Some exact values of the Harborth constant and its plus-minus weighted analogue

Abstract : The Harborth constant of a finite abelian group is the smallest integer $\ell$ such that each subset of $G$ of cardinality $\ell$ has a subset of cardinality equal to the exponent of the group whose elements sum to the neutral element of the group. The plus-minus weighted analogue of this constant is defined in the same way except that instead of considering the sum of all elements of the subset one can choose to add either the element or its inverse. We determine these constants for certain groups, mainly groups that are the direct sum of a cyclic group and a group of order $2$. Moreover, we contrast these results with existing results and conjectures on these problems.
Type de document :
Article dans une revue
Archiv der Mathematik, Springer Verlag, 2013, 101 (6), pp.501-512. <10.1007/s00013-013-0590-4>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00851556
Contributeur : Wolfgang Schmid <>
Soumis le : vendredi 30 août 2013 - 00:14:58
Dernière modification le : mardi 11 octobre 2016 - 14:54:14
Document(s) archivé(s) le : jeudi 6 avril 2017 - 10:40:41

Fichiers

harborthconst_subm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Luz Elimar Marchan, Oscar Ordaz, Dennys Ramos, Wolfgang Schmid. Some exact values of the Harborth constant and its plus-minus weighted analogue. Archiv der Mathematik, Springer Verlag, 2013, 101 (6), pp.501-512. <10.1007/s00013-013-0590-4>. <hal-00851556v2>

Partager

Métriques

Consultations de
la notice

259

Téléchargements du document

214