastic crystals the constitutive
equations are assumed invariant to arbitrary translations D¥ in (7.1). This last
assumption represents an approximation to a more detailed description of the
symmetry of a crystal in which one would require invariance only to a group
of discrete translations DX, However, the present formalism does not rule out
the possibility of an accurate and detailed continuum description of such “micro-
scopic” structure or symmetry. Other choices for the group ®,, describe materials
having transverse isotropic symmetry, orthotropic symmetry, etc., {19].

Let .us jllustrate the way in which the invariance of constitutive equations
under the group &, restricts their general form by considering the case of the
stress tensor in finite elasticity theory. In §1 we remarked that if the stress
tensor #7 in an elastic body of any symmetry whatever were invariant under the
group of rigid motions, then it must reduce to the form

1 7
ii éx ox KL M PO, -
fi — oK 57T P(z,C . D). (7.2a)

If we now demand that £ transform as an absolute scalar under the group &y
of all orthogonal transformations, whereby we assume that the material is

KL
isotropic and -homogeneous, then it is known that the functions P are expressible

in the special form [12]
KL

Y F KL E C L F O (7.3)
- i 1 2 .



KL
where the &#’s are functions of the scalar invariants of the matrix C.
Fo=F (1,11, 111}, 02 =0,1,2,

KL o . KL KL (7.4)
[=trace C~%, Il =sum of the principal minors of C-1, IIT=det C"1= 2.

The constitutive equations for the stress in a material with less symmetry than

KL K KL
an isotropic homogeneous medium will involve functions P of Z, C™!, and ®
moere complicated than (7.3).

In presenting these few remarks and examples concerning the relation between
maierial symmetry and the invariant-theoretic problems encountered in the
formulation of constitutive relations in continuum mechanics, we have attempted
to make clear that the problem is one of invariance under at least two distinct
groups of transformations: 1) invariance to rigid motions, 2) invariance under
a group of material coordinate transformations. A third group not considered
here is the group of unit transformations. It is important that these three
demands for invariance not. be confused and that each of them be satisfied. A
confusion of this sort is the apparent source of difficulty in some recent attacks
on the foundations of classical elasticity theory [I8, efal.]. As we have seen,
these invariances are not equivalent.

In the 3-dimensional space &; with group ®y we can introduce general
coordinates X¥ and appeal once again to KLEIN'S principle so as to obtain an
equivalent statement of the invariant theoretic problem. Let ®§,;, denote the
group of unrestricted analytic transformations on the material coordinates X%
with typical element* K K .

X =Y(X¥), X¥=Y(XX). (7.5)
Let H,(X%), 2=1,2,..., N be a set of fields having an assigned law of trans-
formation under &y, such that the fields H, possess certain canonical forms
H,,(Z%) in a subclass ZX of the general coordinate systems XX and such that the
group (4, consists in all the transformations of ¢¥,;, which leave these canonical
forms invariant. By KLEIN's principle, the geometry of a field or set of fields
such as Cg; (Z¥, T) with respect to the group ®, is equivalent to the geometry
of the fields Cgy (XY, T) together with the fields Hg, (X%) under the group ®y .

Since we assume that &y is some subgroup of the orthogonal group, we can
always choose for one of the fields Hy a symmetric positive definite Euclidean
metric tensor Gy 1 (X*) and identify the frames ZX with some subclass of the coordinate
systems in which we have Ggp(Z¥)=0x,.. If Gy is the complete orthogonal
group, Gy is the only field in the set H, since the orthogonal group consists
in all the transformations which leave its canonical form dk; invariant. The
procedure of introducing general coordinates in the space & of an isotropic
homogeneous material can be illustrated by writing down the form of (7.3) which
is invariant under 3y ,. It is as follows [8]:

PRE(XY, T) = %, GKE(XY) + F (CH5E (X, T) + F(CHKE, (7.6)

K
* Here we must use a different symbol for the functions Y representing a material .
coordinate transformation so as not to confuse these functions of 3 variables with

K .
the motion X(x#) represented by functions of 4 variables a#.



where we put (C1H¥ =G, , (CHEH, (CHXL=GEM(C-1L (C1)};. The F's are
functions of I, II, and III, now given by

I=(CHE, L= o5kCHER(CHE, =1 o55¥ (COE(CHE(CE. (77)

8. Two-point tensor fields and world invariant kinematics

We have seen that in continuum mechanics we are interested in functions
of a motion such as the stress tensor in elasticity theory which are invariant
under two groups of transformations. The first of these groups involves trans-
formations of the coordinates of points (events) in a 4-dimensional space and the
second of these groups involves transformations of the coordinates of points
(material points) in a 3-dimensional space. Multiple point fields are familiar
objects in pure geometry and have been used to advantage in continuum me-
chanics [2, 19, 17]. The concept of a 2-point field is an easy generalization of
the concept of a 1-point field set forth in §2. Let & and &, be two spaces,
not necessarily of the same dimension, with groups &, and ®,, respectively.
Let X9, Q=1,2,..., N denote coordinates for the points in & and let z*,
u=1,2,...,n denote coordinates for points in &;. A 2-point field is a set of
functions F, (X%, x#) of the coordinates of a point in & and of a point in %.
Thus the components F,; of a 2-point field will depend in general on »+N
independent variables. A 2-point field has a law of transformation for its com-
ponents under independent transformations of the coordinates of either point.
The law of transformation may be any law consistent with the property that a
representation F, (X%, ) in any system of reference (X%, x*) determines a
unique representation F, (X%, x*) in every other allowable system of reference
(X9, 2*). An invariant property of a 2-point field is a property held in common
by all of its representations. Joint invariants, differential invariants, efc., are
defined as in the case of 1-point fields.

A 2-point tensor field is a set of functions T# &+ (X% x*) with a trans-
formation law of the general form

TYg = |(« 2)] 7 |(X" X)| 7" (sgn (' %)* (sgn (X' X)) ¥
ot oXT o eX° pu.g. ®.1)
P2 CRERFT AP CA S
An absolute 2-point tensor field is one for which w =W =9 =Y =0. Names of
2-point fields with other values of the exponents w, W, y, and Y are assigned
on a basis similar to the case of 1-point fields. 1-point tensor fields are special
cases of 2-point tensor fields which are constant scalars with respect to trans-
formations of one of the points. Thus, in all of the work preceding this section,

the 1-point fields in space-time can be regarded as special cases of 2-point
fields.

Let & be the 3-dimensional space % of material points with group Gy,
and let %, be one of the 4-dimensional spaces %%, ¥;, or ¥ with group &, .
The invariant theoretic problems of classical continuum mechanics can be phrased
in terms of 2-point fields F, (X%, x#). We call such a 2-point field a world-material



field. We have already met with an example of such a world-material field
(C)KL(XM T) that we defined by setting

(CEE (XM, T) = C1 (5 (X, T)). (8.2)

One readily verifies that (C1)X% is a world-material tensor field having a trans-
formation law of the general form (8.1). The dependence of this field on. the
space-time coordinates x* is somewhat special since it depends on the #* only
in the combination T =¢(x*). Now it is possible also to regard (C)¥L as a

KL
1-point field in space-time, C7(x*). But these quantities do not have the con-

KL
venient tensor law of transformation under the group ®y,. Rather, the C-1(x#)
have the odd transformation law

KL K’ I KL
CR ) =B () Bl C (), 3)
K
where the functions 1]'? are determined by

K
oY
axk

(X (#), (8.4)

-1
B(x) =

K

and the X (x*) are the functions representing the motion relative to the general
KL

coordinate system x*. Thus the transformation law of the C~!(x*) under the

K

group &y, depends on the motion X (x#) and cannot be written down without it.
Of course, we used the motion to define the functions (C-1)¥L (XX, ¢), but they
have a more convenient tensor law of transformation under ®,.

The concept of a 2-point field and a pair of spaces F%, S, or # and Fy
each with its own geometry leads naturally to the interpretation of a motion

XK =§ (»*) as a mapping between the points of space-time and the material
points of #;. The mapping is one-to-one only in the direction x»* XX, In the
other direction XX — x#, a single material point is mapped onto a 1-dimensional
set of events, the world line of X¥.

The geometry of world-material fields is enriched still further by adding the
connectors or shifters gl (XM, x™), g& (XM, ™) to the list of 1-point fields g**, ¢,,
T2, y*, HEL(XM), ., Gxr (X)) which characterize the geometry of each of
our two spaces separately. The connectors are 2-point world-material absolute
tensor fields providing a linkage or connection between the two spaces. Quantities
similar to the connectors we now introduce have been considered previously
in [19, 17]. For our purposes here, we shall define the components 6f the con-
nectors in a general system of coordinates (XX, x*) as follows: Let there be a
class of preferred Euclidean, Galilean, or Lorentz frames zj and rectangular
Cartesian material frames Z& such that the spatial frames z} and the material
frames ZX are “‘at rest” relative to each other and whose axes coincide. With
respect to such a system of reference (Z¥, z#) we assume that the connectors
have the joint canonical form

gh=(6k,0), g =(F.0). (8:5)



The components of the connectors ina general system of reference are then given by

o XK i
gk (XM, xm) = ok 9X 7 2% (8.6)

— 5 oZL exm
= R
oZy ox

g (XM, x7) L yxK ‘EZ,
Stated more simply and directly, we assume that the connectors are absolute
2-point tensor fields such that by suitable choice of a Euclidean, Galilean, or
Lorentz frame and a Cartesian material frame they are reducible to the joint
canonical form (8.5). A pair of coordinate systems (ZX, z¢) in which we have
(8.5) is called a common frame. If the components of the connectors corresponding
to &% and & are referred to an arbitrary Cartesian material frame Z¥ and an

arbitrary Euclidean or Galilean frame z# they will have the canonical form
gk = (Sk. 0}, gi = (SE. V),

K Al i QK i 7)
I'I‘:~AS{‘I' , SKS;‘zéj,

[v2)

(

where V' is the relative velocity of the origin of the spatial frame z* and the
material frame ZX, and S} is an orthogonal matrix representing the relative
orientation of the two systems of axes ZX and 2*. In Euclidean space-time, the
SK and V¥ will be general functions of z4, while in Galilean space-time they will
be constants. Let 17 be a world vector in % or %, with the canonical form

Fr= (1% 1). (8.8)
The Euclidean, Galilean and Lorentzian connectors satisfy the invariant relations
t L t K T
ghgh =0k,  ghel=or—1wy,
ghgkgrr =GKE,  GELgh ob =gt (8.9)
 o¥ C L L
glI\'gLV,uV:GKL' g[’l‘gv ?”:G‘”.

All of these relations can be verified by referring all quantities to the common
frame. Since they are tensor equations holding in one frame, they will hold in
a general system of coordinates.

As an illustration of the kind of world invariants of a motion in % or %
that one can construct with the connectors, we consider the problem of defining
a world tensor measure of the finite rotation of a motion relative to the common
frame. The considerations given here are natural generalizations of those given
in [17, § 4] to the case of arbitrary moving and deforming coordinate systems in
space-time. .

Consider the world tensor defined by
M .
Cuy=Ggr (X ()2, X" 5,X" (8.10)
The canonical form of this tensor is

Cj —c,kvk . o 2K o gL 2
Cpp == ok el €;;=0gp &;Z% 0; 2", (8.11)
ik k1

The quantities c;; are the spatial measures of finite deformation introduced into
elasticity theory by CaucHY and GREEN [8]. It follows immediately from the



canonical form (8.11) that det ¢,,=0 so that ¢,, is a singular tensor. Its null
eigenvector is the world velocity vector #. Thus in defining a world spatial
measure of finite deformation it proves more convenient to use the tensor c*#*
defined by

c*Hr = GEL 9, a# Op 27, (8.12)

where % (XX, T) are the functions (4,5). The canonical form of c*#* is

wur | €V 0
c —[ 0 0], (8.13)

where the (¢™1)*/ are the components of the inverse of ¢;;. ¢*#” has the null
eigenvector #, and (¢)*7 is positive definite. Consider the eigenvalue equation

c*’”g, =nc‘1g’”$z,,, 02=1,2,3. (8.14)

This equation has 3 solutions (#,, c‘l) with positive ¢ and vectors #, satisfying
g 2 2 Q 0
the two conditions

g””;t,‘g,=699, v”g,‘:O. (8.15)

The scalars ( 55 —1) are called the principal extension ratios. The canonical form

of the vectors ;z” is
= (gz, —v‘g,-), (8.16)

where the unit vectors n determine the principal axes of strain in the deformed

body [8, 17]. All of these results follow from the canonical form of ¢*#”, and
we have simply placed them in world invariant form.

Now consider the world-material vector fields N (XX, T) satistying the eigen-
value equation
(C‘l)KL‘ZQVL =9C_1 GKLIJ)VL. 8.17)

Since (C )X~ is positive definite, the eigenvalues £ are all positive, and there

exist three linearly independent eigenvectors g)\TL satisfying
KL -
G ‘Z)VKZQVL—(SQS. (8.18)

Consider next the world-material vector fields Mg (X™, T) obtained from the
fields 5 . (x7) according to the rule

ng (XM, T) = g (XM, %) g,‘(;’é) . (8.19)
Since we have the identity (8.9),, it follows from (8.15) and (8.19) that

GKL!)LK ;"L = 6_09 . (8.20)



Thus !12\/',{ and 7 are two sets of orthogonal unit vectors at (X%, T). Therefore,

there exists a unique matrix R¥ (XM T) satisfying
m =RXN;, GMVRKRL —GKL, RE=3m N,GKV.  (8.21)
Q Q Sa“n

When the material system of coordinates is rectangular Cartesian, Rf is an
orthogonal matrix. The sense in which this matrix is a measure of the finite
rotation of a motion and the relation in which it stands to the classical measure
of infinitesimal rotation has been explained in [19, I7]. From the canonical
forms of ¢*#* and (C)¥L we see that ¢;; and (C1)* have equal eigenvalues.
Since these eigenvalues are absolute scalars under general transformations of the
coordinates (X%, x#), we shall have in general

c(#) =c, (8.22)

provided we order the two sets of eigenvalues appropriately. With this result
we can show that the vector fields I given by

K —
m=0X"Ne(X, ) )/C (8.23)

satisfy all of the equations (8.14) and (8.15). If the eigenvalues of Cg; are
distinct so are the eigenvalues of ¢*#” and the eigenvectors g)VK and I, are uniquely

determined. This is not true if two or more of the eigenvalues are equal. However,
in the case of distinct eigenvalues, the motion determines a unique matrix R¥
provided we order each set of eigenvectors in some definite way such as that
corresponding to the equalities (8.22), (8.23).

Multiplying (8.23) by g‘,{lgM‘ and summing on g and 2 we get

Gur Rf = %gﬂgﬁg’i« =§gMQNL = 0,,XKg’n‘4§ V€ N Me,

, (8.24)
Ry =9, X% ghy (CHk 1
Multiplying this last equation through by (C~H ¥ ¢M and using (8.9), we get

finall
v O, XK =1, V¥ 9, X¥ 4 (CHXL Ry gY. (8.25)

The canonical form of this world-material tensor equation is

8, XK = (CHKLR,,, S¥, (8.26)
axkK

. K
O = (CH PRy VM 4 Vig X% 4 220 (8.27)

Equation (8.26) corresponds to the result (4.19) of [17]. The last equation is
an identity satisfied as a consequence of (8.26) and (8.7),. Equation (8.26) is
the familiar decomposition of a deformation 8, X¥ into a pure stretching without
rotation followed by a'rigid rotation. In Euclidean space-time, the orthogonal
matrix SM will in general depend on the time. As we have said, it represents
the time dependent relation between the material coordinate axes and the
moving, rotating axes of the Euclidean frame.
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