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Abstract

This paper examines the cycling behavior of a deterministic and a stochastic version of the
economic interpretation of the Lotka-Volterra model, the Goodwin model. We provide a char-
acterization of orbits in the deterministic highly non-linear model. We then study the cycling
behavior for a stochastic version, where a Brownian noise is introduced via an heterogeneous
productivity factor. Sufficient conditions for existence of the system are provided. We prove
that the system produces cycles around an equilibrium point in finite time for general volatil-
ity levels, using stochastic Lyapunov techniques for recurent domains. Numerical insights are
provided.

Keywords: Lotka-Volterra model; Goodwin model; Brownian motion; Random per-
turbation; Business cycles; Stochastic Lyapunov techniques.

1 Introduction

The Lotka-Volterra equation is at the heart of population dynamics, but also possesses a famous
economic interpretation. Introduced by Richard Goodwin [10] in 1967, the model in its modern
form [6] reduces to the planar oscillator on a subset D of R+:{

dxt = xt (Φ(yt)− α) dt
dyt = yt (κ(xt)− γ) dt

, (1)

where xt denotes the wage share of the working population and yt the employment rate, α and γ
are constant, and the following assumption is made on κ and Φ.

Assumption 1. Consider system (1).

(i) Φ ∈ C2([0, 1)), Φ′(y) > 0, Φ
′′
(y) ≥ 0 for all y ∈ [0, 1), Φ(0) < α and limy→1− Φ(y) = +∞.

(ii) κ ∈ C2(R+), −∞ < κ′(x) < 0 for all x ∈ R+, κ(0) > γ and limx→+∞ κ(x) = −∞.

Lemma 1 below asserts that Assumption 1 is sufficient to have (xt, yt) ∈ D := R∗+ × (0, 1)
for any t ≥ 0 if (x0, y0) ∈ D. This property preserves the above interpretation for x and y: the
employment rate cannot exceed one for obvious reasons, but the wage share can, depending on
the chosen economic assumptions, see [11]. This distinctive feature of the economic version (1) on
its biological counterpart follows from a construction based on assumptions describing a closed
capitalist economy. It can be done in three steps:
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(I) Assume a Leontief production function Pt = min(Kt/ν; atytNt) with full utilization of
capital, i.e., Kt/ν = atytNt. Here, Pt is the yearly output, Kt the invested capital, ν > 0
a capital-to-output ratio, at := a0 exp(αt) is the average productivity of workers and Nt :=
N0 exp(βt) is the size of the labor class.

(II) The capital depreciates and receives investment, i.e., dKt/dt = (κ(xt)−δ)Kt, where δ > 0 is
the depreciation rate and κ the investment function. Goodwin [10] originally invokes Say’s
law, i.e., κ : x ∈ R+ 7→ (1− x)/ν.

(III) Assume a reserve army effect for wage negotiation of the form dwt = Φ(yt)wtdt where
wt := atxt represents the real wage of the total working population, and Φ is the Phillips
curve.

Defining γ := α+β+δ allows to retrieve (1) for (xt, yt) := (wt/at,Kt/(νatNt)). The class-struggle
model (1) has been extensively studied because it allows to generate endogenous real business
cycles affecting the production level Pt, e.g. [8, 9, 11, 15, 28, 29]. On this matter, Goodwin
himself conceded that the model is “starkly schematized and hence quite unrealistic” [10]. It
hardly connects with irregular observed trajectories, see [13, 22].

The objective of this paper is thus to study the following perturbed version of (1) by a
standard Brownian motion (Wt)t≥0 on a stochastic basis (Ω,F ,P):{

dxt = xt
(
(Φ(yt)− α+ σ2(yt))dt+ σ(yt)dWt

)
dyt = yt

(
(κ(xt)− γ + σ2(yt))dt+ σ(yt)dWt

) , (2)

where σ is a positive function of y bounded by σ0 > 0, and the filtration Ft is generated by paths
of W . The form of σ is discussed in Remark 2 after. A stronger condition, Assumption 3, is
assumed later on the behavior of σ to ensure that solutions of (2) remain in D. The example of
Section 5 will also illustrate how such condition can hold. We modify the economic development
(I), (II) and (III) by introducing the perturbation on one assumption, namely we assume that for
t ≥ 0,

dat := atdαt = at (αdt− σ(yt)dWt) , a0 ≥ 0 , (3)

instead of dat = atαdt. Using Itô formula with (3) in the previous reasoning retrieves (2).
Productivity is one of the few exogenous parameters of the model, and one of those that were
significantly invoked as influencial over business cycles, e.g. [7, 12]. Without arguing for the
pertinence of that particular assumption, we simply suggest here that a standard continuous
perturbation in this crucial parameter seems a good starting point.

To our knowledge, this is the first attempt to consider random noise in Goodwin interpretation
of the famous prey-predator model. To stay in the spirit of the economic application, the present
paper studies the cyclical behavior of the deterministic system (1) and the stochastic version (2).
Namely, our contribution are as follows, developed in the present order:

• In Section 2, we fully characterize solutions of (1) and the period of their orbits. This
generalizes standard results on Lotka-Volterra systems to bounded domains of existence.

• In Section 3, we provide existence conditions for regular solutions of (2). We use the entropy
of (1) to estimate the deviation induced by (3). We provide a definition of stochastic orbits
for (2). The proof that solutions of (2) draw stochastic orbits in finite time around a unique
point is given in Section 4.

Our contribution has to be put in contrast with numerous studies of random perturbations
of the Lotka-Volterra system. Apart from the obviously different origin of perturbations in the
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model, attention was mainly given to systems like (2) for its asymptotic behavior (e.g., [18, 21,
24]), regularity, persistence and extinction of species (e.g., [4, 20, 24, 25]), and the addition of
regimes, jumps or delay (e.g., [2, 19, 31]). Here, we attempt to provide a relevant description of
trajectories (xt, yt) and indirectly Pt, namely a cyclical behavior. This is done using stochastic
Lyapunov techniques for recurrent domains as described in [17, 27]. By conveniently dividing
the domain D, we obtain that almost every trajectory “cycles” around a point in finite time.
The L1-boundedness is out of reach with our method, but numerical simulations are presented
in Section 5, not only to provide expectation of cycles, but also allow to conjecture a limit cycle
phenomenon for the expectation of (xt, yt). It is somewhat unclear how Assumption 1 and late
Assumption 3 on Φ, κ and σ, are relevant in these results. We show below thatthey are sufficient
to obtain existence of regular solutions to (2). This actually emphasizes the role played by the
entropy of the deterministic system in the well-posedness of the stochastic system and as a natural
measure for perturbation.

2 Deterministic orbits

According to Assumption 1, there exists only one non-hyperbolic equilibrium point to (1) in
D given by (x̂, ŷ) := (κ−1(γ),Φ−1(α)). On the boundary of D, there exists also an additional
equilibrium (0, 0) which is eluded along the paper.

Definition 1. Let V1, V2 and V be three functions defined by V : (x, y) ∈ R∗+ × (0, 1) 7→
V1(x) + V2(y) and

V1 : x ∈ R∗+ 7→
∫ x

x̂

κ(x̂)− κ(s)

s
ds , V2 : y ∈ (0, 1) 7→

∫ y

ŷ

Φ(s)− Φ(ŷ)

s
ds .

Lemma 1. Let (x0, y0) ∈ D. Let Assumption 1 hold. Then a solution (xt, yt) to (1) starting
at (x0, y0) at t = 0 describes closed orbits given by the set of points {(x, y) ∈ D : V (x, y) =
V (x0, y0)}, and (xt, yt) ∈ D for all t ≥ 0.

Proof. It is well-known [11] that V is a Lyapunov function and a constant of motion for system (1):
V1 and V2 take non-negative values with V1(x̂) = V2(ŷ) = 0, and dV/dt(x, y) = 0. Additionally,
under Assumption 1.(i)-(ii),

lim
x↑+∞

V1(x) = lim
x↓0+

V1(x) = lim
y↑1−

V2(y) = lim
y↓0+

V2(y) = +∞ , (4)

so that for any (x0, y0) ∈ D, V (x0, y0) < +∞ and the solution stays in D.

The value of V characterizing an orbit, it is in bijection with its period. The following
generalizes [14].

Theorem 1. Let (xt, yt)t≥0 be a solution to (1) satisfying Assumption 1, with (x0, x0) ∈ D\{(x̂, ŷ)}.
Let V0 := V (x0, y0), and x < x̄ the two solutions to equation V1(x) = V0. Define three functions
F1, F2, G by

F1 : u ∈ R 7→ V2(Φ−1(u++α)) , F2 : u ∈ R 7→ V2(Φ−1(−u−+α)) , G : z ∈ R 7→ V0−V1(ez) .

Then (xT , yT ) = (x0, y0) for T defined by

T (V0) :=

∫ log(x̄)

log(x)

1

F−1
1 (G(z))

− 1

F−1
2 (G(z))

dz . (5)
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Proof. Let (x0, y0) ∈ D\{(x̂, ŷ)}, V0 = V (x0, y0) > 0 and (xt, yt) a solution to (1) starting at
(x0, y0). According to Lemma 1, V1(xt) = V0 implies V2(yt) = 0. Then {x ∈ R+ : xt =
x for some t ≥ 0} = [x, x̄] =: I. Homogeneity of (1) allows to set (x0, y0) = (x, ŷ) without loss of
generality. Let T1 := inf{t ≥ 0 : xt = x̄}. For t ∈ [0, T1], (xt, yt) ∈ [x, x̄]× [ŷ, ȳ], with ȳ such that
V2(ȳ) = V0. Let zt := log(xt) for t ≥ 0. Then (1) rewrites dz = (Φ(y)−α)dt, y = Φ−1(dz/dt+α)
and we get

d2z

dt2
= Φ′(y)

dy

dt
= Φ′

(
Φ−1

(
dz

dt
+ α

))
Φ−1

(
dz

dt
+ α

)
[κ(ez)− γ] .

Let u := Φ(y)− α and define Ψ := Φ′ ◦ Φ−1 × Φ−1, to rewrite again{
dz/dt = u
du/dt = Ψ (u+ α) [κ(ez)− γ]

. (6)

Since zt ∈ [z, z̄] := [log(x), log(x̄)] and ut ∈ [0,Φ(ȳ)− α] for t ∈ [0, T1], separation of variables in
(6) provides two quantities F and G:

F (u) :=

∫ u

0

s

Ψ (s+ α)
ds =

∫ z

z
[κ(es)− γ]ds =: G(z) . (7)

The function F verifies F (0) = G(z̄) = 0, is increasing on [0,Φ(ȳ) − α] and decreasing on
[Φ(y)− α, 0] with y < ŷ so that V2(y) = 0. Coming back to y = Φ−1(u+ α) we get

F (u) =

∫ u

0

s

Φ′(Φ−1(s+ α))Φ−1(s+ α)
ds =

∫ Φ−1(u+α)

ŷ

Φ(s)− Φ(ŷ)

s
ds = V2(Φ−1(u+ α)) ,

implying that F (u) ∈ [0, V (x, ŷ)] for u ∈ [Φ(y) + α,Φ(ȳ) + α]. We can write F = F1 + F2 where
F1 and F2 are the two restrictions of F on R+ and R− respectively. Notice that if t ∈ [0, T1],
then ut := Φ(yt) + α ∈ [0,Φ(ȳ + α)]. Thus, F1(ut) is a strictly increasing function of t taking its
values in [0, V (x, ŷ)]. Getting back to x = ez for G, we have for z ≥ z

G(z) :=

∫ x̂∧ez

x

κ(s)− γ
s

ds+

∫ ez

x̂∧ez

κ(s)− γ
s

ds = V0 − V1(ez)

Since sign(κ(x)− γ) = sign(x̂− x) we have maxz∈[z,z̄]G(z) = G(log(x̂)) = V1(x) = V (x, ŷ), while
minimums are given by G(z̄) = G(z) = 0. This sums up with G([z, z̄]) ⊂ [0, V0], so we can write
on this interval F−1

1 (G(z)) = u = dz/dt which finally gives

T1 =

∫ z̄

z

dz

F−1
1 (G(z))

.

We apply the same method for the other half orbit, taking (x0, y0) = (x̄, ŷ) and T2 := inf{t ≥
0 : xt = x}, to reach the other half of expression (5), i.e., T (V0) = T1 + T2.

Remark 1. A first order approximation of (1) at (x̂, ŷ) provides a linear homogeneous system,
which solution is trivially given by a linear combination of sines and cosines of (−x̂Φ′(ŷ)ŷκ′(x̂)t).
It follows that

lim
V0→0

T (V0) =
2π√

−x̂Φ′(ŷ)ŷκ′(x̂)
> 0 .
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3 Stochastic Goodwin model

We study a specific case of (2) where the deterministic part cancels at a unique point in D defined
by (x̃, ỹ) := (κ−1(γ − σ2(ỹ)), ỹ) where ỹ comes from the following.

Assumption 2. There is a unique ỹ ∈ (0, 1) such that Φ(ỹ)− α+ σ2(ỹ) = 0

For a stochastic differential equation to have a unique global solution for any given initial value,
functions Φ and κ are generally required to satisfy linear growth and local Lipschitz conditions, see
[17]. We can however consider the following Theorem of Khasminskii [17], which is a reformulation
of Theorem 3.4, Theorem 3.5 and Corollary 3.1 of [17] to our context.

Theorem 2. Consider the following stochastic differential equation for z taking values in R2
+:

dzt = µ(zt)dt+ σ(zt)dWt . (8)

Let (Dn)n≥1 be an increasing sequence of open sets, and (Kn)n≥1 a sequence of constants, verifying

(a) D̄n ⊂ D for all n ≥ 1,

(b)
⋃
nDn = D.

(c) For any n ≥ 1, functions µ and σ are Lipschitz on Dn and verify |µ(z)|+|σ(z)| ≤ Kn(1+|z|)
for any z ∈ Dn.

Let ϕ ∈ C1,2,2(R+ ×D) and (K, k) ∈ R2
+ be such that, denoting Lz the generator associated with

(8),

(d) Lzϕ(t, zt) ≤ Kϕ(t, zt) + k on the set R+ ×D,

(e) limn infD\Dn ϕ(t, z) = +∞ for any t ≥ 0.

Then for any z ∈ D, there exists a regular adapted solution to (8), unique up to null sets, with
the Markov property and verifying zt ∈ D for all t ≥ 0 almost surely.

To satisfy conditions (a) to (e), we study (2) under the additional sufficient growth conditions.

Assumption 3. There exist two positive constants K, k such that

(i) σ2(y)Φ′(y) ≤ KV2(y) + k for all y ∈ (0, 1),

(ii) −xκ′(x)− κ(x) ≤ KV1(x) + k for all x ∈ R∗+.

Remark 2. Assumption 3.(i) involves both Φ and σ to ensure that yt ∈ (0, 1) for all t ≥ 0
almost surely. Assumption 3.(ii) holds for polynomial growth of κ, suiting the classical conditions
of existence on R+ for xt. The dependence of σ could be generalized to x in full generality,
implying a stronger condition than (ii). We refrain from doing this easy extension, emphasizing
the unavoidable dependence in y.

For ϕ ∈ C1,2,2(R+ ×D), we recall the diffusion operator associated with (2) by

Lϕ(t, x, y) :=
[
∂ϕ
∂t + ∂ϕ

∂xx(Φ(y)− α+ σ2(y)) + ∂ϕ
∂y y(κ(x)− γ + σ2(y))

+σ2(y)
2

(
∂2ϕ
∂x2

x2 + ∂2ϕ
∂y2

y2 + 2 ∂2ϕ
∂x∂yxy

)]
(t, x, y).

(9)

Theorem 3. Let (x0, y0) ∈ D. Let Assumptions 1, 2 and 3 hold. Then there exists a solution
(xt, yt)t≥0 to (2) staying in D almost surely.
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Proof. Let us show that conditions (a) to (e) of Theorem 2 are fulfilled. Consider the sequence
of sets (Dn)n≥1 defined by Dn = (1/(n + 1), n) × (1/(n + 1), 1 − 1/(n + 1)). For any n ≥ 1, Dn

is open and Dn ⊂ Dn+1. (a) and (b) are satisfied with the limit D = R∗+ × (0, 1). According to
Assumption 1, one can always find Kn big enough such that max{|Φ(y) − α|; |κ(x) − γ|} ≤ Kn

for any (x, y) ∈ Dn, and ensures the local Lipschitz condition (c).
Now consider V of Definition 1 which is C1,2,2 on D. Applying (9),

LV (x, y) = [κ(x̂)− κ(x)] (Φ(y)− α+ σ2(y)) + [Φ(y)− Φ(ŷ)] (κ(x)− γ + σ2(y))

+
([
κ(x)− κ(x̂)− xκ′(x)

]
+
[
Φ(ŷ)− Φ(y) + yΦ′(y)

])
σ2(y)/2 .

Since α = Φ(ŷ) and γ = κ(x̂),

LV (x, y) =
([
κ(x̂)− κ(x)− xκ′(x)

]
+
[
Φ(y)− Φ(ŷ) + yΦ′(y)

])
σ2(y)/2 . (10)

Assumption 3 implies LV (x, y) ≤ max(σ2
0/2; 2K)V (x, y) + 2k for two positive constants K, k,

checking condition (d). From Definition 1,

inf
x∈[0,+∞)

V (x, y) = V2(y) + inf
x∈[0,+∞)

V1(x) = V2(y)

which implies that infD\Dn V (x, y) ≥ inf{V2(y) : max{y, 1 − y} ≤ 1/n}, the latter going to
infinity with n, recall (4). Similarly, infy∈(0,1) V (x, y) goes to infinity as x goes to 0 or +∞.
Condition (e) is then satisfied, which allows to apply Theorem 2.

Remark 3. Notice that ỹ < ŷ and thus x̃ > x̂. Following Assumption 1, (10) at (x̃, ỹ) provides
LV (x̃, ỹ) > 0. It is straightforward that (2) has no equilibrium point in D, nor on its boundary
{0} × (0, 1) ∪ R∗+ × {0, 1}. If the point (0, 0) cancels (2), we highlight that LV (0, 0) < 0 and by
continuity, it holds on a small region [0, ε)2. Recalling (4) implies that (xt, yt) will diverge from
(0, 0) almost surely if (x0, y0) ∈ D.

A solution to (2) can be pictured as a trajectory continuously jumping from an orbit of (1) to
another. Along this idea, V provides an estimate on trajectories, and can be related via Theorem
1 to the period T .

Theorem 4. Let (x0, y0) ∈ D, V0 := V (x0, y0), and (xt, yt)t≥0 be a regular solution to (2). We
first introduce a constant 0 ≤ ρ ≤ V0, the set D(V0, ρ) := {(x, y) ∈ D : |V (x, y)− V0| ≤ ρ} ⊂ D
and the stopping time τρ := inf{t > 0 : (xt, yt) /∈ D(V0, ρ)}. We then introduce two finite
constants

R(V0, ρ) := max
D(V0,ρ)

{
σ2(y)

(
κ(x̂)− κ(x)− xκ′(x) + yΦ′(y) + Φ(y)− Φ(ŷ)

)}
and

I(V0, ρ) := max
D(V0,ρ)

{
σ2(y) (κ(x̂)− κ(x) + Φ(y)− Φ(ŷ))2

}
.

Then for all µ > 0

P [τρ > Θ(ρ, µ)] ≥
(

1− I(V0, ρ)

µ2

)
for Θ(ρ, µ) :=

2
(
µ2 + µ

√
µ2 + 2ρR(V0, ρ) + ρR(V0, ρ)

)
(R(V0, ρ)σ)2

.

(11)
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Proof. Fix µ > 0. Now we define the Fτρ-measurable set Aµ =
{
ω ∈ Ω : sup0<t≤τρ

∣∣Mt(ω)
∣∣ ≤ µ}

where (Mt)t≥0 is a martingale defined by Mt = 0 for t = 0 and for t > 0 by

Mt =
1√
t

∫ t

0
σ(ys) (κ(x̂)− κ(xs) + Φ(ys)− Φ(ŷ)) dW (s) .

The process M is not right-continuous at t = 0 but still verifies E
[
M2
t

]
≤ I(V0, ρ) for all 0 <

t ≤ τρ. The property holds by replacing Mt by its càdlàg representation. Doob’s martingale
inequality can then be applied: P [Aµ] ≥ 1 − I(V0, ρ)/µ2. At last, using Itô’s formula, we have
from (10):

|V (xt, yt)− V0| ≤
1

2

∫ t

0
σ2(ys)

∣∣κ(x̂)− κ(xs)− xsκ′(xs) + ysΦ
′(ys) + Φ(ys)− Φ(ŷ)

∣∣ ds
+

∣∣∣∣ ∫ t

0
σ(ys) (κ(x̂)− κ(xs) + Φ(ys)− Φ(ŷ)) dWs

∣∣∣∣
so that on {(t, ω) ∈ R+×Ω : (t, ω) ∈ Aµ× [0, τρ(ω)]} |V (xt, yt)−V0| ≤ 1

2R(V0, ρ)t+µ
√
t =: S(t)

almost surely. Also, |e(t, ω)| ≤ ρ on that set. Put in another way, τρ > S−1(ρ) =: Θ(ρ) on Aµ.
According to Bayes rule,

P [τρ > Θ(ρ)] ≥ P
[
τρ > Θ(ρ)

∣∣Aµ]P [Aµ] ≥ P [Aµ] ≥
(

1− I(V0, ρ)

µ2

)

We now introduce the main result of the paper. We provide the following tailor-made definition
for the cycling behavior of (2).

Definition 2. Let (x∗, y∗) ∈ E ⊆ R2 and (x0, y0) ∈ E\{(x∗, y∗)}. Let (xt, yt) be a stochastic
process starting at (x0, y0) staying in E almost surely. We then introduce (ρt)t≥0 the angle between
[xt − x∗, yt − y∗]> and [x0 − x∗, y0 − y∗]>. Let S := inf{t > 0 : |ρt| ≥ 2π or (xt, yt) = (x∗, y∗)}
be a stopping time (a stochastic period). Then, the process (xt, yt) is said to orbit stochastically
around (x∗, y∗) in E if S < +∞ almost surely.

Theorem 5. Let (x0, y0) ∈ D\{(x̃, ỹ)} and (xt, yt) a solution to (2) starting at (x0, y0). Then
(xt, yt) orbits stochastically around (x̃, ỹ) in D.

More precisely the system (2) produces clockwise orbits inside D. The angle ρt is only defined
if (xt, yt) 6= (x̃, ỹ). This can be ensured by either proving that (xt, yt) 6= (x̃, ỹ) for all t ≥ 0 almost
surely, or by defining S as in Definition 2. See also Remark 4 The proof of Theorem 5 is removed
to Section 4.

4 Proof of Theorem 5

4.1 Preliminary definitions and results

Recall that the probability space is given by (Ω,F ,P) with the filtration generated only by W
is completed with null sets. Our proof, although unwieldy, allows us to describe precisely the
possible trajectories of solutions of (2). it consists in defining subregions (Ri)i of the domain D,
see Definition 4 below illustrated by Fig. 1, and prove that the process exits from them in finite
time by the appropriate frontier. According to Theorem 3 any regular solution of (2) is a Markov
process. We then repeatedly change the initial condition of the system, as equivalent of a time
translation and use Definition 5 herefater. We obtain recurrence properties via Theorem 3.9 in
[17]. Since it is repeatedly used hereafter, we provide here a version suited to our context.
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Theorem 6. Let (xt, yt)t≥0 be a regular solution of (2) in D, starting at (x0, y0) ∈ U , for
some U ⊂ D. Let ϕ(t, x, y) ∈ C1,2,2(R+ × U) verifying ϕ(t, x, y) ≥ 0 for all (t, x, y) ∈ U and
Lϕ(s, x, y) ≤ −ϕ(s) where ϕ(s) ≥ 0 and limt

∫ t
0 ϕ(s)ds = +∞. Then (xt, yt) leaves the region U

in finite time almost surely.

Definition 3. Let f be defined by f : x ∈ R+ 7→ f(x) := Φ−1(α − γ + κ(x)) as a concave
decreasing function. For a solution (xt, yt) to (2), we define θt := yt/xt the finite variation
process verifying dθt = θt (κ(x)− γ + α− Φ(y)) dt = θt (Φ(f(x))− Φ(y)) dt. Additionally, let
θ̃ := ỹ/x̃.

Definition 4. We define eight sets (Ri)i=1,...,8 such that
⋂8
i=1Ri = (ỹ, x̃) and

⋃8
i=1Ri = D, by

R1 := {(x, y) ∈ D : y ≥ ỹ and θt ≤ θ̃}
R2 := {(x, y) ∈ D : f(x) ≤ y ≤ ỹ}
R3 := {(x, y) ∈ D : y ≤ f(x) and x ≥ x̃}
R4 := {(x, y) ∈ D : x ≤ x̃ and θ ≤ θ̃}
R5 := {(x, y) ∈ D : y ≤ ỹ and θt ≥ θ̃}
R6 := {(x, y) ∈ D : ỹ ≤ y ≤ f(x)}
R7 := {(x, y) ∈ D : y ≥ f(x) and xt ≤ x̃}
R8 := {(x, y) ∈ D : y ≥ f(x) and xt ≤ x̃}.

Definition 5. Let (xt, yt) be a solution to (2) starting at (x0, y0) = (x, y) ∈ D. For any i ∈
{1, . . . , 8}, we define the stopping times τi(x, y) := inf{t ≥ 0 : (xt, yt) ∈ Ri}.
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Figure 1: Covering of D := R∗+)× (0, 1) by (Ri)i=1...8. Since f(0) < 1 and limy↑1 Φ(y) = +∞, the
graph illustrates the general case.

Remark 4. It seems rather clear that the point (x̃, ỹ) is not reached in finite time with a positive
probability. In the following, the fact that LV (x, y) > ε for some small ε > 0 in a neighborhood
of (x̃, ỹ) implies that (x̃, ỹ) is not a limit to almost every path of a solution to (2), recall Remark
3.

To ease the reading of the proof of Theorem 5 which follows from the following Propositions
1 to 10, we divide it in four quadrants around (x̃, ỹ). We first prove that the process cycles, even
in infinite time, for some particular starting points.
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Proposition 1. If (x0, y0) ∈ R1, then P [τ8(x0, y0) ≤ τ7(x0, y0)] = 0. If (x0, y0) ∈ R5, then
P [τ4(x0, y0) ≤ τ3(x0, y0)] = 0.

Proof. This is a direct consequence of the absence of Brownian motion in θ. Take (x0, y0) ∈ R1.
Then on [0, τ3(x0, y0)], the process θ is non increasing almost surely, meaning that R8 cannot be
reached without first crossing region R7. The other side is identical.

Remark 5. Proposition 1 holds even if τi = +∞, for any i involved. It also implies that if
(x0, y0) ∈ R1 ∪R5, then τi(x0, y0) ≤ τj(x0, y0) almost surely for j ∈ {mod(i+ 1, 8)}.

4.2 Eastern quadrant

We ought to prove that for (x0, y0) ∈ R1, the process reaches R3 in finite time almost surely.

Proposition 2. If (x0, y0) ∈ R1 then P [τ2(x0, y0) < +∞] = 1.

Proof. Let ϕ : y ∈ [0, 1] 7→ √y. Then ϕ(y) ≥ ϕ(ỹ) > 0 for any y such that (x, y) ∈ R1.
Moreover,

Lϕ(y) =
ϕ(y)

2

(
κ(x)− γ +

3

4
σ2(y)

)
≤ −σ

2(ỹ)ϕ(y)

8
≤ −σ

2(ỹ)h(ỹ)

8
< 0 .

Theorem 6 stipulates that (xt, yt) leaves R1 in finite time almost surely which is only possible via
R2 according to Proposition 1. Reaching the boundary is prevented by Theorem 3.

Proposition 3. If (x0, y0) ∈ R2 ∪R3 then P [τ1(x0, y0) ∧ τ4(x0, y0) < +∞] = 1.

Proof. We follow the proof of Proposition 2 with ϕ : x ∈ R+ 7→
√
x.

Proposition 4. If (x0, y0) ∈ R1 ∪R2 then P [τ3(x0, y0) < +∞] = 1.

Proof. Step 1. Let (υn)n≥0 be a sequence of stopping times defined by υ0 = 0 and

υn := inf{t ≥ υn−1 : yt = ỹ or (xt, yt) ∈ R3}, n ≥ 1.

By construction if (xυn , yυn) ∈ R3 for some n ≥ 1, then υk = υn for all k > n. Following
Propositions 1, 2 and 3, υn < +∞ for all n ≥ 1 almost surely, and {τ3(x, y) = +∞} ⊂

⋂
n≥1{yυn =

ỹ}. We prove in step 2 that this implies

lim
t→∞

θt(ω) = 0, for P− a.e. ω ∈ {τ3(x, y) = +∞} . (12)

Providing that (12) holds we immediately get P [τ3(x0, y0) = +∞] ≤ P [limn xυn = +∞] = 0.
Step 2. If ω ∈ {τ3(x, y) = +∞}, then for all n ≥ 1, yυn = ỹ and according to Proposition

3, (xt, yt) does not converge to the set R2 ∩ R3. Since θt is a positive decreasing process for
(xt, yt) ∈ R1 ∪R2, Doob’s martingale convergence theorem implies that θt converges pathwise in
L∞([0, θ̃)). Assume now that θt does not converge to 0 with t on E ⊂ {τ3(x0, y0) = +∞}. Then
for any ε > 0, and for almost every ω ∈ E

lim
t

∫ t

0
1{κ(xs(ω))−γ+α−Φ(ys(ω))<−ε}ds = Cε(ω) < +∞ . (13)

If the integral (13) explodes to +∞ for some ε > 0 on some non null subset F ⊂ E, then for
almost every ω ∈ F ,

9



L log θt(ω) = (κ(xt(ω))− γ + α− Φ(yt(ω))) < −ε1{κ(xt(ω))−γ+α−Φ(yt(ω))<−ε}

and limt↑∞ log θt(ω) = −∞ for almost every ω ∈ F , implying that θt converges to 0 on F , a
contradiction with F ⊂ E, so that (13) holds on E. We then consider the random time tε,n, being
the first time such that ∫ tε,n

0
1{κ(xs)−γ+α−Φ(ys)<−ε}ds ≥ Cε −

1

n
, (14)

and kn the smallest index such that υkn ≥ tε,n. Note that tε,n is not a F-stopping time and kn is
not F-adapted since they depend on Cε which is F∞-measurable. (14) implies that there exists
a random time sn ∈ (υkn , υkn + 1/n) such that −ε < κ(xsn)− γ + α− Φ(ysn) < 0, otherwise we
would have a contradiction of (13) on a subset of E:∫ υkn+1/n

0
1{κ(xs)−γ+α−Φ(ys)<−ε}ds ≥ Cε .

This implies that limn(sn − υkn)(ω) = 0 for almost every ω ∈ E, and (yt)t≥0 being a continuous
process

lim
n
ysn(ω) = ỹ, for P− a.e. ω ∈ D ⊂ {τ3(x0, y0) = +∞} .

This is impossible for ε > 0 small enough since θt is strictly decreasing and thus E is a null set.
(12) holds.

4.3 Southern quadrant

We show that starting from R2 ∩R3, (xt, yt) reaches R5 in finite time almost surely.

Proposition 5. If (x0, y0) ∈ R2 ∩R3 then P [τ4(x0, y0) < +∞] = 1.

Proof. Step 1. We consider ϕt := ϕ(xt, yt) with ϕ : (x, y) ∈ D\{(x, y)} 7→ (yt − ỹ)/(xt −
x̃), and aim to prove that the process Ft := F (ϕ(xt, yt)) with F : ϕ ∈ (−π/2, π/2) 7→
tan

(
tan−1(ϕ) + tan−1(c)

)
is a supermartingale on R1 ∪ R2 ∪ R3, for c ∈ (0, θ̃−1). Notice that it

is bounded in R1 ∪R2 ∪R3. Applying Itô to ϕ first gives

dϕt =
dyt

xt − x̃
− yt − ỹ

(xt − x̃)2
dxt +

σ2(yt)

(xt − x̃)2

[
yt − ỹ
xt − x̃

x2
t − xtyt

]
dt .

Then, noticing that Ft = (ϕt + c)(1− ϕtc), we obtain

dFt =
1 + c2

(1− ϕtc)2

(
dϕt +

c

1− ϕtc
d 〈ϕ〉t

)
.

It is clear that −(y − ỹ)(Φ(y)− α+ σ2(y)) ≤ 0 for all y ∈ [0, 1). Now notice that for (x, y) ∈ R1,
we have (x− x̃)(κ(x)− γ + σ2(y)) < 0 so that

(x− x̃)4

σ2(y)

(1− ϕc)2

1 + c2
LF ≤ (y − ỹ)(x− x̃)x2 − xy(x− x̃)2 +

1

ỹ/x̃− ϕ
(ỹx− yx̃)2

= (x− x̃)
[
x2(y − ỹ)− xy(x− x̃) + x̃(ỹx− yx̃)

]
= (x− x̃)2xx̃

[
y

x
− ỹ

x̃

]
< 0 .
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Now on R2 ∪R3, x̂ < x̃ implies that (κ(x)− γ) < 0, so that

(x− x̃)4

σ2(y)

(1− ϕc)2

1 + c2
LF ≤ (y − ỹ)(x− x̃)x2 − yx̃(x− x̃)2 +

1

ỹ/x̃− ϕ
(ỹx− yx̃)2

= (x− x̃)
[
x2(y − ỹ)− yx̃(x− x̃) + x̃(ỹx− yx̃)

]
= (x− x̃)2x (y − ỹ) < 0 .

Denoting τ1,4 := τ1(x0, y0) ∧ τ4(x0, y0), we conclude that Ft∧τ1,4 is a supermartingale for t ≥ 0.
Using optional sampling theorem, assisted by Proposition 3, τ1,4 < +∞ almost surely and

F0 ≥ E
[
Fτ1,4

]
=

1

c
P [τ4(x, y) < τ1(x, y)] + cP [τ1(x0, y0) < τ4(x0, y0)]

Since M := max{F (ϕ(x, y)) : (x, y) ∈ R2 ∩R3} < c then

P [τ4(x0, y0) < τ1(x0, y0)] ≥ c(c−M)

c2 + 1
> 0 ∀(x0, y0) ∈ R2 ∩R3 .

Step 2. According to Proposition 3, τ1,4 < +∞ almost surely for any (x0, y0) ∈ R2 ∩ R3, and
according to Proposition 4, τ3(x0, y0) < +∞ P−a.s. for all (x0, y0) ∈ R1. Taking (x0, y0) ∈ R2∩R3,
we define the sequence (τn1,4, τ

n
3 )n≥0 with τ0

3 = 0 and{
τn1,4 := inf{t ≥ τn3 : (xt, yt) ∈ R1 ∪R4}
τn+1

3 := inf{t ≥ τn1,4 : (xt, yt) ∈ (R2 ∩R3) ∪R4}
, for all n ≥ 1 .

We then have {τ4(x0, y0) = +∞} ⊂ ∩n≥1{xτn1,4 > x̃} for any (x0, y0) ∈ R2 ∩ R3. The sequence
({xτn1,4 > x̃})n≥1 is decreasing in the sense of inclusion, so that

P [τ4(x, y) = +∞] = lim
n

P
[
xτn1,4 > x̃

]
. (15)

Using Baye’s rule,

P
[
xτn1,4 > x̃

]
≤

n∏
k=1

P
[
xτk1,4

> x̃|xτk−1
1,4

> x̃
]
≤

n∏
k=1

P
[
xτk1,4

> x̃|xτk3 > x̃
]
.

Using step 1 of the present proof and the Markov property of (xt, yt),

P
[
xτn1,4 > x̃

]
≤

n∏
k=1

P
[
τ1(xτk3

, yτk3
) < τ4(xτk3

, yτk3
)
]
≤

n∏
k=1

(
1− c(c−M)

c2 + 1

)
.

Plugging this inequality into (15) concludes the proof.

Remark 6. Notice that by choosing c properly in the above proof, it is possible to be arbitrarily
close to R5 in finite time. The device is used later in Proposition 9.

Proposition 6. If (x0, y0) ∈ R3 ∩R4 then P [τ5(x0, y0) < +∞] = 1.

Proof. Step 1. We claim that τ2,5 := τ2(x0, y0) ∧ τ5(x0, y0) < +∞ almost surely. Consider the
function ϕ : (x, y) ∈ D 7→ √xt∧υ0 . The process ϕt := ϕ(xt, yt) is a positive supermartingale on
R2 ∪R3 ∪R4:

Lϕ(x, y) =
ϕ(x, y)

2

(
(Φ(y)− α+

σ2(y)

2

)
≤ −σ

2(y)ϕ(x, y)

4
. (16)
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According to Doob’s martingale convergence theorem, ϕt converges point-wise with t. Let ε > 0
and define Rε :=

⋃4
i=2Ri ∩ {x ≥ ε}. Then ϕt ≥

√
ε on Rε, and similarly to Proposition 3, we

use Theorem 6 to assert that (xt, yt) leaves Rε in finite time almost surely. This being true for
any ε > 0, limt ϕt(ω) = 0 for almost every ω ∈ {τ2,5(ω) = +∞}. In R5, this is only possible if
limt yt(ω) = 0 also, implying that limt(xt(ω), yt(ω)) = (0, 0) on this set. This being improbable,
τ2,5 < +∞ almost surely.

Step 2. By denoting τ0
4 = 0, we then define the sequence (τn2,5, τ

n
4 )n≥0 by{

τn4 := inf{t ≥ τn−1
2,5 : xt = x̃ or (xt, yt) ∈ R5}

τn2,5 := inf{t ≥ τn4 : (xt, yt) ∈ R2 ∪R5}
, for all n ≥ 1 .

If (xτ02,5 , yτ02,5) ∈ R2, then, according to Proposition 5, the process reaches back R4 in finite time.

Using step 1, we have that P [τn4 < +∞] = P
[
τn2,5 < +∞

]
= 1. By construction and Proposition

5, for n ≥ 1

{(xτn2,5 , yτn2,5) ∈ R2} ⊂ {xτn4 = x̃} = {(xτn−1
2,5

, yτn−1
2,5

) ∈ R2} = {xτn−1
2,5

> x̃}. (17)

Therefore, {τ5(x0, y0) = +∞} =
⋂
n≥0{(xτn2,5 , yτn2,5) ∈ R2} and the sequence of sets(
{(xτn2,5 , yτn2,5) ∈ R2}

)
n≥0

is decreasing in the sense of inclusion. Altogether we get

P [τ5(x0, y0) = +∞] = lim
n

P
[
xτn2,5 > x̃

]
. (18)

Now using Bayes formula and (17), we finally obtain for every n ≥ 1

P
[
xτn2,5 > x̃

]
≤

n∏
k=1

P
[
xτk2,5

> x̃|xτk−1
2,5

> x̃
]

=
n∏
k=1

P
[
xτk2,5

> x̃|xτk4 = x̃
]

(19)

Putting (18) and (19) together, P [τ5(x0, y0) = +∞] > 0 implies that

lim
n

P
[
xτn2,5 > x̃|xτn4 = x̃

]
= 1 . (20)

Step 3. Let ϕ : (t, x) ∈ R2
+ 7→

√
x exp(1

8σ
2(ỹ)t). According to (16) the process ϕt := ϕ(t, xt)

is a supermartingale on [τn4 , τ
n
2,5]. Fixing t > 0 and applying optional sampling theorem, we obtain

E
[
ϕ(t ∧ τn2,5, xt∧τn2,5)− ϕ(t ∧ τn4 , xt∧τn4 )|xt∧τn4 = x̃

]
≤ 0 .

Since max(τn4 , τ
n
2,5) < +∞ almost surely, we apply Fatou’s lemma and obtain

E

[
exp

(
1

8
σ2(ỹ)[τn2,5 − τn4 ]

)√
xτn2,5

(
1{

xτn2,5
<x̃

} + 1{
xτn2,5

>x̃

}
)∣∣xτn4 = x̃

]
≤
√
x̃ . (21)

Since
√
xτn2,51

{
xτn2,5

<x̃

} ≥ 0 and
√
xτn2,51

{
xτn2,5

>x̃

} ≥ √x̃1{
xτn2,5

>x̃

} for all n ≥ 1, (21) implies

E

[
exp

(
1

8
σ2(ỹ)[τn2,5 − τn4 ]

)
1{

xτn2,5
>x̃

}∣∣xτn4 = x̃

]
≤ 1 ,

leading to
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E
[(

exp

(
1

8
σ2(ỹ)[τn2,5 − τn4 ]

)
− 1

)
1{x(τn2,5)>x̃}

∣∣xτn4 = x̃

]
≤ 1− P

[
xτn2,5 > x̃|xτn4 = x̃

]
. (22)

If xτn4 = x̃ then yτn4 < ỹ and by continuity {τn2,5 > τn4 } ⊃ {xτn4 = x̃}, implying

exp

(
1

8
σ2(ỹ)[τn2,5(ω)− τn4 (ω)]

)
> 1, for P− a.e. ω ∈ {xτn4 = x̃} . (23)

Let’s assume that P [τ5(x0, y0) = +∞] > 0, so that (20) holds. According to (22), we get

0 ≤ E

[(
exp

(
1

8
σ2(ỹ)[τn2,5 − τn4 ]

)
− 1

)
1{

xτn2,5
>x̃

}∣∣xτn4 = x̃

]
→ 0 as n→∞ .

Markov inequality then leads to the following convergence for any ε > 0:

lim
n

P

[(
exp

(
1

8
σ2(ỹ)[τn2,5 − τn4 ]

)
− 1

)
1{

xτn2,5
>x̃

} > ε
∣∣xτn4 = x̃

]
= 0 .

Now Bayes rules with (23) provides

P
[(

exp

(
1

8
σ2(ỹ)[τn2,5 − τn4 ]

)
− 1

)
> ε
∣∣xτn2,5 > x̃, xτn4 = x̃

]
P
[
xτn2,5 > x̃|xτn4 = x̃

]
= P

[
(τn2,5 − τn4 ) > 8 ln(1 + ε)/σ2(ỹ)

∣∣xτn2,5 > x̃, xτn4 = x̃
]
P
[
xτn2,5 > x̃|xτn4 = x̃

]
which leads for any ε > 0 to P

[
(τn2,5 − τn4 ) > ε|xτn2,5 > x̃, xτn4 = x̃

]
→ 0 as n → ∞. From step

2, {τ5(x0, y0) = +∞} =
⋂
n≥0

(
{xτn4 = x̃} ∩ {xτn2,5 > x̃}

)
. Therefore on this set, the continuous

mapping theorem asserts that (x, y) at consecutive stopping times converge in probability. By
continuity, this implies limn yτn4 (ω) = ỹ and limn xτn2,5(ω) = x̃ for P− a.e. ω ∈ {τ5(x0, y0) = +∞}.
By the Markov property of (xt, yt), lim

t→∞
(xt, yt)(ω) = (x̃, ỹ) for almost every ω ∈ {τ5(x0, y0) =

+∞} . We conclude that P [τ5(x0, y0) = +∞] = 0.

4.4 Western Quadrant

Proposition 7. If (x0, y0) ∈ R5 ∪R6 then P [τ7(x0, y0) < +∞] = 1.

Proof. Step 1. Consider Rε := R5 ∪ R6 ∩ {x ≤ x̂ − ε} for arbitrarily fixed ε > 0. Assume that
(x0, y0) ∈ Rε. Denoting ϕt := ϕ(xt, yt) ≥ 0 with ϕ : (x, y) ∈ D 7→ 1/y and recalling Definition
3, Lϕ(x, y) = −ϕ(x, y)(κ(x) − γ) < −(κ(x̂ − ε) − γ)/f(0) < 0 for very (x, y) ∈ Rε. Theorem 6
then states that (xt, yt) exits Rε in finite time almost surely. Since that θ is non-decreasing on
this set, and recalling Theorem 2, it is only possible via R7 and P [τ7(x0, y0) < +∞] = 1. This
holds for any ε > 0.

Step 2. Assume now that (x0, y0) ∈ (R5 ∪ R6)\Rε. According to step 1, {τ7(x0, y0) =
+∞} ⊂ {xt ≥ x̂, ∀t ≥ 0} and thus {τ7(x0, y0) = +∞} ⊂ {θt ≤ f(x̂)/x̂, ∀t ≥ 0}. Because
θt is non decreasing and according to Doob’s martingale convergence theorem, θt converges to
θ0 ∈ L∞([θ̃, f(ω̂)/ω̂]) on {τ7(x0, y0) = +∞}. This implies that (xt, yt) converges with t to R6∩R7

on {τ7(x0, y0) = +∞}. Since σ(y) > σ(f(0)), this convergence is improbable.
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4.5 Northern quadrant

Finally we prove that if (x0, y0) ∈ R7, then the process reaches R1 in finite time almost surely.
One can notice that proofs are very similar to those of Subsections 4.2 and 4.3.

Proposition 8. If (x0, y0) ∈ R6 ∪R7 then P [τ5 ∧ τ8(x0, y0) < +∞] = 1.

Proof. Define the sequence of regions {Bn}n∈N through Bn = R6∪R7∩{y < 1−k/n}∩{x > k/n}
where k > 0 is sufficiently small to have (x0, y0) ∈ B1. Applying Itô to ϕ : (x, y) ∈ D 7→

√
x̂− xt

we find that for all (x, y) ∈ Bn

Lϕ(x, y) = − 1

2ϕ(x, y)

[
x
[
Φ(y)− α+ σ2(y)

]
+

1

4

x2

x̂− x
σ2(y)

]
≤ − x2σ2(y)

8(x̂− x)3/2

≤ − k2σ2(1− k/n)

8
√
n(nx̂− k)3/2

< 0

while Lϕ(x, y) ≤ 0 in R6∪R7. Doob’s supermartingale convergence theorem implies the existence
of the pointwise limit ϕ∞ := limt ϕ(xt∧τ5,8 , yt∧τ5,8) almost surely, where we use the notation
τ5,8 := τ5(x0, y0) ∧ τ8(x0, y0). In addition, Theorem 6 guarantees that every set Bn is exited in
finite time almost surely. Consequently if ω ∈ {τ5,8 = +∞}, we have that either limt xt(ω) = 0
or limt yt(ω) = 1, a contradiction in either way.

Proposition 9. If (x0, y0) ∈ R6 ∩R7 then P [τ8(x0, y0) < +∞] = 1.

Proof. The proof is identical to the one of Proposition 5, with small modifications. Here ϕt :=
ϕ(xt, yt) with ϕ : (x, y) ∈ D\{(x̃, ỹ)} 7→ (y − ỹ)/(x − x̃) and F : (x, y) ∈ D\{(x̃, ỹ)} 7→
tan

(
tan−1(ϕ(x, y)) + tan−1(c)

)
. The process Ft := F (xt, yt) is a supermartingale on R5∪R6∪R7

if we chose c ∈ (0, (θ̃ + M/m)−1) where (m,M) are two positive constants given by m :=
min[x̃,x̂]×[ŷ,ỹ] xx̂σ

2(y) and M := max[x̃,x̂]×[ŷ,ỹ] y(x − x̂) [κ(x)− γ] − x(y − ŷ) [Φ(y)− α] . The jus-

tification is the following. The domain Sc := D\{θ̃ ≤ ϕ(x, y) ≤ 1/c} contains the area of interest
R5∪R6∪R7. Using Proposition 5, we can prove that Ft is a supermartingale on Sc\[x̂, x̃]× [ỹ, ŷ].
On [x̂, x̃]× [ỹ, ŷ],

(x− x̃)2 (1−Rtc)2

1 + c2
LFt ≤ y(x− x̃)[κ(x)− γ]− x(y − ỹ)[Φ(y)− α]

+ σ2(y) [y(x− x̃)− x(y − ỹ) + x̃ (y − x(1/c− x̃+ x̃))]

≤ y(x− x̃)[κ(x)− γ]− x(y − ỹ)[Φ(y)− α]− xx̃σ2(y)(1/c− θ̃)
≤ M −m(1/c− θ̃) ≤ 0 .

We then reproduce step 2 of the proof of Proposition 5, using Propositions 7 and 8 instead of
Propositions 2 and 3.

Proposition 10. If (x0, y0) ∈ R7 ∩R8 then P [τ1(x0, y0) < +∞] = 1.

Proof. We follow Proposition 6 with the minor following modifications.
1 We consider τ1,6 := τ1(x0, y0)∧τ6(x0, y0) the exit time of R7∪R8. The process ϕt := ϕ(xt, yt)

with ϕ : (x, y) ∈ D 7→ x−2
t verifies

Lht = −2ht

(
Φ(yt)− α+

3

2
σ2(yt)

)
< −εht < −εh(θ̃) < 0
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for some ε > 0. Indeed Φ(y)− α+ σ2(y) ≥ 0 and is null only if y = ỹ, whereas σ2(y) = 0 only if
y = 1. Applying Theorem 6 to R7 ∪R8, τ1,6 < +∞ almost surely.

Step 2. If (xτ1,6 , yτ1,6) ∈ R6, then the process reaches R8 in finite time almost surely according
to Proposition 9. We define the sequence (τn1,6, τ

n
8 )n≥0 with τ0

8 := 0 and{
τn1,6 := inf{t ≥ τn8 : (xt, yt) ∈ R6 ∪R1}
τn+1

8 := inf{t > τn1,6 : (xt, yt) ∈ (R7 ∩R8) ∪R1}
, for all n ≥ 0 .

Proceeding as in step 2 Proposition 6, we obtain that P [τ1(x0, y0) = +∞] > 0 implies that

lim
n

P
[
xτn1,6 < x̃|xτn8 = x̃

]
= 1 . (24)

Step 3. Define m := inf{2(Φ(y)−α)+3σ2(y) : y ∈ [ỹ, 1)}, which is strictly positive according
to step 1. Consider the new process ϕt := ϕ(xt, yt) with ϕ : (x, y) ∈ D 7→ exp(−mt)x2

t . It is a
positive submartingale on [0, τ0

1,6], and similarly to step 3 of Proposition 6, we can obtain

x̃2 ≤ E
[
x2
τn1,6

e−m(τn1,6−τn8 )|xτn8 = x̃
]
≤ x̃2E

[
e−m(τn1,6−τn8 )1{

xτn1,6
<x̃

}|xτn8 = x̃

]

+θ̃−2E

[
e−m(τn1,6−τn8 )1{

xτn1,6
≥x̃

}|xτn8 = x̃

]
.

Assuming (24), we have

0 ≤ E

[
(1− e−m(τn1,6−τn8 ))1{

xτn1,6
<x̃

}|xτn8 = x̃

]
≤ (1/λ̃− 1)(1− P

[
xτn1,6 < x̃|xτn8 = x̃

]
)
n−→ 0 .

We then proceed exactly as in step 3 of Proposition 6 to finish the proof.

5 Example

In this section we assume that investment follows Say’s law and Philips curve is provided by
[11, 15].

Assumption 4. We let κ : x ∈ R+ 7→ (1− x)/ν and Φ : y ∈ [0, 1) 7→ Φ(y) := φ1
(1−y)2

+ φ0.

Assumption 1 holds under Assumption 4. The unique non-hyperbolic equlibrium point in

D = R∗+ × (0, 1) is given by (x̂, ŷ) =
(

1− νγ, 1−
√
φ1/(α− φ0)

)
. Functions of Definition 1 are

given by V (x, y) = V1(x) + V2(y) with

V1(x) = 1
ν

(
x− x̂

(
log
(
x
x̂

)
+ 1
))

,

V2(y) = φ1

(
log
(

1−ŷ
1−y

)
+
(

ŷ
1−ŷ

)
log
(
ŷ
y

)
+ 1

y−y2 −
1

ŷ−ŷ2

)
.

(25)

Although period T given by Theorem 1 is not explicit here, numerical computations allow to
approximate it with a linear function of V0, see first part of Fig. 2. Following Remark 1, T does
not converge to 0 with solutions of (1) concentrating to (x̂, ŷ). A local phase portrait with values
of T is provided in second part of Fig. 2.

Assumption 5. Let σ : y ∈ [0, 1] 7→ σ0(1− y) with σ0 > 0.
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Figure 2: Up: values of T as a function of V . Down: Contour lines with values of T in a subset
of D. Parameters set at (α, γ, ν, φ0, φ1) = (0.025, 0.055, 3, 0.040064, 0.000064). Equilibrium point
at (x̂, ŷ) = (0.8350, 0.80).

If we implicitly assume that the perturbation of the average growth rate α of the productivity
is due to the flow of workers coming in and out of the fraction yt employed at time t, Assumption
5 conveniently expresses that this perturbation decreases with the employment rate since higher
employment implies lower perturbation on the constant average rate αt. Other models can of
course be considered.

Assumption 5 together with Assumption 4, and comparing with (25), satisfy Assumption 3.
Indeed for all y ∈ (0, 1),

σ2(y)Φ′(y) =
2σ2

0φ1

(1− y)
≤ 2σ2

0

(
V2(y)− φ1

(
1

1− ŷ

(
ŷ log(ŷ)− 1

ŷ

)
+ log(1− ŷ)

))
(26)

and along with the sub-linearity of the log function,

−κ(x)− xκ′(x) =
2x− 1

ν
≤ 2

1− x̂
(V1(x) + x̂− x̂ log(x̂)) . (27)

In line with Assumptions 1 and 3 the vertical asymptote at y = 1 implies that σ2(y)Φ(y) ≤
K0V2(y) + k0 for some K0, k0 ∈ R2

+. Under Assumption 3 and following (26) and (27), K0 = 0
and k0 = σ2

0(φ1 + φ0).
Assumption 5 also implies that (1 − ỹ)2 is the root of a quadratic polynomial σ2

0(1 − ỹ)4 −
(α+ φ0)(1− ỹ)2 + φ1 = 0 . The latter shall have a unique root in (0, 1) to satisfy Assumption 2.
The following example of condition is sufficient.

Assumption 6. We assume φ1 ≤ (α+ φ0)/2 and σ0 ≤ max{(α+ φ0)/(2
√
φ1), (α+ φ0 − φ1)}.
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We are now able to claim the existence of K, k ∈ R2
+ such that |R(V0, ρ)| ≤ K(V0 + ρ) + k,

where R is defined in Proposition 4. A direct application provides

R(V0, ρ) := max
D(V0,ρ)

{
σ2

0(1− y)2

(
2x− x̂
ν

+
2φ1y

(1− y)3
+

φ1

(1− y)2
− φ1

(1− ŷ)2

)}
.

Using (27), this estimate becomes |R(V0, ρ)| ≤ K(V0 +ρ)+k where K := (2σ2
0)/(1−x̂) and k is an

explicitly calculable constant. Following the same procedure with (26), I(V0, ρ) ≤ K(V0 +ρ)2 +k′

with the same K and k′ 6= k. Now choosing µ = (ρ− (K(V0 + ρ) + k)θ/2)/
√
θ for some θ ≥ 0, so

that Θ(ρ) = θ, Proposition 4 provides

P [τρ > θ] ≥

(
1− (K(V0 + ρ)2 + k′)θ(

1
2(K(V0 + ρ) + k)θ − ρ

)2
)
.

Theorem 5 is a straightly observable phenomenon with simulations, see Fig. 3. Under the
assumptions of this section, the system has been simulated using XPPAUT with a fourth order
Runge-Kutta scheme for the deterministic part, and an Euler scheme for the Brownian part. Fig.
3 illustrates the effect of the volatility level σ0 on trajectories of the system, as for the economic
quantity Pt := atytNt.

Figure 3: Left column : phase diagram (x, y) of subsample paths of trajectories for (2) with
different values of volatility σ0, starting from the green star and stopping at the red start. Right
column: evolution of output Pt over time for the subsample path.

Apart from specific subregions of D as R1 or R5 where Corollary 3.2 in [17] can provide
an estimate for the expectation of the exit time, a bound for the expected period E [S] seems
out of reach. Numerical simulations have nevertheless always provide reasonnable finite periods
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of stochastic orbits of (2). We thus expect that E [S] is finite for a wide range of values of
(x0, y0) ∈ D. Let us start with (x0, y0) ∈ R1∩R8 and reformulate S of Definition 2 as the time the
process crosses the line y = θ̂x for the second time. This is equivalent to take (x0, y0) ∈ R4 ∩R5.
Resorting to numerical methods, we have simulated the system 2000 times for 100 different
starting points in R1 ∩ R8 and recorded the position at the time when this line is crossed the
second time, that is the positions after a full loop. Fig. 4 contains such examination for an array
of values of σ0. The expected time E [S] to complete a full-loop is also illustrated. As observed,
there seems to be a stable attractive fixed point to y0 7→ E [yS ] for sufficiently large values of σ0.
If the starting point is picked too close to (x̂, ŷ), the expected crossing value after one loop is
further away from it. On the other hand, if the one starts extremely far away from (x̂, ŷ), say with
y0 < 0.25, then the expected value after on loop is higher. This implies that after many loops,
the expectation converges, and so does E [S] with the number of loops around (x̃, ỹ). Assuming
that E [S] < +∞ for enough initial points, Theorem 6 can be used with V at points (0, 0) and
(x̃, ỹ) to prove the following conjecture.

Conjecture 1. Consider the function S : y ∈ (0, ỹ) 7→ E [yS ] ∈ (0, ỹ) such that (xt, yt) is a
solution to (2) with (x0, y0) = (y/θ̃, y), and S is the finite stopping time defined by Theorem 5.
Then S has at least one fixed point in (0, ỹ).

Figure 4: Expected values of employment y after one full loop yT (left), and expected elapsed
time T (right). Computation performed in MATLAB, with 2000 simulations for every value single
one of the 100 initial values taken along the line y = θ̂x.
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6 Concluding remarks

This contribution attempts to draw the attention of dynamical system analysis onto macroeco-
nomic models. Before looking into complex models of finance and crises, e.g. [5, 11, 15], we
focus here on a Brownian perturbation added into a non-linear version of the Lotka-Volterra
system used in Economics, the Goodwin model. To begin with, we recall the usual results for
the deterministic planar oscillator: we provide the constant Entropy function and describe the
period of the closed orbits drawned by the system. We then provide sufficient conditions for the
stochastically perturbed system to stay in the meaningful domain D which is a a bounded subset
of R2

+ for the y-component. The entropy function is actually of great use for the last result,
additionally to prior estimates on variations of the system.

We finally prove what seems a fundamental and staightforward property of the system, namely
that a solution (xt, yt) rotates with perturbations around a unique point (x̃, ỹ). The definition of
stochastic orbits provided here conventienly suits the intuition of how the deterministic concept
can be extended. However it has clearly not the ambition to be a definitive concept and further
investigations might confirm its usefulness or its precarity. The proof exploits the concept of
reccurent domains in an intensive manner.

We expect that economists seek interest in (2), as other perturbed macroeconomic systems
(e.g. [16, 23]), for the possibility to adjust the model to observed past data (e.g. [1] and [13, 22])
and find a possible synthetic explanation for perturbations of business cycles (see [7, 12]).
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[1] M. Arató, A famous nonlinear stochastic equation (Lotka-Volterra model with diffusion),
Mathematical and Computer Modelling, 38.7 (2003), 709–726.

[2] A. Bahar and X. Mao, Stochastic delay LotkaVolterra model, Journal of Mathematical
Analysis and Applications, 292.2 (2004), 364–380.

[3] S.M. Bartlett, On theoretical models for competitive and predatory biological systems,
Biometrika, 44.1 (1957), 27–42.

[4] G.Q. Cai and Y. K. Lin. Stochastic analysis of the Lotka-Volterra model for ecosystems,
Physical Review E, 70.4 (2004), 041910.

[5] B. Costa-Lima, M. R. Grasselli, X. S. Wangb and J. Wub, Destabilizing a stable cri-
sis: employment persistence and government intervention in macroeconomics, to appear in
Structural Change and Economic Dynamics, 2014.

[6] M. Desai, B. Henry, A. Mosley and M. Pemberton, A clarification of the Goodwin model of
the growth cycle, Journal of Economic Dynamics and Control, 30.12 (2006), 2661–2670.

[7] C.L. Evans, (1992). Productivity shocks and real business cycles, Journal of Monetary
Economics, 29.2 (1992), 191–208.

[8] P. Flaschel, Some stability properties of Goodwin’s growth cycle a critical elaboration, Journal
of Economics, 44.1 (1984), 63–69.

19
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