
HAL Id: hal-00851754
https://inria.hal.science/hal-00851754

Submitted on 18 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task taxonomy for graph visualization
Bongshin Lee, Catherine Plaisant, Cynthia Sims, Jean-Daniel Fekete, Nathalie

Henry

To cite this version:
Bongshin Lee, Catherine Plaisant, Cynthia Sims, Jean-Daniel Fekete, Nathalie Henry. Task taxonomy
for graph visualization. BELIV ’06: Proceedings of the 2006 AVI workshop on BEyond time and errors,
ACM, May 2006, Venezia, Italy. pp.1-5, �10.1145/1168149.1168168�. �hal-00851754�

https://inria.hal.science/hal-00851754
https://hal.archives-ouvertes.fr

Task Taxonomy for Graph Visualization

Bongshin Lee, Catherine Plaisant,

Cynthia Sims Parr
Human-Computer Interaction Lab

University of Maryland,
College Park, MD 20742, USA

+1-301-405-7445

{bongshin, plaisant, csparr}@cs.umd.edu

Jean-Daniel Fekete,

Nathalie Henry

INRIA Futurs/LRI Bat. 490
Université Paris-Sud,

91405 ORSAY, France

+33-1-69153460

Jean-Daniel.Fekete@inria.fr, nhenry@lri.fr

ABSTRACT

Our goal is to define a list of tasks for graph visualization that has

enough detail and specificity to be useful to designers who want to

improve their system and to evaluators who want to compare

graph visualization systems. In this paper, we suggest a list of

tasks we believe are commonly encountered while analyzing graph

data. We define graph specific objects and demonstrate how all

complex tasks could be seen as a series of low-level tasks

performed on those objects. We believe that our taxonomy,

associated with benchmark datasets and specific tasks, would help

evaluators generalize results collected through a series of

controlled experiments.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User

Interfaces – Graphical user interfaces (GUI), Interaction styles,

Screen design, Evaluation/methodology.

General Terms

Design, Experimentation, Human Factors.

Keywords

Task Taxonomy, Graph Visualization.

1. INTRODUCTION
Despite a long history of graph visualization research, only a few

graph visualization systems have actually been tested with real

users. Furthermore, the tasks that were used in these studies have

been highly domain-specific. To improve the evaluation of

information visualization systems, it is important to have

benchmark datasets and tasks [6]. In this paper, we suggest a list

of tasks commonly encountered while analyzing graph data.

There have been a number of general InfoVis task taxonomies,

such as the task by data taxonomy [7]. We first prepared lists of

tasks with examples taken from several domains such as food

webs, bibliography, and student class assignments. We used the

taxonomy of tasks for tree visualization posted in the InfoVis

2003 contest [3] as a starting point. We then reviewed several

user studies of graph visualization techniques and extracted the

tasks used in those studies.

After making those two lists, we considered the set of low-level

Visual Analytics tasks proposed by Amar et al. [2]. These tasks

were extracted from a corpus of questions about tabular data. We

realized that our tasks all seem to be compound tasks made up of

Amar et al’s primitive tasks applied to the graph objects. When

some tasks could not be represented with those tasks and objects,

we added either an object or a low-level task. In this paper, we

demonstrate how all complex tasks could be seen as a series of

low-level tasks performed on those objects.

2. Graph-Specific Objects
A graph consists of two types of primitive elements, nodes and

links. A subgraph of a graph G is a graph whose nodes and links

are subsets of G. There are several meaningful subgraphs such as

connected components.

2.1 Nodes
Nodes by nature have an attribute degree that is the number of

links incident to that node. In a directed graph, nodes have two

types of degrees according to the direction; indegree and

outdegree. For practical use, nodes also have a special “label”

attribute. They often have application-dependent attributes as

well. In network analysis, there are various measures used to

determine the centrality, or relative importance, of a node within

the graph (for example, the importance of a person within a social

network). Measures of centrality include betweenness and

closeness. There is also a special kind of node called an

articulation point, whose removal disconnects a graph.

2.2 Links
Links can have labels and application-specific attributes. For a

directed graph, each link also has a “direction” attribute. A bridge

is a link whose removal disconnects a graph.

2.3 Paths
A path is an alternating sequence of nodes and links, often

represented as a sequence of just nodes, since there is only one

link between two nodes in most cases. If the first and last nodes

of the path are the same, we call it a cycle. The shortest path

between two nodes is a path in which the sum of the weights of

the constituent links is minimized. If the links are not weighted,

we minimize the number of links in the path instead.

2.4 Graphs
We consider graphs to be objects, as users might want to compare

graphs or see how a graph changes over time. Graphs have a

“directed” attribute defined by whether or not links in the graph

are directed and a “cyclic” attribute defined by whether or not the

graph contains any cycles. Graphs can also have some computed

attributes such as the number of nodes and links.

2.5 Groups
A group can be defined as a set of related nodes, such as nodes

with common attribute values or nodes of interest to users.

2.6 Connected Components
A connected component is a maximal connected subgraph.

2.7 Clusters
A cluster is a set of objects that are spatially close together. For

graphs, this is a subgraph of connected components whose nodes

have high connectivity. Thus, in our terminology, clusters are

based solely on link information, in contrast to a group.

3. Low-Level Tasks
Amar’s low-level visual analytic tasks (shown in Table 6.1) [2] are

all relevant to graphs. In the task descriptions, a “data case” is an

entity in the dataset and an “aggregation function” is a function

that creates a numeric representation for a set of data cases, such

as average and sum.

Table 1. Ten Analytic tasks proposed by Amal et al.

Tasks Descriptions

Retrieve Value
Given a set of cases, find attributes of those

cases.

Filter
Given some conditions on attributes values,

find data cases satisfying those conditions.

Compute

Derived Value

Given a set of data cases, compute an

aggregate numeric representation of those

data cases.

(e.g. average, median, and count)

Find Extremum

Find data cases possessing an extreme value

of an attribute over its range within the data

set.

Sort
Given a set of data cases, rank them

according to some ordinal metric.

Determine

Range

Given a set of data cases and an attribute of

interest, find the span of values within the

set.

Characterize

Distribution

Given a set of data cases and a quantitative

attribute of interest, characterize the

distribution of that attribute’s values over the

set.

Find Anomalies

Identify any anomalies within a given set of

data cases with respect to a given

relationship or expectation, e.g. statistical

outliers.

Cluster
Given a set of data cases, find clusters of

similar attribute values.

Correlate

Given a set of data cases and two attributes,

determine useful relationships between the

values of those attributes.

We see that the last three tasks do not have ground truth answers

that we can easily compare with users’ answers. The “Correlate”

task may have a statistical ground truth but we assume that in the

field of Information Visualization, the intended meaning of

“Correlate” is “identify possible correlations.”

We propose one graph-specific task and two general tasks that are

not covered by the above list.

• Find Adjacent Nodes: Given a node, find its adjacent nodes.

• Scan: Quickly review the list of items.

This task differs from the “Retrieve Value” task, since it

usually requires users to review many items at once but not

necessarily to retrieve exact values. For example, if users

want to find “Robin Williams” they can immediately move to

the next item if it does not start with “R.” They can also stop

when they find an answer. Depending on the task, users may

need to continue to review all items. The values may not be

specific, for example users may need to scan for foreign

names. They need not be text, for example users may need to

scan for color-coded information.

• Set Operation: Given multiple sets of nodes, perform set

operations on them. For example, find the intersection of the

set of nodes.

4. Graph Task Taxonomy
In this section, we summarize a list of tasks commonly

encountered while analyzing graph data. These suggested tasks

are further categorized into four groups: topology-based tasks,

attribute-based tasks, browsing tasks, and the overview task. Each

task has general descriptions and example scenarios. FOAF, FW,

GO, and ARM represent friend-of-a-friend graph, food webs, gene

ontology, and airport routing map respectively. In addition, we

show how each task can be decomposed into low-level tasks,

shown in italics, on specified graph objects. While there might be

several ways to decompose a task, we show one way.

Note that finding a node is a common starting point for many

tasks. But this task may not be performed by users when a search

feature is provided by the system. While we describe it as a

component for each task, we may want to exclude it when we

conduct a user study.

4.1 Topology-Based Tasks

4.1.1 Adjacency (direct connection)
General Descriptions:

• Find the set of nodes adjacent to a node.

• How many nodes are adjacent to a node?

• Which node has a maximum number of adjacent nodes?

Examples:

• (FOAF) Find the names of the direct friends of Eric.

[Find on Nodes + Find Adjacent Nodes on Nodes + Retrieve

Value on Nodes]

• (FW) How many kinds of organisms do golden eagles eat?

[Find on Nodes + Find Adjacent Nodes on Nodes + Filter on

Links + Compute Derived Value (Count) on Nodes]

• (FOAF) Who is the most popular person?

[Find Extremum on Nodes]

4.1.2 Accessibility (direct or indirect connection)
Accessibility task can be treated as a repetition of the Adjacency

task.

General Descriptions:

• Find the set of nodes accessible from a node.

• How many nodes are accessible from a node?

• Find the set of nodes accessible from a node where the

distance is less than or equal to n.

• How many nodes are accessible from a node where the

distance is less than or equal to n?

Examples:

• (FOAF) Who are your friends, your friends’ friends, and so

on?

[Find on Nodes + repeat (Find Adjacent Nodes on Nodes +

Retrieve Value on Nodes) until no more new adjacent nodes

are found]

• (FOAF) How many friends are you connected to in this way?

[Find on Nodes + repeat (Find Adjacent Nodes on Nodes) until no

more new adjacent nodes are found + Count on Nodes]

• (ARM) To what cities can we go from Seoul, Korea by

changing planes only once?

[Find on Nodes + repeat (Find Adjacent Nodes on Nodes +

Filter on Links + Retrieve Value on Nodes) twice]

4.1.3 Common Connection
General Descriptions:

• Given nodes, find a set of nodes that are connected to all of

them.

Examples:

• (FOAF) Find all the people who know both John and Jack.

[Find on Nodes + Find Adjacent Nodes on Nodes + Find on

Nodes + Find Adjacent Nodes on Nodes + Set Operation

(Intersect) on Groups]

4.1.4 Connectivity
General Descriptions:

• Find the shortest path between two nodes.

• Identify clusters.

• Identify connected components.

• Find bridges.

• Find articulation points.

Examples:

• (ARM) What is the shortest path from Seoul, Korea to

Athens, Greece?

[Find on Nodes + repeat (Find Adjacent Nodes on Nodes in a

breadth-first manner) until find the path]

• (FOAF) Count the number of clusters.

[Scan on Graphs to count clusters]

• (FW) There may be subgraphs independent of each other.

Count the number of connected components in the graph.

[Scan on Graphs to count connected components]

• (FOAF) Who is the person whose removal from the graph

results in an unconnected graph?

[Scan on Graphs to find an articulation point]

• (FW) Which is the eating link whose removal from the graph

results in an unconnected graph?

[Scan on Graphs to find a bridge]

4.2 Attribute-Based Tasks
All the previous topology tasks can be repeated with added filter,

compute, range, or distribution tasks (opposed to solely count

tasks) on the attributes either on nodes or on links.

4.2.1 On the Nodes
General Descriptions:

• Find the nodes having a specific attribute value.

• Review the set of nodes.

Examples:

• (FOAF) Who do you know from the people currently shown

on screen?

[Filter on Nodes + Retrieve Value on Nodes]

• (FOAF) How many people do you know from the ones

currently shown on screen?

[Count on Nodes while Scan on Nodes]

• (FOAF) Are there any foreign-sounding names?

[Scan on Nodes until find an answer]

4.2.2 On the Links
General Descriptions:

• Given a node, find the nodes connected only by certain types

of links.

• Which node is connected by a link having the largest/smallest

value?

Examples:

• (GO) Find the nodes connected by “is-a” relationships from

the “Biological Process” node.

[Find on Nodes + Find Adjacent Nodes on Nodes + Filter on

Links + Retrieve Value on Nodes]

• (FW) If a link has an attribute representing the percentage of

the diet, what is main food of American crow?

[Find on Nodes + Find Adjacent Nodes on Nodes + Find

Extremun on Links + Retrieve Value on Nodes]

4.3 Browsing Tasks

4.3.1 Follow Path
General Descriptions:

• Follow a given path.

Examples:

• (FOAF) A user looks into A’s friend B, B’s friend C, and C’s

friend D.

[Find on Nodes + repeat (Find Adjacent Nodes on Nodes +

Scan on Nodes) three times]

• (FW) Follow the flow of energy from grasses, to a rabbit that

eats grass, to a carnivore that eats the rabbit, and to a

carnivore that eats that carnivore.

[Find on Nodes + repeat (Find Adjacent Nodes on Nodes +

Scan on Nodes) three times]

4.3.2 Revisit
General Descriptions:

• Return to a previously visited node.

Examples:

• (FOAF) After they follow a path in the above task, they may

want to see A’s other friends.

[Scan on Nodes + Find Adjacent Nodes on Nodes]

• (FW) Find another carnivore that eats the same rabbit.

[repeat (Scan on Nodes) twice to find + Find Adjacent Nodes

on Nodes]

4.4 Overview Task
This is a compound exploratory task to get estimated values

quickly. For example, we might ask users to estimate the size of

the social network. Note that sometimes it is more important to be

able to estimate the answer than to get an accurate one. Some of

the topology tasks can be done easily using an overview of the

graph as well. For example, using particular layout algorithms, it

is easy to see whether or not there are clusters and connected

components. Other algorithms help to find shortest paths between

nodes. Overview also helps to find patterns.

5. High-Level Tasks
There are high-level tasks that are not covered by the above tasks.

• When we compare two or more food webs, we can ask the

following questions: What do they have in common? What

are the differences among those food webs? Is there any

missing or conflicting information?

• Due to errors in the data, several nodes may represent the

same entity. For example, the co-authorship graphs often

have duplicate author nodes. One important task is to

identify whether two or more nodes represent the same

person.

• How has the graph changed over time?

6. Characterizing Graph Visualization Tools
Graph visualization tools can be characterized by which objects

(nodes or links) and tasks they focus on as shown in Table 2. For

example, TreePlus [5] focuses on nodes – less on links and not at

all on clusters. NVSS [8] and NetLens [4] focus on groups, and

most classic node-link diagrams and matrix representations [1] do

well at clusters. User studies for these tools focus on certain tasks,

e.g. scanning and following path for TreePlus, or finding clusters

and bridges in the graph layout experiments. Some tools seem

most strong at certain tasks. For example, NetLens particularly

excels at showing a distribution of items and filtering and sorting

items. Since NVSS partitions a large network into several smaller

non-overlapping regions by node attributes, users were able to

quickly identify patterns of interest among nodes.

It would be useful if we could further characterize graph

visualization tools by which graph characteristics they effectively

visualize. For example, some tools may be better at handling

directed graphs and others at high-density graphs.

7. CONCLUSION
We have defined graph-specific objects and demonstrated how all

complex tasks for graph visualization could be seen as a series of

low-level tasks performed on those objects. We believe that our

taxonomy, associated with benchmark datasets, would help

evaluators generalize results collected through a series of

controlled experiments.

8. ACKNOWLEDGMENTS
We would like to thank Ben Shneiderman for encouragement and

many helpful comments.

9. REFERENCES
[1] Abello, J. and Korn, J. MGV: A System for Visualizing

Massive Multigraphs, IEEE Trans. Visualization and

Computer Graphics, vol. 8, no, 1, pp. 21-38, Jan.-Mar. 2002.

[2] Amar, R., Eagan, J., and Stasko, J. Low-Level Components

of Analytic Activity in Information Visualization,

Proceedings of the Symposium on Information Visualization

(InfoVis ’05), pp. 111-117, 2005.

[3] InfoVis 2003 Contest: Visualization and Pair Wise

Comparison of Trees,

http://www.cs.umd.edu/hcil/iv03contest.

[4] Kang, H., Plaisant, C., Lee, B., and Bederson, B.B. NetLens:

An Interface Using Iterative Query Refinement in Bipartite

Network Data Model, To appear in Proceedings of Joint

Conference on Digital Libraries (JCDL ’06), Demonstration,

2006.

[5] Lee, B., Parr, C.S., Plaisant, C., Bederson, B.B., Veksler,

V.D. Gray, W.D., and Kotfila, C. TreePlus: Interactive

Exploration of Networks with Enhanced Tree Layouts, To

appear in IEEE TVCG Special Issue on Visual Analytics.

[6] Plaisant, C. The Challenge of Information Visualization

Evaluation, Proceedings of the working conference on

Advanced Visual Interfaces (AVI ’04), pp. 109-116, 2004.

[7] Shneiderman, B. The eyes have it: A task by data type

taxonomy for information visualizations, Proceedings of the

Symposium on Visual Languages (VL ’96), pp. 336-343,

1996.

[8] Shneiderman, B. and Aris, A. Network Visualization by

Semantic Substrates, University of Maryland Technical

Report, 2006.

Table 2 Characterizing graph visualization tools based on their focus objects and tasks. These characterizations assume large

graphs. Large, bold X represents particular strengths.

 TreePlus Matrices NVSS Classic node link NetLens

OBJECT FOCUS

Nodes X X x X X

Links X x X

Paths x X

Graphs

Groups X X

Connected Components x X X

Clusters X X

GENERAL LOW-LEVEL TASKS

Retrieve Value X X

Filter X X

Compute Derived Value

Extremum X

Sort x X

Range X

Distribution x X X

Anomalies x

Cluster X X

Correlate

Scan X x X

Set Operation x X

GRAPH-SPECIFIC TASK

Find Adjacent Nodes x x X

COMPLEX TASKS

Topology

 Adjacency X X x x X

 Accessibility X x

 Common Connection Interaction Interaction Visual

 Find Shortest Path Computed Visual/Computed

 Find Clusters Computed/Visual Visual

 Find Connected Components Computed Visual

 Find Bridges Visual

 Find Articulation Points Visual

Attribute-Based

 On the Nodes X X X

 On the Links X x

Browsing

 Follow Path X x

 Revisit X X

Overview x X X

