Model selection for the l2-SVM by following the regularization path
Rémi Bonidal, Samy Tindel, Yann Guermeur

To cite this version:
Rémi Bonidal, Samy Tindel, Yann Guermeur. Model selection for the l2-SVM by following the regularization path. Transactions on Computational Collective Intelligence, 2013, 13, pp.83-112. <hal-00849720>

HAL Id: hal-00849720
https://hal.archives-ouvertes.fr/hal-00849720
Submitted on 31 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Model Selection for the ℓ_2-SVM by Following the Regularization Path

Rémi Bonidal
LORIA-UHP
Campus Scientifique, BP 239
54506 Vandœuvre-lès-Nancy Cedex, France
(e-mail: remi.bonidal@loria.fr)

Samy Tindel
IECN
Campus Scientifique, BP 239
54506 Vandœuvre-lès-Nancy Cedex, France
(e-mail: tindel@iecn.u-nancy.fr)

Yann Guermeur
LORIA-CNRS
Campus Scientifique, BP 239
54506 Vandœuvre-lès-Nancy Cedex, France
(e-mail: yann.guermeur@loria.fr)

September 7, 2012
Running Title: Model selection for the ℓ₂-SVM

Keywords: ℓ₂-SVM, model selection, regularization path, leave-one-out cross-validation error

Abstract

For a support vector machine, model selection consists in selecting the kernel function, the values of its parameters, and the amount of regularization. To set the value of the regularization parameter, one can minimize an appropriate objective function over the regularization path. A priori, this requires the availability of two elements: the objective function and an algorithm computing the regularization path at a reduced cost. The literature provides us with several upper bounds and estimates for the leave-one-out cross-validation error of the ℓ₂-SVM. However, no algorithm was available so far for fitting the entire regularization path of this machine. In this article, we introduce the first algorithm of this kind. It is involved in the specification of new methods to tune the corresponding penalization coefficient, whose objective function is a leave-one-out error bound or estimate. From a computational point of view, these methods appear especially appropriate when the Gram matrix is of low rank. A comparative study involving state-of-the-art alternatives provides us with an empirical confirmation of this advantage.

1 Introduction

During the last decade, Vapnik’s main model of soft margin pattern recognition support vector machine (SVM) [12], hereafter referred to as the ℓ₁-SVM, has become one of the most popular methods to compute dichotomies. Several variants exist, such as the ℓ₂-SVM [12] and the least squares SVM (LS-SVM) [29], which have also been the subject of extensive studies. Two main reasons can be put forward to explain this success. On the first hand, these machines perform well in practice. On the other hand, their implementation is, at least in principle, very simple. These advantages are tempered by the fact that in spite of important efforts performed over the years [9, 13, 14, 20], model selection for SVMs remains an open problem. Generally speaking, model selection raises two main issues. The first one regards the criterion used to evaluate the quality of a model. The second one is the search for the model optimizing this criterion.

During the last decade, a great many methods have been proposed to estimate the generalization performance of the SVMs. As usual, the solution of reference is the V-fold cross-validation [27, 5], with its extremal variant, the leave-one-out one, providing
an almost unbiased estimator of the generalization error \cite{24}. Since computing the leave-one-out cross-validation error can be practically intractable, one usually resorts to upper bounds or estimates. This is known to provide good results in practice (see for instance \cite{9}). Among the bounds, the radius-margin one \cite{30} provides a good compromise between efficiency and computational complexity \cite{9,10}. It applies to the hard margin machine, and, by extension, to the ℓ_2-SVM. The span bound \cite{9} is tighter, but at the expense of a higher running time complexity.

In the same way as a great many criteria are available for model selection, the options to optimize them can be multiple. A solution that is always available is the most naive (and most expensive) one: a grid search over the parameter space. Since some criteria are differentiable, such as the radius-margin bound and the leave-one-out test error prediction using differentiable spans (named \textit{span prediction with regularization} in \cite{9}), methods based on a gradient descent have also been developed \cite{9,10}. Usually, these local methods provide satisfactory results at a low cost, but they can also get stuck in plateaus of the objective function, or converge to suboptimal minima (when the objective function is not convex). A good illustration of this phenomenon is provided in \cite{10}. In \cite{21}, the first algorithm for computing all the solutions of an ℓ_1-SVM along its regularization path was proposed. Experimental results show that its computational complexity is only slightly superior to that of a single training of the corresponding machine. Furthermore, its use makes it possible to find a global minimum of the selected criterion.

Given the positive judgment passed by the literature on the radius-margin bound, it appears interesting to derive an algorithm fitting the entire regularization path of the ℓ_2-SVM, and use it to perform a comparative study of different criteria (radius-margin bound, test error predictions) available to tune the value of the corresponding penalization coefficient. This is the subject of this paper. This algorithm is based on a continuation technique \cite{1} that makes use of an active set method \cite{16}.

The organization of the paper is as follows. Section \ref{sec:algorithm} introduces our algorithm performing the exploration of the regularization path for the ℓ_2-SVM. Section \ref{sec:bounds} details upper bounds on the generalization error of this machine, as well as estimates of this quantity. It addresses the integration of their computation in the framework of the regularization path algorithm. Section \ref{sec:experiments} presents experimental results on both synthetic and real data sets. The path following algorithm is first assessed alone, in terms of fitness and speed. It is then reassessed for model selection, in the framework of a comparative study with a gradient based method. At last, we draw conclusions and outline our ongoing research in
2 Regularization Path for the ℓ_2-SVM

We are interested in binary discrimination. Each object is represented by its description $x \in \mathcal{X}$ and the set \mathcal{Y} of the categories y can be identified with the set $\{-1, 1\}$. The assignment of the descriptions to the categories is performed by means of a classifier, i.e., a real-valued function on \mathcal{X}. For such a function g, the corresponding decision rule f is defined as follows:

$$
\forall x \in \mathcal{X}, \quad \begin{cases}
 g(x) < 0 & \iff f(x) = -1 \\
 g(x) = 0 & \iff f(x) = * \\
 g(x) > 0 & \iff f(x) = 1
\end{cases},
$$

where $*$ denotes a dummy category introduced to deal with the cases of ex æquo. Thus, the example $(x, y) \in \mathcal{X} \times \mathcal{Y}$ is correctly classified by g if and only if $yg(x) > 0$. In the sequel, the family of classifiers of interest is the class \mathcal{H} of the functions implemented by an SVM. Let κ be a real-valued positive type function [3] on \mathcal{X}^2 and let $(\mathcal{H}_\kappa, \langle \cdot, \cdot \rangle_\kappa)$ be the corresponding reproducing kernel Hilbert space (RKHS) [2, 3]. Let $\{1\}$ be the one-dimensional space of real-valued constant functions on \mathcal{X}. Then, the formula giving \mathcal{H} is

$$
\mathcal{H} = (\mathcal{H}_\kappa, \langle \cdot, \cdot \rangle_\kappa) + \{1\}.
$$

The reproducing property allows us to write the functions of \mathcal{H} as affine functions on \mathcal{H}_κ, i.e.,

$$
\forall h \in \mathcal{H}, \forall x \in \mathcal{X}, \quad h(x) = \bar{h}(x) + b = \langle \bar{h}, \kappa_x \rangle + b,
$$

where $\bar{h} \in \mathcal{H}_\kappa, \kappa_x = \kappa(x, \cdot) \in \mathcal{H}_\kappa$, and $b \in \mathbb{R}$. \mathcal{H}_κ is thus one of the possible feature spaces, associated with the feature map given by

$$
\Phi : \mathcal{X} \rightarrow \mathcal{H}_\kappa,
\quad x \mapsto \kappa_x.
$$

To keep this article self-contained, the ℓ_2-SVM is now briefly introduced. Then, following the structure of [21], the three constitutive elements of our regularization path algorithm are detailed:

- computation of the Lagrange multipliers,
• identification of the breakpoints (transitions between regimes),
• initialization.

The main difference in the way they combine is that the identification of the breakpoints makes use, in an iterative manner, of the computation of Lagrange multipliers. Thus these elements combine themselves in a continuation method similar to the algorithm introduced in [26]. The section concludes with the flowchart of the algorithm and an analysis of its implementation.

2.1 Learning Problem of the ℓ_2-SVM

The ℓ_2-SVM is the variant of the standard bi-class SVM obtained by replacing the ℓ_1 norm of the vector of slack variables ξ with the square of the ℓ_2 norm of the same vector in the objective function of the primal formulation of the learning problem. A direct consequence is the fact that it is no longer necessary to consider explicitly the constraints of nonnegativity of the slack variables. Thus, given a training set $d_m = \{(x_i, y_i) : 1 \leq i \leq m\}$, the primal formulation of the learning problem corresponds to the following convex quadratic programming (QP) problem.

Problem 1 (Learning problem of the ℓ_2-SVM, primal formulation)

$$\min_{h, \xi} \left\{ \|\xi\|_2^2 + \frac{\lambda}{2} \|\bar{h}\|_\kappa^2 \right\}$$

s.t. $\forall i \in [1, m], \ y_i h(x_i) \geq 1 - \xi_i$.

Let $y = (y_i)_{1 \leq i \leq m} \in \{-1, 1\}^m$ be the vector of the labels of the training examples. For n in \mathbb{N}^*, let $\mathcal{M}_{n,n}(\mathbb{R})$ be the algebra of $n \times n$ matrices over \mathbb{R}. Let $H \in \mathcal{M}_{m,m}(\mathbb{R})$ be the matrix of general term:

$$\forall (i, j) \in [1, m]^2, \ h_{i,j} = y_i y_j \kappa(x_i, x_j).$$

For $\lambda \in \mathbb{R}^*_+$, let $H(\lambda) = (h_{i,j}(\lambda))_{1 \leq i,j \leq m} \in \mathcal{M}_{m,m}(\mathbb{R})$ be the matrix deduced from H by replacing the kernel κ with the kernel κ_λ given by:

$$\forall (i, j) \in [1, m]^2, \ \kappa_\lambda(x_i, x_j) = \kappa(x_i, x_j) + \frac{\lambda}{2} \delta_{i,j},$$

where δ is the Kronecker symbol. Let $\beta = (\beta_i)_{1 \leq i \leq m} \in \mathbb{R}_m^+$ be the vector of the Lagrange multipliers associated with the constraints of good classification and $\alpha = \frac{1}{\lambda} \beta$. Then, the
Problem 2 (Learning problem of the ℓ_2-SVM, dual formulation)

$$
\text{max } \alpha \left\{ -\frac{1}{2} \alpha^T H(\lambda) \alpha + 1^T m \alpha \right\}
$$

s.t.

$$
\begin{cases}
\forall i \in [1, m], \ \alpha_i \geq 0 \\
y_i^T \alpha = 0
\end{cases}
$$

Problem 2 is also the Wolfe dual formulation of the learning problem of a hard margin SVM using κ_λ as kernel. This property is important since it implies that results holding for the hard margin machine also hold for the ℓ_2-SVM. As pointed out in the introduction, among these results is the radius-margin bound. For a given value of λ, let $(h_\lambda, \xi(\lambda)) = (\tilde{h}_\lambda, b_\lambda, \xi(\lambda))$ be the optimal solution of Problem 1 and $\alpha(\lambda) = (\alpha_i(\lambda))_{1 \leq i \leq m}$ the optimal solution of Problem 2. Noticeable equations obtained when deriving Problem 2 (applying the Lagrangian duality) are:

$$
\xi(\lambda) = \frac{\lambda}{2} \alpha(\lambda)
$$

and

$$
h_\lambda = \sum_{i=1}^{m} \alpha_i(\lambda) y_i \kappa(x_i) + \alpha_0(\lambda),
$$

with $\alpha_0(\lambda) = b_\lambda$. A direct consequence of (2) and the definition of the matrix H is that

$$
\forall i \in [1, m], \ y_i h_\lambda(x_i) = H_i \alpha(\lambda) + y_i \alpha_0(\lambda)
$$

where H_i, stands for the row of index i of H ($H_{,j}$ would stand for its column of index j). Let \tilde{h}_λ be the function computed by the hard margin machine associated with Problem 2. Then,

$$
\forall i \in [1, m], \ \tilde{h}_\lambda(x_i) = \sum_{j=1}^{m} \left\{ \alpha_j(\lambda) y_j \kappa(x_j, x_i) + \frac{\lambda}{2} \alpha_j(\lambda) y_j \delta_{i,j} \right\} + \alpha_0(\lambda)
$$

$$
= h_\lambda(x_i) + \frac{\lambda}{2} \alpha_i(\lambda) y_i.
$$

2.2 Partitioning the Training Set

To follow the path of interest, taking our inspiration from the algorithm introduced in [21], we focus on the study of the way the values of the positive Lagrange multipliers vary as a
function of λ, while the set of null multipliers remains unchanged. This requires to identify both sets. The Kuhn-Tucker (KT) optimality conditions provide us with such information. The KT complementary conditions corresponding to the two machines are given by:

$$
\forall i \in [1, m], \quad \alpha_i (\lambda) [y_i h_\lambda (x_i) - 1 + \xi_i (\lambda)] = \alpha_i (\lambda) \left[y_i \tilde{h}_\lambda (x_i) - 1 \right] = 0 .
$$

(5)

It springs from (1) and (5) that for each example, there are three possibilities:

- $y_i h_\lambda (x_i) < 1$: the example is inside the margin or misclassified, so $\xi_i (\lambda) > 0$ and $\alpha_i (\lambda) > 0$,
- $y_i h_\lambda (x_i) = 1$: the example is on the margin, and $\alpha_i (\lambda) = 0$,
- $y_i h_\lambda (x_i) > 1$: the example is correctly classified and outside the margin, $\alpha_i (\lambda) = 0$.

To sum up, $\alpha_i (\lambda) > 0$ if and only if $y_i h_\lambda (x_i) < 1$. This leads to the following partition of $[1, m]$

$$
E (\lambda) = \{ i \in [1, m] : y_i h_\lambda (x_i) < 1 \}
$$

$$
I (\lambda) = \{ i \in [1, m] : y_i h_\lambda (x_i) \geq 1 \} .
$$

This partition is reminiscent of active set methods (see for instance Section 10.3 of [16]), since $i \in I (\lambda)$ if and only if the constraint $\alpha_i \geq 0$ is active at the optimum of Problem 2.

More precisely, solving Problem 2 under the assumption that the partition associated with the optimum is known amounts to performing the last step of an active set method. It is well known that each of these steps corresponds to solving a linear system. We now exhibit the linear system of interest, which calls for the introduction of additional notation. For ease of notation, in the sequel, we use E (respectively I) in place of $E (\lambda)$ (respectively $I (\lambda)$) when no confusion is possible. The cardinalities of these sets are respectively denoted by m_E and m_I. The examples are reordered in such a way that the first of them are those belonging to E. This enables us to introduce compact notations with obvious meaning:

$$
y = (y_i)_{1 \leq i \leq m} = \left(y_E^T \quad y_I^T \right)^T ,
$$

$$
\alpha (\lambda) = \left(\alpha_i (\lambda) \right)_{1 \leq i \leq m} = \left(\alpha_E (\lambda)^T \quad \alpha_I (\lambda)^T \right)^T ,
$$

$$
d_{E(\lambda)} = \{(x_i, y_i) : i \in E(\lambda)\} ,
$$
and

\[H = \begin{pmatrix} H_{\mathcal{E},\mathcal{E}} & H_{\mathcal{E},\mathcal{I}} \\ H_{\mathcal{I},\mathcal{E}} & H_{\mathcal{I},\mathcal{I}} \end{pmatrix}, \]

where the submatrix \(H_{K,L} \) with \((K, L) \in \{\mathcal{E}, \mathcal{I}\}^2\) is the matrix \((h_{i,j})_{i \in K, j \in L} = (y_i y_j \kappa(x_i, x_j))_{i \in K, j \in L}\). The matrix \(H(\lambda) \) is split in the same way as \(H \).

2.3 Analytical Expression of the Lagrange Multipliers

To derive this expression simply, we make use of the following implication, which is a consequence of (5) and (1):

\[i \in \mathcal{E} \implies y_i \hat{h}_\lambda(x_i) = 1. \]

In other words, we work with the hard margin machine. According to our notation, the equality constraint of Problem \(\mathcal{P} \) and the KT conditions associated with the examples in \(d_\mathcal{E} \) become:

\[
\begin{cases}
y_\mathcal{E}^T \alpha_\mathcal{E} (\lambda) + y_\mathcal{I}^T \alpha_\mathcal{I} (\lambda) = 0 \\
H_{\mathcal{E},\mathcal{E}} (\lambda) \alpha_\mathcal{E} (\lambda) + H_{\mathcal{E},\mathcal{I}} (\lambda) \alpha_\mathcal{I} (\lambda) + \alpha_0 (\lambda) y_\mathcal{E} = 1_{m_\mathcal{E}} \end{cases}
\]

Due to the fact that \(\alpha_\mathcal{I}(\lambda) = 0 \), these equations simplify into

\[
\begin{cases}
y_\mathcal{E}^T \alpha_\mathcal{E} (\lambda) = 0 \\
H_{\mathcal{E},\mathcal{E}} (\lambda) \alpha_\mathcal{E} (\lambda) + \alpha_0 (\lambda) y_\mathcal{E} = 1_{m_\mathcal{E}} \end{cases}
\]

(6)

By noting

\[
A_\mathcal{E} (\lambda) = \begin{pmatrix} 0 & y_\mathcal{E}^T \\ y_\mathcal{E} & H_{\mathcal{E},\mathcal{E}} (\lambda) \end{pmatrix} = \begin{pmatrix} 0 & y_\mathcal{E}^T \\ y_\mathcal{E} & H_{\mathcal{E},\mathcal{E}} + \frac{\lambda}{2} I_{m_\mathcal{E}} \end{pmatrix},
\]

\[
C_\mathcal{E} = \begin{pmatrix} 0 & 1^T \\ m_\mathcal{E} & \end{pmatrix},
\]

and

\[
\alpha_\mathcal{E}^a (\lambda) = \begin{pmatrix} \alpha_0(\lambda) & \alpha_\mathcal{E}(\lambda)^T \end{pmatrix},
\]

we obtain the following proposition.

Proposition 1 For all \(\lambda \in \mathbb{R}_+^* \), the vector \(\alpha_\mathcal{E}^a (\lambda) \) is a solution of the linear system:

\[
A_\mathcal{E} (\lambda) \alpha_\mathcal{E}^a (\lambda) = C_\mathcal{E}.
\]

(7)
This formulation also appears equivalent to the one derived in Appendix 2.B. of [8]. Once E is known, training the ℓ_2-SVM boils down to solving (7). The main difference with the corresponding formula obtained for the ℓ_1-SVM (see for instance Section 4 in [21]) rests in the dependency of the matrix of the linear system on λ. This implies that the Lagrange multipliers do not vary linearly as a function of λ anymore. We now discuss the connection of the linear system of Proposition 1 with the learning problem of an LS-SVM. The interest of this discussion is twofold. First, it will be at the basis of the method proposed to compute the Lagrange multipliers. Second, it will highlight a link between the leave-one-out cross-validation error of the LS-SVM and the leave-one-out test error prediction of the ℓ_2-SVM defined in [31]. The (primal) objective function of the LS-SVM is the same as the one of Problem 1. The difference between the two learning problems rests in the fact that for the LS-SVM, the constraints of correct classification are equality constraints (with the consequence that the slack variables are not constrained in sign).

Problem 3 (Learning problem of the LS-SVM, primal formulation)

$$\min_{h,\xi} \left\{ \frac{1}{2} \|\xi\|_2^2 + \frac{\lambda}{2} \|\bar{h}\|_\infty^2 \right\}$$

s.t. $\forall i \in [1, m], \ y_i h(x_i) = 1 - \xi_i$.

Suykens and Vandewalle have shown that solving Problem 3 is equivalent to solving the following linear system (Equation 20 in [29]):

$$\begin{pmatrix} 0 & y^T \\ y & H + \frac{\lambda}{2} I_m \end{pmatrix} \begin{pmatrix} \alpha_0(\lambda) \\ \alpha(\lambda) \end{pmatrix} = \begin{pmatrix} 0 \\ 1_m \end{pmatrix}.$$

Thus, solving (7) can alternatively be seen as training an LS-SVM on $d_{\xi(\lambda)}$. This allows us to state the following proposition.

Proposition 2 Training an ℓ_2-SVM on d_m reduces itself to training an LS-SVM on $d_{\xi(\lambda)}$ once the set $E(\lambda)$ is known.

We now address the practical resolution of the linear system.

2.4 Practical Computation of the Lagrange Multipliers

Our path-following strategy for setting the value of the regularization coefficient involves multiple solutions of the linear system (7), for different values of λ. This calls for a dedicated
algorithm. In this section, we first reformulate (7) using a standard technique, and then make use of this reformulation to derive an algorithm solving it for a reduced computational cost in the regularization path framework.

2.4.1 Stand-Alone Solution for a Given Value of λ

We take our inspiration from the approach of [28], which uses a classical trick in active set method algorithms. We first note that since $H_{\mathcal{E},\mathcal{E}}$ is symmetric positive semi-definite, $H_{\mathcal{E},\mathcal{E}}(\lambda)$ is symmetric positive definite (SPD) and thus invertible. We want to reformulate (7) so as to make $H_{\mathcal{E},\mathcal{E}}(\lambda)^{-1}$ appear. It springs from (6) that:

$$\alpha_{\mathcal{E}}(\lambda) = H_{\mathcal{E},\mathcal{E}}(\lambda)^{-1}(1_{m_{\mathcal{E}}} - \alpha_0(\lambda)y_{\mathcal{E}}).$$ \(8\)

By substitution in the equality constraint of Problem 2, we have:

$$y_{\mathcal{E}}^T H_{\mathcal{E},\mathcal{E}}(\lambda)^{-1} 1_{m_{\mathcal{E}}} = \alpha_0(\lambda)y_{\mathcal{E}}^T H_{\mathcal{E},\mathcal{E}}(\lambda)^{-1} y_{\mathcal{E}}.\tag{9}$$

Still following [28], in order to get compact expressions for $\alpha_0(\lambda)$ and $\alpha_{\mathcal{E}}(\lambda)$, we introduce two vectors of $\mathbb{R}^{m_{\mathcal{E}}}$, ν and ρ, such that

$$\begin{cases} H_{\mathcal{E},\mathcal{E}}(\lambda) \nu = y_{\mathcal{E}} \\ H_{\mathcal{E},\mathcal{E}}(\lambda) \rho = 1_{m_{\mathcal{E}}} \end{cases} \tag{10}$$

By substitution into (8) and (9) we get

$$\begin{cases} \alpha_{\mathcal{E}}(\lambda) = \rho - \alpha_0(\lambda) \nu \\ y_{\mathcal{E}}^T \rho = \alpha_0(\lambda)y_{\mathcal{E}}^T \nu \end{cases}.$$

Thus, the expressions of $\alpha_0(\lambda)$ and $\alpha_{\mathcal{E}}(\lambda)$ as a function of ν and ρ are:

$$\begin{cases} \alpha_0(\lambda) = \frac{y_{\mathcal{E}}^T \rho}{y_{\mathcal{E}}^T \nu} \\ \alpha_{\mathcal{E}}(\lambda) = \rho - \alpha_0(\lambda) \nu \end{cases} \tag{11}$$

All in all, solving (7) for a given value of λ boils down to computing the corresponding values of ν and ρ. Since matrix $H_{\mathcal{E},\mathcal{E}}(\lambda)$ is SPD, this can be done by applying a Cholesky decomposition, such as the Gaxpy Cholesky one (see for instance [19]), whose complexity
is $\frac{1}{3}m^3_\varepsilon$. However, significant improvements can result from the global handling of the sequence of systems \ref{10} (parameterized by λ) that are actually to be solved all along the path. We now describe a reduced-cost algorithm of this kind.

2.4.2 Computation of a Series of Solutions

Our method makes central use of a proposition that states that if the matrix H can be approximated by a matrix of low rank (independent of m), then the complexity of solving the system \ref{10} grows linearly with m_ε. Thus, we first introduce a low-rank approximation of H and then use it for calculating the Lagrange multipliers. In order to avoid numerical difficulties, we introduce a small positive constant: ε. It is supposed to be large enough so that $H(\varepsilon)$ is “numerically SPD” (with “not too small” eigenvalues). To derive an approximate solution of \ref{10} for $\lambda_0 > \varepsilon$ such that $E(\lambda_0)$ is known, we use a low-rank approximation of $H_{E(\lambda_0),E(\lambda_0)}(\varepsilon)$, approximation which can be directly deduced from a low-rank approximation of $H(\varepsilon)$. The approximation of $H(\varepsilon)$ (and thus H) we consider is a matrix $H_r(\varepsilon)$ satisfying

$$H_r(\varepsilon) = R_r R_r^T$$

with $R_r \in \mathcal{M}_{m,r}(\mathbb{R})$. Note that this factorization can actually rest on the fact that $H(\varepsilon)$ is SPD. Let us reorder the training examples and decompose the corresponding matrix R_r according to the principle introduced in Section 2.2. Thus, $R_r = \begin{pmatrix} R_{E(\lambda_0)} \\ R_{I(\lambda_0)} \end{pmatrix}$, with $R_{E(\lambda_0)} \in \mathcal{M}_{m_\varepsilon(\lambda_0),r}(\mathbb{R})$ and $R_{I(\lambda_0)} \in \mathcal{M}_{m_I(\lambda_0),r}(\mathbb{R})$, and we get

$$H_r(\varepsilon) = \begin{pmatrix} H_{E(\lambda_0),E(\lambda_0)}(\varepsilon) & H_{E(\lambda_0),I(\lambda_0),r}(\varepsilon) \\ H_{I(\lambda_0),E(\lambda_0)}(\varepsilon) & H_{I(\lambda_0),I(\lambda_0),r}(\varepsilon) \end{pmatrix} = \begin{pmatrix} R_{E(\lambda_0)} R_{E(\lambda_0)}^T \\ R_{I(\lambda_0)} R_{I(\lambda_0)}^T \end{pmatrix} \begin{pmatrix} R_{E(\lambda_0)} R_{E(\lambda_0)}^T \\ R_{I(\lambda_0)} R_{I(\lambda_0)}^T \end{pmatrix}.$$

By construction,

$$H_{E(\lambda_0),E(\lambda_0)}(\lambda_0) = H_{E(\lambda_0),E(\lambda_0)}(\varepsilon) + \frac{\lambda_0 - \varepsilon}{2} I_{m_\varepsilon(\lambda_0)},$$

thus, $H_{E(\lambda_0),E(\lambda_0)}(\lambda_0)$ can be approximated by

$$H_{E(\lambda_0),E(\lambda_0),r}(\lambda_0, \varepsilon) = H_{E(\lambda_0),E(\lambda_0),r}(\varepsilon) + \frac{\lambda_0 - \varepsilon}{2} I_{m_\varepsilon(\lambda_0)}.$$
The point of that approximation is that in the end, we work with a matrix, $R_{E(\lambda_0)}$, which can be directly derived from the initial matrix R_r, i.e., from one single low-rank approximation of $H(\varepsilon)$. The fact that $H_{E(\lambda_0),E(\lambda_0),r}(\varepsilon)$ is not the matrix we would have obtained by approximating directly $H_{E(\lambda_0),E(\lambda_0)}(\varepsilon)$ raises no difficulty. Furthermore, this matrix is regular.

Proposition 3 Let us consider the system of linear equations

$$H_{E(\lambda_0),E(\lambda_0),r}(\lambda_0,\varepsilon) \mathbf{v} = \mathbf{z},$$

with $H_{E(\lambda_0),E(\lambda_0),r}(\lambda_0,\varepsilon) \in \mathcal{M}_{m_{E(\lambda_0)},m_{E(\lambda_0)}}(\mathbb{R})$ being the sum of a rank r matrix and a scaled identity matrix. The computational complexity of solving this system is linear in $m_{E(\lambda_0)}$.

Proof

By applying the Sherman-Morrison-Woodbury identity (see for instance [19]), we obtain:

$$
\left(H_{E(\lambda_0),E(\lambda_0),r}(\varepsilon) + \frac{\lambda_0 - \varepsilon}{2} I_{m_{E(\lambda_0)}} \right)^{-1} = \left(R_{E(\lambda_0)} R_{E(\lambda_0)}^T + \frac{\lambda_0 - \varepsilon}{2} I_{m_{E(\lambda_0)}} \right)^{-1}
\approx \frac{2}{\lambda_0 - \varepsilon} I_{m_{E(\lambda_0)}} - \frac{4}{(\lambda_0 - \varepsilon)^2} R_{E(\lambda_0)} \left(I_r + \frac{2}{\lambda_0 - \varepsilon} R_{E(\lambda_0)}^T R_{E(\lambda_0)} \right)^{-1} R_{E(\lambda_0)}^T
\approx \frac{2}{\lambda_0 - \varepsilon} I_{m_{E(\lambda_0)}} - \frac{4}{(\lambda_0 - \varepsilon)^2} R_{E(\lambda_0)} T(\lambda_0)^{-1} R_{E(\lambda_0)}^T
$$

with

$$T(\lambda_0) = I_r + \frac{2}{\lambda_0 - \varepsilon} R_{E(\lambda_0)}^T R_{E(\lambda_0)}.$$

Solving the system of interest boils down to solving a system involving the matrix $T(\lambda_0)$, of size r, and performing a series of matrix-vector calculations from the right to the left. Once $T(\lambda_0)$ is obtained in $O(m_{E(\lambda_0)} r^2)$, the system of size r is solved by a Cholesky decomposition in only $\frac{1}{3} r^3$ operations (see the preceding section). Since the matrix multiplications involve matrices of size lower than $(m_{E(\lambda_0)}, r)$, their complexity does not exceed $O(m_{E(\lambda_0)} r^2)$. Summing the two complexities provides the overall complexity in $O(m_{E(\lambda_0)} r^2 + r^3)$. This concludes the proof.

To derive an approximate solution of (10) for $\lambda = \lambda_0$, the matrix $H_{E(\lambda_0),E(\lambda_0)}(\lambda_0)$ is replaced with $H_{E(\lambda_0),E(\lambda_0),r}(\varepsilon) + \frac{\lambda_0 - \varepsilon}{2} I_{m_{E(\lambda_0)}}$. The corresponding values of ν and ρ are thus obtained by solving a system involving $T(\lambda_0)$. In order to obtain triangular sys-
tems for both equations, a Cholesky decomposition of this matrix is performed so that

\[T(\lambda_0) = L_{E(\lambda_0)}^T L_{E(\lambda_0)}. \]

Thanks to Proposition 3, the complexity of computing \(\nu \) and \(\rho \) reduces from \(O(m_3^2) \) to \(O(m_3 r^2 + r^3) \), hence the linear complexity in \(m_3 \) announced at the beginning of the section. This establishes the advantage of our algorithm computing globally approximate solutions for all the systems \((10)\) of interest compared to solving independently these systems. By abuse of notation, we keep using \(\alpha_{E}(\lambda_0) = \begin{pmatrix} \alpha_0(\lambda_0) & \alpha_E(\lambda_0)^T \end{pmatrix} \) to designate the resulting approximate solution of \((7)\) (for \(\lambda = \lambda_0 \)). Details regarding complexity and the consequences of the approximation are given in Section 2.7. This approach assumes that \(E(\lambda_0) \) is known. The following section presents our method for updating the set \(E \).

2.5 Detecting Changes in the Partition of the Training Set

Let \((\lambda^i)_{i \in \mathbb{N}} \) be the strictly decreasing sequence of values of the regularization coefficient associated with changes in the sets \(E \) and \(I \). These events can be directly inferred from the definitions of the sets. Indeed, if the sequence is known up to its term of index \(l \), finding \(\lambda^{l+1} \) boils down to identifying the largest value \(\lambda \) in the interval \((0, \lambda^l)\) for which there is a new index \(i \in [1, m] \) such that \(y_i h_\lambda(x_i) = 1 \). Given \((3)\), this corresponds to solving for \(\lambda \) the set of equations indexed by \(i \):

\[H_{i,E(\lambda^i)} \alpha_{E(\lambda^i)}(\lambda) + y_ia_0(\lambda) = 1. \]

(12)

Implemented in a straightforward way, this method to detect the changes is numerically intractable for large values of \(m_3 \), and we will see in Section 2.6 that the extreme case \(E(\lambda) = [1, m] \) is met in practice. Fortunately, the system \((11)\) provides us with an analytical expression of the dual variables that can be used to apply a crude first order approximation, which corresponds to taking a Newton step. To this end, we define

\[\forall i \in [1, m], \; \lambda^{i+1} = \lambda^i - \frac{1}{\partial (1 - y_i h_\lambda(x_i))} \frac{\partial}{\partial \lambda} \frac{1 - y_i h_\lambda(x_i)}{y_i} \frac{\partial h_\lambda(x_i)}{\partial \lambda} \cdot \]

Thanks to \((3)\), the expression of \(\frac{\partial h_\lambda(x_i)}{\partial \lambda} \) is easily obtained once \(\frac{\partial a_0(\lambda)}{\partial \lambda} \) and \(\frac{\partial a_E(\lambda)}{\partial \lambda} \) are known. After some algebra, these quantities are derived from \((10)\):

\[
\begin{aligned}
\frac{\partial a_0(\lambda)}{\partial \lambda} &= -\frac{1}{2} \nu^T \rho y_0^T \nu - \nu^T \rho y_0^T \nu \\
\frac{\partial a_E(\lambda)}{\partial \lambda} &= -\frac{1}{2} H_{E,E}(\lambda)^{-1} \alpha_E(\lambda) - \frac{\partial a_0(\lambda)}{\partial \lambda} \nu
\end{aligned}
\]

(13)
If the λ_{i+1} were the roots of the equations (12), then the expression of λ_{i+1} would be simply

$$\lambda_{i+1} = \max_{\{i: \lambda_{i+1} < \lambda_i\}} \lambda_i.$$

However, the use of an approximation calls for another formula, to prevent the algorithm from performing either empty steps or too big steps. We found the following rule of thumb to be especially efficient: λ_{i+1} is chosen so that 2% of the indices of $E(\lambda_i)$ satisfy $\lambda_{i+1} < \lambda_{i+1} < \lambda_i$. Due to the possible flatness of the function, the approximation may still provide inappropriate solutions. In order to overcome this problem, when λ_{i+1} should be chosen smaller than $\frac{1}{2}\lambda_i$, it is chosen equal to $\frac{1}{2}\lambda_i$. Our experiments have shown that this flatness problem only occurs when λ is very large. The prediction of the partition at λ_{i+1} is based on the sign of the first order approximation of $1 - y_i h(\lambda_i)$. A priori, due to the nonlinear behavior of the Lagrange multipliers, this prediction must be corrected. The exact partition is obtained thanks to the approach implemented by the active set methods. For a given partition, the values of the Lagrange multipliers are computed, and the consistency of the result is checked. In case of inconsistency, a new partition is inferred from the values of the Lagrange multipliers and so on. Since the predicted partition is close to the optimal one, this correcting step is not too expensive. In the experiments presented below, except in the vicinity of the end of the path, convergence was reached after a single update.

2.6 Starting Point of the Path

In order to define a starting point for the path, we take benefit of the specificities of Problem 2 when λ goes to infinity. Asymptotically, $H(\lambda)$ is equivalent to $\frac{1}{2}I_m$, so that the contribution of the training examples to the learning problem is restricted to the constraint $y^T \alpha = 0$. The learning problem is “equivalent” to

Problem 4 (Problem equivalent to Problem 2 when λ goes to infinity)

$$\max_{\alpha} \left\{ -\frac{\lambda}{4} \alpha^T \alpha + 1^T m \alpha \right\}$$

$$\text{s.t.} \quad \begin{cases}
\forall i \in [1, m], \; \alpha_i \geq 0 \\
y^T \alpha = 0
\end{cases}.$$
In [10] (Appendix C), the authors pointed out that the solution of Problem 4 is given by:

\[\forall i \in [1, m], \begin{cases}
\alpha_i(\lambda) = \frac{4m_-}{m\lambda} & \text{if } y_i = 1 \\
\alpha_i(\lambda) = \frac{4m_+}{m\lambda} & \text{otherwise}
\end{cases} \] (14)

where \(m_+ \) is the cardinality of the subset of the training set made up of the examples whose label is 1 and \(m_- = m - m_+ \). With the values of the Lagrange multipliers at hand, it suffices to compute the limit \(b_\infty \) of \(b_\lambda \) as \(\lambda \) goes to infinity to characterize the asymptotic behavior of the classifier. To that end, we make use of the fact that since all the Lagrange multipliers are asymptotically positive, the KT complementary conditions (5) imply that for all \(i \in [1, m] \), \(y_i \tilde{h}_\lambda(x_i) \) goes to 1. Then, the combination of (4) and (14) gives

\[b_\infty = \frac{m_+ - m_-}{m}. \]

A direct consequence of this last formula is that if \(m_+ \neq m_- \), the limit classifier used in test always returns the category of highest cardinality. Contrary to the case of the \(\ell_1 \) norm, there is no value \(\lambda_\infty \) such that above this value the Lagrange multipliers are constant. All what is known is the asymptotic behavior of the Lagrange multipliers, which is not sufficient to define a starting point in a way similar to that of [21]. However, this knowledge remains useful to derive two criteria: one to check whether a given value is large enough to be the initial value for \(\lambda \) (hereafter noted \(\lambda^1 \)), and one to start computing the model selection criterion.

2.7 Overview of the Algorithm and Complexity Analysis

Figure 1 presents the integration of the constitutive elements of the path-following algorithm.

There are basically five distinct components:

- the low-rank approximation of \(H(\varepsilon) \),
- the computation of Lagrange multipliers,
- the outer loop that generates the sequence \((\lambda^1)\),
- the inner loop which updates \(E \) (for the current value of \(\lambda \)),
- a post-processing for returning the classifier.
We now discuss the complexity of the key parts of the algorithm and some choices regarding their implementation.

2.7.1 Low-Rank Hessian Approximation

The following discussion regards the derivation of $H_r(\varepsilon)$ and the consequences of the approximation. Among all the different algorithms available for matrix factorization are the Incomplete Cholesky Factorization (ICF) proposed in [15], the eigenvalue decomposition truncated to select only the largest eigenvalues, and the density-weighted Nyström method proposed in [32]. Their complexities are respectively in $O(mr^2)$, $O(m^3)$, and $O(l^3 + lm)$ with l the number of landmarks (l can be viewed as a guess of an upper bound on r). Given the results of the comparative study presented in [33], we decided to use Nyström methods. Note that the use of an eigenvalue decomposition (and thus a Nyström decomposition) in our method corresponds to performing a kernel-PCA prior to training a linear SVM with the selected features.

If the RKHS spanned by κ is of finite dimension, the choice of l is straightforward since the value of r is the minimum between this dimension and the number of examples. Otherwise, one cannot expect the matrices $H(\varepsilon)$ and $H_r(\varepsilon)$ to be equal, so that the choice for the value of r is harder. It is of major importance as it directly affects the capacity of
the class of functions (see [4]). The two main options consist in using a pre-specified fixed rank and selecting every eigenvalue above a given threshold. The fixed-rank method can be connected with the training of a classifier with reduced complexity (see [22]). The use of a threshold on the eigenvalues allows to control the precision of the solution, due to the very nature of the underlying criterion (the spectral norm). For the kernel ridge regression, Proposition 1 of [11] gives an upper bound on the difference of the functions calculated with and without the approximation. When the model is linear (and not affine) in the feature space, this proposition applies to the LS-SVM and thus the ℓ_2-SVM. Such a result allows to gain some insight in the impact of the approximations of the matrix $H(\varepsilon)$ and the regularization coefficient on the classifier. An additional advantage of this technique is that it ensures that $H_r(\varepsilon)$ is SPD. Thus, we selected the approximation using all the eigenvalues above a given threshold.

It must be borne in mind that using an approximation of $H(\varepsilon)$ does not leave the learning problem unchanged. It induces a change of kernel (all the smaller as the approximation is more accurate). Furthermore, making use of the analytical expression of the new kernel κ_r is intractable in practice (see the analytical expression of its eigenfunctions in [17]). This raises difficulties which are addressed in Section 2.7.3.

2.7.2 Complexity Analysis of the Outer Loop

As seen in Section 2.5, the computation of λ^{l+1} and the prediction of the corresponding set \mathcal{E} is based on the computation of the derivative of $\alpha^2_\mathcal{E}$ with respect to λ. This derivative, given by (13), is obtained by solving a linear system involving the matrix $H_{\mathcal{E},\mathcal{E}}(\lambda^l)^{-1}$ already handled when computing the values of the dual variables (10). More precisely, the computation of the derivative benefits from the availability of the Cholesky decomposition of $T(\lambda^l)$. As a consequence, it only takes one forward and one back substitution with several additional matrix multiplications, for a global complexity of $2m_{\mathcal{E}(\lambda)}r + 2r^2 + 4m_{\mathcal{E}(\lambda)}$ operations. Computing the values of all the λ^{l+1}_i takes $4mr + m$ operations. The overall complexity of the computation of λ^{l+1} is then in $O(mr + r^2)$.

The complexity for deriving the approximate solution of (10) at λ^{l+1} is in $O\left(m_{\mathcal{E}(\lambda^{l+1})}r + r^3\right)$ once $R_{\mathcal{E}(\lambda^{l+1})}^TR_{\mathcal{E}(\lambda^{l+1})}$ is known. The naive computation of the product $R_{\mathcal{E}(\lambda^{l+1})}^TR_{\mathcal{E}(\lambda^{l+1})}$ requires $m_{\mathcal{E}(\lambda^{l+1})}r^2$ operations making it one of the most expensive steps of the algorithm. In practice, taking benefit of the fact that \mathcal{E} changes slowly, we compute an update of the matrix $R_{\mathcal{E}(\lambda^{l+1})}^TR_{\mathcal{E}(\lambda^l)}$ which only takes $2r^2 \Delta \mathcal{E}(\lambda^{l+1}, \lambda^l)$ operations with $\Delta \mathcal{E}(\lambda^{l+1}, \lambda^l) = \left| m_{\mathcal{E}(\lambda^{l+1})} - m_{\mathcal{E}(\lambda^l)} \right|$ the cardinality difference of the two consecutive sets.
Given the rule of thumb used to choose λ^{l+1} (see Section 2.5), $\Delta E(\lambda^{l+1}, \lambda^l)$ can be expected to be close to 2% of $m_E(\lambda^l)$.

2.7.3 Expansion of h_λ in Terms of κ

As stated in Section 2.7.1, the classifier produced by the algorithm is built on the kernel κ_r (whose computation requires $O(mr)$ computations of the value of the kernel κ). In order to obtain a classifier \hat{h}_λ which can be efficiently used in test, we propose to switch back from κ_r to κ by taking our inspiration from [4]. Given a subset J of $[1, m]$, this amounts to finding a vector of coefficients $\gamma(\lambda) \in \mathbb{R}^{|J|}$ so that

$$\hat{h}_\lambda = \sum_{i \in J} \gamma_i(\lambda) y_i \kappa_{x_i} + \alpha_0(\lambda)$$

and \hat{h}_λ is identical to the classifier built on κ_r on the training set, i.e.,

$$\left(y_i \left[\hat{h}_\lambda(x_i) - \alpha_0(\lambda)\right]\right)_{1 \leq i \leq m} = \left(y_i \sum_{j=1}^{m_E(\lambda)} \alpha_j(\lambda) y_j \kappa_r(x_j, x_i)\right)_{1 \leq i \leq m}.$$

This last equation can be reformulated algebraically as follows:

$$H_{., J}(\varepsilon) \gamma(\lambda) = R_r R_I^T E(\lambda) \alpha(\lambda).$$

In the case of an infinite dimensional feature space, we suggest to choose the set J equal to $E(\lambda)$ to preserve the sparsity of the initial SVM. Then, deriving $\gamma(\lambda)$ requires $O\left(m_E^3(\lambda)\right)$ operations. When the dimension of the feature space is r, we can set $m_J = r$ (due to the linear independence of only r rows of H), thus obtaining $\gamma(\lambda)$ in $O\left(r^3\right)$ operations. This result proves to be of particular interest when using polynomial kernels of low degree since it implies that the time needed to evaluate \hat{h}_λ on a test example depends on r instead of $m_E(\lambda)$.

3 Model Selection

In this section, we present the criteria of model selection used for our experiments. As pointed out in the introduction, a candidate of choice is the radius-margin bound which is thus presented first. Then, the leave-one-out test error prediction based on the span bound is detailed. We show that this estimate can be obtained as a by-product of the
computations of our algorithm fitting the regularization path. This leads us to propose a global model selection procedure integrating this criterion in the regularization path algorithm.

3.1 Radius-Margin Bound

In [30], Vapnik has derived a bound on the leave-one-out cross-validation error of a hard margin SVM.

Theorem 1 (After Sections 10.3 and 10.4 in [30]) Let us consider a hard margin SVM trained on d_m. Let $\gamma = \|\bar{h}\|^{-1}_\kappa$ be its margin and R the radius of the smallest ball of \mathbb{H}_κ enclosing the set $\{\Phi(x_i) : 1 \leq i \leq m\}$. Then,

$$\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\{y_ih^i(x_i) \leq 0\}} \leq \frac{4}{m} \frac{R^2}{\gamma^2},$$

where $\mathbb{1}$ is the standard indicator function and h^i is the function computed by the SVM trained on $d_m \setminus \{(x_i, y_i)\}$.

It must be borne in mind that applying this bound to the ℓ_2-SVM requires to consider the appropriate feature space, i.e., the RKHS induced by κ_λ, which depends on λ. As a consequence, the radius must be computed again for each value of λ considered. This amounts to solving an additional series of QP problems.

3.2 Leave-One-Out Test Error Prediction Based on the Span Bound

The span bound is an exact bound on the leave-one-out cross-validation error of the ℓ_1-SVM introduced by Vapnik and Chapelle in [31]. It is based on the concept of span of support vectors. We detail here the (leave-one-out) test error prediction derived from the span bound using the hypothesis that the set of support vectors remains the same during the leave-one-out cross-validation procedure. The notation uses explicitly λ to remind that this result holds for both the soft and the hard margin SVM (corresponding to $\lambda \rightarrow 0$).

Theorem 2 (Theorem 3 in [31]) Let us consider an ℓ_1-SVM trained on d_m. Under the hypothesis that the set of support vectors remains the same during the leave-one-out cross-validation procedure, the following equality holds

$$\forall i \in [1, m], \ y_i (h_\lambda(x_i) - h^i_\lambda(x_i)) = a_i(\lambda) S_i(\lambda)^2$$
with $S_i(\lambda)$ the distance between $\Phi(x_i)$ and the set $\Lambda_i(\lambda)$ defined by

$$\Lambda_i(\lambda) = \left\{ \sum_{j: \alpha_j(\lambda) \in (0, \lambda^{-1}) \land j \neq i} \tau_j \Phi(x_j), \sum_{j: \alpha_j(\lambda) \in (0, \lambda^{-1}) \land j \neq i} \tau_j = 1 \right\}.$$

The definition of $\Lambda_i(\lambda)$ is slightly different from the one given in [31] but is identical under the hypothesis of invariance of the support vectors.

Corollary 1 (Corollary 1 in [31]) Under the hypotheses of Theorem 2,

$$\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}_{\{y_i h_i(x_i) \leq 0\}} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}_{\{\alpha_i(\lambda) S_i(\lambda)^2 - y_i h_i(x_i) \geq 0\}},$$

(15)

where the right-hand side of (15) is the aforementioned test error prediction.

When implemented in a naive way, the computation of the test error prediction has a complexity of the same order as the leave-one-out (cross-validation) procedure. We now focus on the case of interest in the framework of this study (following the regularization path), the one of the hard margin machine. It is specifically addressed in [9]. In that framework, (15) simplifies into

$$\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}_{\{y_i h_i(x_i) \leq 0\}} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}_{\{\alpha_i S_i^2 - 1 \geq 0\}}.$$

The authors provide a practical result for obtaining the values of the spans S_i based on the following algebraic reformulation:

$$\forall i \in [1, m], \quad S_i^2 = \min_{\tau} \max_{\mu} \left(\Phi(x_i) - \sum_{j: \alpha_j > 0 \land j \neq i} \tau_j \Phi(x_j) \right)^2 + 2\mu \left(\sum_{j: \alpha_j > 0 \land j \neq i} \tau_j - 1 \right)$$

with μ the Lagrange multiplier associated with the constraint $\sum \tau_i = 1$. Let K be the Gram matrix and \bar{K} the matrix given by:

$$\bar{K} = \begin{pmatrix} K_{E \bar{E}} & 1_{mE} \\ 1_{mE} & 0 \end{pmatrix}$$
with E being the set of indices of the support vectors. By setting $\bar{\tau} = (\tau^T, \mu)^T$, the previous min-max problem can be formulated as:

$$S_p^2 = \min_{\tau} \max_{\mu} \left\{ \kappa(x_p, x_p) - 2v^T\bar{\tau} + \bar{\tau}^TV\bar{\tau} \right\}$$

with V the submatrix of \bar{K} obtained by removing the row and column of index p and v the p^{th} column of \bar{K} minus its p^{th} component. The existence of V^{-1} in the general case is not discussed here, as only the case of a full rank Gram matrix will be of our concern. From the optimal value of $\bar{\tau}$ being equal to $V^{-1}v$, Equation 12 of [9] gives the value of S_p:

$$S_p^2 = \kappa(x_p, x_p) - v^TV^{-1}v = 1/(\bar{K})_{p,p}^{-1}.$$

The last step comes from the block inversion formula. Thus the most expensive part of the computation of the leave-one-out test error prediction is the inversion of \bar{K}. As this result is only valid for the hard margin machine, in order to apply it to the ℓ_2-SVM, it is required to make use of its hard margin formulation. This imply constructing K from the kernel κ_{λ}.

3.3 Integration in the Regularization Path Algorithm

This section proposes an efficient implementation of the leave-one-out test error prediction in the framework of the regularization path when the Hessian matrix is of low rank. First we demonstrate a proposition inspired by the method proposed by Cawley et al. in [6] for computing the exact leave-one-out (cross-validation) error for the LS-SVM as a by-product of its training. Then from this proposition we present a means to calculate the leave-one-out test error prediction using the low rank property of $H_{r}(\varepsilon)$ and thus scaling linearly with m_{E}.

Proposition 4 The number of errors associated to the leave-one-out test error prediction of the ℓ_2-SVM is equal to that of the leave-one-out cross-validation procedure of the LS-SVM trained on d_{E} which is

$$\sum_{i \in E} \mathbb{I}\{y_i h_{\lambda}^i(x_i) \leq 0\} = \sum_{i \in E} \mathbb{I}\left\{ \frac{\alpha_i}{\|A_{E}^{-1}\|_{1,i}} - 1 \geq 0 \right\}.$$

(16)
Proof Let $\alpha_0^i(\lambda)$, $\alpha^i(\lambda)$ and \tilde{h}_i^λ be respectively the bias, the vector of Lagrange multipliers and the function calculated by the LS-SVM trained on $\mathcal{E} \setminus \{(x_i, y_i)\}$ with the kernel κ_{λ}. It will be shown latter in this proof that $\tilde{h}_i^\lambda(x_i)$ is equal to $h_i^\lambda(x_i)$ and thus is the quantity of interest for the leave-one-out procedure.

Cawley et al. have shown in [6] that $\tilde{h}_i^\lambda(x_i)$ can be deduced from quantities involved in the expression of the LS-SVM trained on the whole set d_m. Their demonstration involves the Gram matrix and will be performed here with the Hessian matrix so that it fits in the current framework.

As this computation makes extensive use of (7), let us recall it:

$$
\begin{pmatrix}
0 & y_T^\mathcal{E} \\
y^\mathcal{E} & H_{\mathcal{E}, \mathcal{E}} + \frac{\lambda}{2} I_{m_\mathcal{E}}
\end{pmatrix}
\begin{pmatrix}
\alpha_0(\lambda) \\
\alpha^\mathcal{E}(\lambda)
\end{pmatrix} =
\begin{pmatrix}
0 \\
1_{m_\mathcal{E}}
\end{pmatrix}.
$$

For ease of notation, let the coefficients of $A^\mathcal{E}(\lambda)$ range from 0 to $m_\mathcal{E}$ so that the index of column matches the index of $\alpha^\mathcal{E}(\lambda)$:

$$A^\mathcal{E}(\lambda) = (a_{i,j})_{0 \leq i,j \leq m_\mathcal{E}}.$$

From this matrix, we define:

- $A^i \in \mathcal{M}_{m_\mathcal{E}, m_\mathcal{E}}(\mathbb{R})$ the matrix $A^\mathcal{E}(\lambda)$ with the row and the column of index i removed,
- $a_i \in \mathbb{R}^{m_\mathcal{E}}$ the column of index i with its coefficient of index i removed,
- $a_{i,i} \in \mathbb{R}$ the coefficient of index (i, i).

With these notations at hand, the row of index i ($i \in [1, m_\mathcal{E}]$) of system (7), corresponding to the Kuhn-Tucker optimality condition for the example i, can be rewritten as

$$a_i^T (\alpha_0(\lambda)\alpha_{\mathcal{E}\setminus\{i\}}(\lambda)^T) = 1 - a_{i,i}\alpha_i(\lambda)$$

while the other rows are

$$(A^i a_i) (\alpha_0(\lambda)\alpha_{\mathcal{E}\setminus\{i\}}(\lambda)^T\alpha_i(\lambda)) = (0 1_{m_\mathcal{E} - 1}^T)^T.$$

This decomposition of $A^\mathcal{E}(\lambda)$ allows to express the learning problem of the LS-SVM trained on $\mathcal{E} \setminus \{i\}$ in terms of A^i:

$$A_i \begin{pmatrix}
\alpha_0^i(\lambda) \\
\alpha^i(\lambda)
\end{pmatrix} = \begin{pmatrix}
0 \\
1_{m_\mathcal{E} - 1}
\end{pmatrix}.$$
From the definition of a_i we have $y_i \tilde{h}_\lambda(x_i) = H_i,\epsilon(x_i) + y_i \alpha^0_\epsilon(\lambda) = a_i^T (a_\epsilon^0(\lambda) \alpha_\epsilon^0(\lambda)^T)^T$.

By substituting (19) in this expression:

$$y_i \tilde{h}_\lambda(x_i) = a_i^T (A_i^{-1} (0 1^T_{m_\epsilon - 1}))^T.$$

Equations (17) and (18) allow to simplify this formula to express $y_i \tilde{h}_\lambda(x_i)$ as a function of $\alpha_i(\lambda)$:

$$y_i \tilde{h}_\lambda(x_i) = a_i^T (A_i^{-1} (A_i a_i \alpha_\epsilon^0(\lambda) \alpha_\epsilon^0(\lambda)^T)^T + \alpha_i(\lambda) a_i^T (A_i^{-1} a_i)$$

$$= 1 - \alpha_i(\lambda) a_{i,i} + \alpha_i(\lambda) a_i^T (A_i^{-1} a_i)$$

$$= 1 - \alpha_i(\lambda) \left(a_{i,i} - a_i^T (A_i^{-1} a_i)\right)$$

$$= 1 - \frac{\alpha_i(\lambda)}{(A_{\epsilon}(\lambda)^{-1})_{i,i}} .$$

(20)

The last line comes from the application of the block inversion formula. As previously mentioned, the outputs of the hard margin classifier and the soft margin classifier for the example i are equal:

$$\tilde{h}_\lambda(x_i) = \sum_{j \neq i} \left(\alpha_j(\lambda) y_j \kappa(x_i, x_j) + \delta_{i,j} \frac{\lambda}{2}\right) + \alpha_0(\lambda)$$

$$= \sum_{j \neq i} \alpha_j(\lambda) y_j \kappa(x_i, x_j) + \alpha_0(\lambda)$$

$$= h_\lambda^0(x_i) .$$

(21)

Combining Equations (20) and (21) gives the number of misclassified examples of d_ϵ for the LS-SVM trained on d_ϵ. As only the examples of d_ϵ are of interest, the number of errors of (15) and (16) are exactly the same, which concludes the proof.

This proposition is twofold as it ensures good model selection properties due to the well established leave-one-out test error prediction based on the spans and it allows to compute it efficiently. As previously seen, the matrix $A_{\epsilon}(\lambda)$ plays a central role for model selection.
The block inversion formula gives the elements of the diagonal of the inverse of $A_{\varepsilon}(\lambda)$:

$$A_{\varepsilon}(\lambda)^{-1} = \begin{pmatrix} s^{-1} & -s^{-1} y_{\varepsilon}^T H_{\varepsilon,\varepsilon}(\lambda)^{-1} \\ -H_{\varepsilon,\varepsilon}(\lambda)^{-1} y_{\varepsilon} s^{-1} & H_{\varepsilon,\varepsilon}(\lambda)^{-1} + H_{\varepsilon,\varepsilon}(\lambda)^{-1} y_{\varepsilon} s^{-1} y_{\varepsilon}^T H_{\varepsilon,\varepsilon}(\lambda)^{-1} \end{pmatrix}$$

with $s = -y_{\varepsilon}^T H_{\varepsilon,\varepsilon}(\lambda)^{-1} y_{\varepsilon} = -y_{\varepsilon}^T \nu$.

For $i \in \left[1, m_{\varepsilon} \right]$, the elements of the diagonal are:

$$A_{\varepsilon}(\lambda)^{-1}_{i,i} = (H_{\varepsilon,\varepsilon}(\lambda)^{-1})_{i,i} + \frac{1}{s} \nu_i^2 .$$

(23)

Combining (23) and (24), and using the fact that ν and L_{ε} are already precomputed, allows to obtain a complexity in only $O(m_{\varepsilon} r^2)$ operations for calculating the leave-one-out test error prediction. When r is small compared to m, this complexity is inferior to that of the QP problem solved to derive the radius.

The integration of the model selection in the regularization path algorithm results in the algorithm presented in Figure 2. The main differences are the computation of the leave-one-out test error prediction and the expansion of the optimal (according to the test error prediction) classifier on κ.

23
4 Experimental Results

We now present results from various numerical simulations. First a comparison of the solution obtained by our path-following algorithm and a state-of-the-art algorithm is performed. Then we illustrate the good behavior of the leave-one-out test error prediction. The central experiment is the comparison of our model selection procedure with another state-of-the-art method on several data sets. We conclude with a comparison of the computation time of our model selection procedure and a dedicated large scale training algorithm.

4.1 Setup

All Hessian matrix approximations involve a Nyström decomposition method. When the training set is smaller than 4000 examples, a density-weighted Nyström method is used, otherwise, a uniform sampling method is applied. Each data set is standardized.

Table 1 shows some statistics about the data sets. Most of them are from the Rätsch database http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark. The Spam
The data set is taken from the UCI repository while ijcnn1 and a9a are taken from Lin’s homepage (http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/). The artificial data set will be detailed later.

<table>
<thead>
<tr>
<th>Data set</th>
<th>#features</th>
<th>#training</th>
<th>#test</th>
<th>#realizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>banana</td>
<td>2</td>
<td>400</td>
<td>4900</td>
<td>100</td>
</tr>
<tr>
<td>breast cancer</td>
<td>9</td>
<td>200</td>
<td>77</td>
<td>100</td>
</tr>
<tr>
<td>diabetis</td>
<td>8</td>
<td>468</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>flaresolar</td>
<td>9</td>
<td>666</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>german</td>
<td>20</td>
<td>700</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>heart</td>
<td>13</td>
<td>170</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>image</td>
<td>18</td>
<td>1300</td>
<td>1010</td>
<td>20</td>
</tr>
<tr>
<td>ringnorm</td>
<td>20</td>
<td>400</td>
<td>7000</td>
<td>20</td>
</tr>
<tr>
<td>splice</td>
<td>60</td>
<td>1000</td>
<td>2175</td>
<td>20</td>
</tr>
<tr>
<td>tyroid</td>
<td>5</td>
<td>140</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>titanic</td>
<td>3</td>
<td>150</td>
<td>2051</td>
<td>100</td>
</tr>
<tr>
<td>twonorm</td>
<td>20</td>
<td>400</td>
<td>7000</td>
<td>100</td>
</tr>
<tr>
<td>waveform</td>
<td>21</td>
<td>400</td>
<td>4600</td>
<td>100</td>
</tr>
<tr>
<td>Spam</td>
<td>57</td>
<td>3601</td>
<td>1000</td>
<td>30</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>22</td>
<td>49900</td>
<td>91701</td>
<td>1</td>
</tr>
<tr>
<td>a9a</td>
<td>123</td>
<td>32561</td>
<td>16281</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Statistics about the data sets. #realizations corresponds to the number of realizations of training sets and test sets for each data set.

Unless specified otherwise, a Gaussian kernel with bandwidth σ is used. To avoid numerical instabilities, ε was set equal to 10^{-8}. The regularization coefficient ranges from 10^{-6} to 10^7. The leave-one-out test error prediction is evaluated for each λ^i. All the computational times include the approximation of $H(\varepsilon)$, the path-following itself, the evaluations of the leave-one-out test error prediction and the expansion of the optimal classifier (when required). All our codes are in MATLAB (R2010B).

4.2 Optimality of the Solution Obtained by the Regularization Path

This section illustrates the fact that the low-rank approximation can lead to the same result as the classical approach. A state-of-the-art algorithm, the ℓ_2 version of libsvm (ℓ_2-libsvm), is used for comparison on three data sets with different kernels. As a good approximation is required, the following settings are chosen:

- the threshold on the eigenvalues is set at 10^{-6},
- 80% of the training set is used for building the approximation.

Good quality of the first eigenvalues and eigenvectors estimations is ensured by performing the density-weighted Nyström approximation on a large part of the training set. Table 2
<table>
<thead>
<tr>
<th>Data set</th>
<th>Kernel</th>
<th>Rank</th>
<th>Path (s)</th>
<th>(\ell_2)-libsvm (s)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>banana</td>
<td>Linear</td>
<td>2</td>
<td>0.5996 (44)</td>
<td>1.6229 (10)</td>
<td>0.99988</td>
</tr>
<tr>
<td></td>
<td>Gaussian (0.2)</td>
<td>317</td>
<td>1.5592 (49)</td>
<td>0.8799 (10)</td>
<td>0.98236</td>
</tr>
<tr>
<td></td>
<td>Gaussian (0.6)</td>
<td>147</td>
<td>0.95875 (45)</td>
<td>1.455 (10)</td>
<td>0.99933</td>
</tr>
<tr>
<td></td>
<td>Gaussian (1)</td>
<td>81</td>
<td>0.84712 (46)</td>
<td>16.0839 (10)</td>
<td>0.99945</td>
</tr>
<tr>
<td></td>
<td>Gaussian (1.4)</td>
<td>56</td>
<td>0.79386 (45)</td>
<td>18.8339 (10)</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td>Gaussian (1.8)</td>
<td>44</td>
<td>0.8895 (44)</td>
<td>13.0651 (10)</td>
<td>0.9991</td>
</tr>
<tr>
<td>twonorm</td>
<td>Linear</td>
<td>20</td>
<td>0.69215 (50)</td>
<td>0.90338 (10)</td>
<td>0.99963</td>
</tr>
<tr>
<td></td>
<td>Gaussian (10)</td>
<td>319</td>
<td>1.0794 (49)</td>
<td>1.1886 (10)</td>
<td>0.99304</td>
</tr>
<tr>
<td></td>
<td>Gaussian (15)</td>
<td>319</td>
<td>1.0554 (49)</td>
<td>1.1857 (10)</td>
<td>0.99361</td>
</tr>
<tr>
<td></td>
<td>Gaussian (20)</td>
<td>319</td>
<td>1.0842 (49)</td>
<td>1.1932 (10)</td>
<td>0.99231</td>
</tr>
<tr>
<td></td>
<td>Gaussian (25)</td>
<td>319</td>
<td>1.0724 (49)</td>
<td>1.1952 (10)</td>
<td>0.99305</td>
</tr>
<tr>
<td></td>
<td>Gaussian (30)</td>
<td>289</td>
<td>0.99932 (49)</td>
<td>1.205 (10)</td>
<td>0.99553</td>
</tr>
<tr>
<td></td>
<td>Gaussian (35)</td>
<td>244</td>
<td>0.90094 (49)</td>
<td>1.2022 (10)</td>
<td>0.99558</td>
</tr>
<tr>
<td></td>
<td>Gaussian (40)</td>
<td>231</td>
<td>0.90001 (49)</td>
<td>1.2066 (10)</td>
<td>0.99672</td>
</tr>
<tr>
<td>image</td>
<td>Linear</td>
<td>14</td>
<td>2.267 (44)</td>
<td>33.7736 (10)</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td>Gaussian (2)</td>
<td>905</td>
<td>9.3627 (47)</td>
<td>5.4173 (10)</td>
<td>0.98943</td>
</tr>
<tr>
<td></td>
<td>Gaussian (3)</td>
<td>873</td>
<td>7.8306 (46)</td>
<td>5.2021 (10)</td>
<td>0.99386</td>
</tr>
<tr>
<td></td>
<td>Gaussian (4)</td>
<td>778</td>
<td>7.7303 (45)</td>
<td>5.5274 (10)</td>
<td>0.99759</td>
</tr>
<tr>
<td></td>
<td>Gaussian (5)</td>
<td>683</td>
<td>6.0358 (45)</td>
<td>6.3224 (10)</td>
<td>0.99899</td>
</tr>
<tr>
<td></td>
<td>Gaussian (6)</td>
<td>598</td>
<td>5.3664 (41)</td>
<td>5.6930 (10)</td>
<td>0.99977</td>
</tr>
<tr>
<td></td>
<td>Gaussian (7)</td>
<td>527</td>
<td>5.3114 (41)</td>
<td>5.7033 (10)</td>
<td>0.99987</td>
</tr>
</tbody>
</table>

Table 2: Comparison of the values of the objective function evaluated with the Lagrange multipliers obtained from \(\ell_2\)-libsvm and with our path-following algorithm. For our path-following algorithm, the number in parentheses corresponds to the number of changes in set detected. For \(\ell_2\)-libsvm, the time corresponds to ten times the average (over all the values of \(\lambda\) considered) of the training time.

shows that the solutions found by our path-following method and \(\ell_2\)-libsvm are close. It is important to note that \(\ell_2\)-libsvm has difficulties to converge when the bandwidth of the Gaussian kernel is large, thus explaining why its training time is so high. For \(\ell_2\)-libsvm, we display ten times the average value in the table, assuming that when selecting model by means of a grid, one would use 10 different values of \(\lambda\).

4.3 Comparison of the Model Selection Criteria

The relative behavior of the leave-one-out cross-validation bounds (or test error estimators) has already been extensively studied in the literature (for example in [9, 10]). Two main conclusions can be drawn: the minima of both the radius-margin bound and the leave-one-out test error prediction are adequate criteria for model selection and the leave-one-out test error prediction is an accurate estimator of the generalization error. Figure 3 illustrates such properties on the banana data set.
4.4 Accuracy in Terms of Model Selection

This section illustrates the use of a low-rank approximation of the Hessian matrix for computing the regularization path to perform model selection. The algorithm of reference for model selection, introduced in [9], is based on the gradient descent using differentiable spans. Three experiments are performed with data sets of increasing size. Here are the details of the comparison procedure:

- For each realization of the data set, the optimal classifier computed by the algorithm on the training set is tested on the corresponding test set. The mean value and the standard deviation over all the realizations are given in the tables.

- A resampled paired student t test (described in Section 3.3 of [13]) is performed on the frequency of test errors. If a difference is statistically significant, the best result is written in bold.

The Rätsch database The Rätsch database has been extensively used as benchmark for binary classification (see for example [25, 14, 22, 6]). In this trial, due to the small size of the data sets, the density-weighted Nyström decomposition is computed by using 60% of the training set as landmarks and only the eigenvalues greater than 10^{-4} are kept.

Table 3 presents comparative results based on the σ selected by the gradient method while Table 4 corresponds to the heuristic proposed in [33]. This method sets σ equal to
<table>
<thead>
<tr>
<th>Data set</th>
<th>Test error(%)</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Path</td>
<td>Gradient</td>
</tr>
<tr>
<td>banana</td>
<td>11.07 (0.88)</td>
<td>10.85 (0.73)</td>
</tr>
<tr>
<td>breast cancer</td>
<td>27.10 (4.67)</td>
<td>26.64 (4.56)</td>
</tr>
<tr>
<td>diabetis</td>
<td>24.04 (1.94)</td>
<td>23.81 (1.94)</td>
</tr>
<tr>
<td>flaresolar</td>
<td>34.49 (1.87)</td>
<td>34.84 (1.82)</td>
</tr>
<tr>
<td>german</td>
<td>23.77 (2.13)</td>
<td>23.65 (2.03)</td>
</tr>
<tr>
<td>heart</td>
<td>16.83 (3.47)</td>
<td>16.71 (3.11)</td>
</tr>
<tr>
<td>image</td>
<td>03.32 (0.72)</td>
<td>03.90 (0.69)</td>
</tr>
<tr>
<td>ringnorm</td>
<td>01.69 (0.40)</td>
<td>01.61 (0.15)</td>
</tr>
<tr>
<td>splice</td>
<td>11.87 (0.72)</td>
<td>11.16 (0.70)</td>
</tr>
<tr>
<td>tyroid</td>
<td>07.08 (3.69)</td>
<td>07.01 (3.66)</td>
</tr>
<tr>
<td>titanic</td>
<td>23.05 (1.11)</td>
<td>22.59 (0.88)</td>
</tr>
<tr>
<td>twonorm</td>
<td>02.67 (0.34)</td>
<td>02.69 (0.18)</td>
</tr>
<tr>
<td>waveform</td>
<td>10.09 (0.56)</td>
<td>09.90 (0.39)</td>
</tr>
</tbody>
</table>

Table 3: Performance on the Rätsch database with the value of σ given by Chapelle's algorithm.

The data sets of the Rätsch database have a relatively large number of features for a small number of training examples. Thus the rank needed to obtain good performance on this database is not very small compared to the number of examples, explaining the similarity of the computation times.

The Spam data set The Spam data set is much larger than the data sets of the Rätsch database. This increase in the number of examples allows to show that our path-following method for model selection scales well with the number of examples. As there is no predefined training and test sets, for each realization 1000 test examples are randomly chosen from the database while keeping the rest for the training set.

The choice of the number of eigenvectors retained (600) is based on the classical "ankle" criterion used for eigenvector selection in PCA. Table 5 shows that although the approximation is loose, the recognition rate is still good.

A synthetic case: Large training set in low dimension In order to evaluate the scalability of the algorithm in a favourable case, we built an artificial data set. The exam-

<table>
<thead>
<tr>
<th>Data set</th>
<th>Test error(%)</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Path</td>
<td>Gradient</td>
</tr>
<tr>
<td>banana</td>
<td>11.24 (0.95)</td>
<td>0.7149</td>
</tr>
<tr>
<td>breastcancer</td>
<td>27.35 (4.22)</td>
<td>0.5152</td>
</tr>
<tr>
<td>diabetes</td>
<td>24.05 (2.03)</td>
<td>1.1452</td>
</tr>
<tr>
<td>flare</td>
<td>11.16 (0.74)</td>
<td>0.9758</td>
</tr>
<tr>
<td>german</td>
<td>23.76 (2.19)</td>
<td>2.2267</td>
</tr>
<tr>
<td>heart</td>
<td>17.30 (3.51)</td>
<td>0.5602</td>
</tr>
<tr>
<td>image</td>
<td>03.24 (0.74)</td>
<td>0.9157</td>
</tr>
<tr>
<td>ringnorm</td>
<td>02.08 (0.37)</td>
<td>0.9758</td>
</tr>
<tr>
<td>splice</td>
<td>11.67 (0.74)</td>
<td>4.7143</td>
</tr>
<tr>
<td>thyroid</td>
<td>06.71 (3.28)</td>
<td>0.5602</td>
</tr>
<tr>
<td>twnorm</td>
<td>02.68 (0.34)</td>
<td>0.9758</td>
</tr>
<tr>
<td>waveform</td>
<td>10.29 (0.75)</td>
<td>0.9157</td>
</tr>
</tbody>
</table>

Table 4: Performance on the Rätsch database with σ set with the heuristic of [33].

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Test error(%)</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Path</td>
<td>Gradient</td>
</tr>
<tr>
<td>default</td>
<td>6.22 (0.87)</td>
<td>27.8510</td>
</tr>
<tr>
<td>rank=600</td>
<td>6.64 (0.97)</td>
<td>15.9084</td>
</tr>
</tbody>
</table>

Table 5: Performance on the Spam data set with σ computed using the heuristic of [33]. The line "default" corresponds to a Nyström approximation using 60% of the training set while "rank=600" uses 600 landmarks (the approximation of the Hessian matrix can be at most of rank 600). Both experiments use an eigenvalue threshold of 10^{-3}.

The positive examples belong to the positive category are drawn from a Gaussian distribution while the negative ones are drawn from a mixture of Gaussians, both categories being equiprobable.

\[
p(x|y = +1) = p_N(\mu^+, \Sigma^+, x)\]
\[
p(x|y = -1) = \frac{1}{2}p_N(\mu_1^-, \Sigma_1^-, x) + \frac{1}{2}p_N(\mu_2^-, \Sigma_2^-, x)
\]

where

\[
p_N(\mu, \Sigma, x) = \frac{1}{(2\pi)^{d/2}\det(\Sigma)^{1/2}} \exp^{-\frac{1}{2}(x-\mu)^T(\Sigma)^{-1}(x-\mu)},
\]

\[
\mu^+ = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \Sigma^+ = \begin{pmatrix} 8 & -6 \\ -6 & 8 \end{pmatrix}, \mu_1^- = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_1^- = \begin{pmatrix} 1/4 & 0 \\ 0 & 1/4 \end{pmatrix}, \mu_2^- = \begin{pmatrix} 5 \\ -2 \end{pmatrix}, \Sigma_2^- = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

A Monte Carlo estimate of the Bayes error is 12.11%. Ten realizations of the training set have been built for each selected value of m (see Table 6). The evaluation of the
generalization error of each classifier is based on a large test set (30000 examples).

<table>
<thead>
<tr>
<th>m</th>
<th>Test error(%)</th>
<th>Time(s)</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Path</td>
<td>Gradient</td>
<td>Path</td>
</tr>
<tr>
<td>1000</td>
<td>14.22 (0.28)</td>
<td>14.05 (0.25)</td>
<td>5.68</td>
</tr>
<tr>
<td>2000</td>
<td>13.97 (0.16)</td>
<td>13.93 (0.13)</td>
<td>12.84</td>
</tr>
<tr>
<td>3000</td>
<td>13.86 (0.17)</td>
<td>13.85 (0.19)</td>
<td>20.87</td>
</tr>
<tr>
<td>4000</td>
<td>13.85 (0.33)</td>
<td>13.83 (0.33)</td>
<td>28.41</td>
</tr>
<tr>
<td>5000</td>
<td>13.84 (0.19)</td>
<td>13.82 (0.2)</td>
<td>37.98</td>
</tr>
</tbody>
</table>

Table 6: Performance on the artificial data set with the value of σ obtained by Chapelle’s algorithm.

Table [6] illustrates that both model selection procedures achieve similar performance. The gain in computation time is clearly due to the low-rank approximation. It is noteworthy to recall that Chapelle’s algorithm is not designed to handle large data sets. Therefore, the following section compares our algorithm to a training algorithm dedicated to this kind of problem.

4.5 Performance and Training Time Comparison on Large Data Sets

Obviously, the low-rank approximation is well suited for a low-rank basic Hessian matrix. A low-degree polynomial kernel can induce such a behavior. To our knowledge, there is no model selection procedure devised for this case. Thus, two training algorithms dedicated to these kernels are used for comparison: the modified versions of ℓ_2-liblinear and ℓ_2-libsvm introduced in [7] (liblinear is known as one of the fastest solvers for linear SVMs). For both of them, model selection results from a 5-fold cross-validation implemented over a grid search. Proceeding as in [7] (preprint), we chose the following range: $C = \lambda^{-1} \in \{2^{-3}, 2^{-1}, \ldots, 2^{7}, 2^{9}\}$.

The parameterization of the algorithm is presented in Table 7 while the result of the comparison is in Table 8. This last table shows a significant reduction in the training

<table>
<thead>
<tr>
<th>Kernel</th>
<th>ℓ_2-liblinear/ℓ_2-libsvm</th>
<th>Term</th>
<th>C</th>
<th>ℓ_2-liblinear/ℓ_2-libsvm</th>
<th>C</th>
<th>ℓ_2-liblinear/ℓ_2-libsvm</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ijcm1</td>
<td>(32(x_1,x_2) + 1)^2</td>
<td>Termin</td>
<td>0.125</td>
<td>(0.032(x_1,x_2) + 1)^2</td>
<td>8</td>
<td>(0.032(x_1,x_2) + 1)^2</td>
<td>8</td>
</tr>
<tr>
<td>a9a</td>
<td>10^{-6}</td>
<td></td>
<td>10^{-6}</td>
<td>10^{-6}</td>
<td></td>
<td>10^{-6}</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Parameterization of the algorithms for the comparison. Due to the size of the data sets, the approximation method is the uniform Nyström method. The value of C corresponds to the optimal value provided by the grid search.
<table>
<thead>
<tr>
<th>Data set</th>
<th>Algorithm</th>
<th>Training time</th>
<th>Testing time</th>
<th>Test error</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ijcnn1</td>
<td>Path</td>
<td>30.2s</td>
<td>1.9s</td>
<td>2.44%</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>ℓ_2-liblinear</td>
<td>57.8s</td>
<td>0.4s</td>
<td>2.46%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ℓ_2-libsvm</td>
<td>> 24 hours</td>
<td>27s</td>
<td>2.46%</td>
<td>-</td>
</tr>
<tr>
<td>a9a</td>
<td>Path</td>
<td>179.9s</td>
<td>1.9s</td>
<td>14.8%</td>
<td>1178</td>
</tr>
<tr>
<td></td>
<td>ℓ_2-liblinear</td>
<td>459.7s</td>
<td>0.05s</td>
<td>14.7%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ℓ_2-libsvm</td>
<td>46803s</td>
<td>31s</td>
<td>15.2%</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 8: Training times and testing times for ijcnn1 and a9a data sets with a degree 2 polynomial kernel.

Furthermore, the expansion of the classifier on r examples allows to keep the testing time small. These results are all the more interesting as our procedure is not restricted to polynomial kernels of degree two but can also be used with task specific kernels. Therefore, the use of our procedure is very appealing in this framework.

5 Conclusions and Ongoing Research

In this article, a path-following algorithm for setting the value of the regularization coefficient of the ℓ_2-SVM has been introduced. Its main advantage is to avoid local minima of the objective function. When the rank of the Gram matrix does not depend on the number of examples and the objective function is the leave-one-out test error prediction, the complexity of model selection is linear in the number of examples. An automatic method for selecting the rank of the approximation is under investigation. Two main options are at hand. The first one is the use of the work of Girolami [17] dealing with the kernel-PCA, the second one relies on a variable rank for the approximation. Our final objective is to extend this work to the multi-class case, more precisely the M-SVM2 [20].

Acknowledgments

This work was funded by the Fédération Charles Hermite and the Région Lorraine.

References

