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Abstract

This paper presents a process for the estimation of tire-road forces, vehicle sideslip
angle and wheel cornering stiffness. The method uses measurements (yaw rate, longi-
tudinal/lateral accelerations, steering angle and angular wheel velocities) only from
sensors which can be integrated or have already been integrated in modern cars.
The estimation process is based on two blocks in series: the first block contains
a sliding-mode observer whose principal role is to calculate tire-road forces, while
in the second block an extended Kalman filter estimates sideslip angle and cor-
nering stiffness. More specifically, this study proposes an adaptive tire-force model
that takes variations in road friction into account. The paper also presents a study
of convergence for the sliding-mode observer. The estimation process was applied
and compared to real experimental data, in particular wheel force measurements.
Experimental results show the accuracy and potential of the estimation process.
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1 Introduction

Knowledge of vehicle variables such as tire forces and sideslip angle is essential
for improving car safety, handling characteristics and comfort. Active safety
systems such as anti-lock braking systems and electronic stability programs
can significantly reduce the number of road accidents, and these safety sys-
tems may be improved if the variables of a car are well known. For instance,
information about road friction means a better definition of potential trajec-
tories, and therefore a better management of vehicle controls. However for
both technical and economical reasons some fundamental data (such as tire
forces, sideslip angle, road friction) are not measurable in a standard car. As
a consequence, tire forces and sideslip angle must be observed or estimated.
Fig. 1 illustrates wheel dynamic variables. The wheel sideslip angle represents
the angular direction of the linear wheel velocity relative to the longitudinal
wheel axis.

Road friction

Vertical tire-force

Lateral 

tire-force 

Longitudinal tire-forceWheel sideslip 

angle

Linear wheel 

velocity

Angular wheel

speed 

Fig. 1. Wheel dynamic variables.

Vehicle-dynamic estimation has been widely discussed in the literature, e.g.
(Arndt, 2006; Stephant, Charara & Meizel, 2007; Hsu & Gerdes, 2006; Gustafs-
son, 1997; Kim, 2009; Lakehal-ayat, Tseng, Mao & Karidas, 2006; Ono et al.,
2003; Tanelli, Savaresi & Cantoni, 2006; Wesemeier, 2008). The modeling of
vehicle-road systems is complex because the vehicle trajectory depends on
a wide variety of parameters, including tire, car and road properties. In the
literature, the vehicle-road system is usually modeled by combining a vehi-
cle model with a tire-force model (Baffet, Charara & Lechner, 2007; Lechner,
2002; Ungoren, Peng & Tseng, 2004). In this study, the estimation process is
separated into two blocks (Fig. 2), where block 1 corresponds to the car body
dynamic and block 2 corresponds to the tire-road interface dynamic.
The first block contains a sliding mode observer (denoted as SMO) which esti-
mates tire forces and yaw rate. This observer is constructed with a single-track
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model (Segel, 1956), in which forces are modeled without tire-road parameters
(Ḟx = 0, Ḟy = 0). One advantage of this formulation is that the estimates will
not be influenced by tire-road parameters.
In the second block an Extended Kalman Filter (denoted as EKF) supplies
estimations of sideslip angle and wheel cornering stiffnesses. This observer is
developed from a sideslip angle model and a linear adaptive tire-force model.
The linear adaptive force model is proposed with an eye to correcting errors
resulting from road friction changes.
By separating the estimation process in two blocks, the force estimates, in
the first block, are not functions of road friction parameters. Consequently
the first observer is particularly robust with respect to road friction changes.
Moreover, the process is separated in two blocks for practical and analysis
reasons. In fact, the gains of the two observers are easier to adjust, than the
gains of one bigger observer combining the two observers.

Measurements: yaw rate, steering angle, lateral acceleration 

longitudinal acceleration, angular wheel velocities 

Estimated variables: Longitudinal and lateral tire forces, yaw rate 

Block 1 

Block 2 

Estimated variables: Sideslip angle and cornering stiffnesses 

Observer SMO
Sliding-mode observer

Single-track model

Force model: Fx=0,Fy=0

Observer EKF
Extended Kalman Filter

Sideslip angle model

Linear adaptive force model

. . 

Fig. 2. The estimation process is divided into two blocks, where block 1 estimates
the tire-road forces and block 2 calculates sideslip angle.

The rest of the paper is organized as follows. Section 2 describes the modeling
of the first block, presents the sliding mode observer SMO and shows experi-
mental results for the estimates of tire forces. Section 3 describes the modeling
of tire-road forces, proposes the Extended Kalman Filter EKF, and presents
experimental results performed within the second block. The two observers are
evaluated with respect to sideslip angle and tire-force measurements. Section
4 describes the sensitivity to vehicle mass of the method. Section 5 presents
the conclusion. Appendix A analyzes the convergence properties of the sliding
mode observer SMO and Appendix B lists the different notations.

3



2 Tire-road force observer, SMO

2.1 Modeling of the sliding mode observer SMO

The observer SMO is based on the single-track model (Segel, 1956), which is
currently used to describe vehicle-dynamic behavior (Kiencke & Daib, 1997).
Fig. 3 presents the single-track model, where ψ̇ is the yaw rate, γx and γy are
the longitudinal and lateral accelerations, Vg is the vehicle velocity, β is the
sideslip angle, δ is the steering angle, Fyw1 and Fyw2 are the front and rear
lateral tire forces, Fxw1 and Fxw2 are the front and rear longitudinal tire forces,
and Fy1 and Fx1 are the front lateral and longitudinal tire forces in the car
body axis. L1 and L2 are the distances from the vehicle center of gravity to
front and rear wheels, x and y are the longitudinal and lateral vehicle posi-
tions, Vg1 and Vg2 the front and the rear vehicle velocities, and β1 and β2 the
front and rear sideslip angles.
Because of it simplicity, one advantage of the bicycle model is that time ex-

Vg

β

L2

L1
Fyw2 Fxw2

δ

β2
ψ

β1

x

y

Fyw1

δ

Fxw1

Fy1

Fx1

Vg2

γx

γy

Vg1

Fig. 3. The single-track model, also called the bicycle model, is used in the sliding
mode observer.

ecution is sufficiently short for real time applications. However, this model
ignores vehicle roll which has a large impact on the lateral acceleration, espe-
cially at high lateral accelerations.
In order to develop an observable system (notably in the case of null steering
angle) (Nijmeijer & Van der Schaft, 1990), rear longitudinal tire force Fxw2 is
neglected relative to the front longitudinal force Fx1 (assuming a front-wheel
drive car in braking situation). The simplified equation for yaw acceleration
can be formulated as the following dynamic relationship (single-track model):

ψ̈ = 1
Iz

[L1Fy1 − L2Fyw2], (1)
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where Iz is the yaw moment of inertia. The force evolutions and the measure-
ments are modeled as:

Ḟy1 = 0, Ḟyw2 = 0, Ḟx1 = 0,

γy =
Fy1 + Fy2

m
, γx =

Fx1
m
,

(2)

where m is the vehicle mass. Consider the following state X∈R4 and mea-
surement Y∈R3:

X = [x1, x2, x3, x4] = [ψ̇, Fy1, Fyw2, Fx1],

Y = [y1, y2, y3] = [ψ̇, γy, γx].
(3)

Vectors x̂ = [x̂1, x̂2, x̂3, x̂4] and ̂Y = [ŷ1, ŷ2, ŷ3] represent the state estimates
and the measurement estimates. The measurement model is:

ŷ1 = x̂1, ŷ2 =
x̂2 + x̂3

m
, ŷ3 =

x̂4

m
. (4)

The estimation errors for states and measurements are denoted respectively
as:

˜X = [X− x̂] = [x̃1, x̃2, x̃3, x̃4], ˜Y = [Y − ŷ] = [ỹ1, ỹ2, ỹ3]. (5)

The observer SMO uses a sliding mode structure based principally on the
works of (Drakunov & Utkin, 1995) and (Slotine, Hedrick & Misawa, 1987).
The state estimates evolve according to the single-track model (1), the force
model (2) and the sign of the measurement estimation errors:

˙̂x1 = 1
Iz

[L1x̂2 − L2x̂3] + Ω1sign(ỹ1) + Ω2sign(ỹ2) + Ω3sign(ỹ3),

˙̂x2 = Ω4sign(ỹ1) + Ω5sign(ỹ2) + Ω6sign(ỹ3),

˙̂x3 = Ω7sign(ỹ1) + Ω8sign(ỹ2) + Ω9sign(ỹ3),

˙̂x4 = Ω10sign(ỹ1) + Ω11sign(ỹ2) + Ω12sign(ỹ3),

(6)

where Ω1, ...,Ω12 are the observer gains. The convergence analysis of SMO is
described in appendix A. Choosing the observer gains such that:

{Ω2, Ω3, Ω6, Ω9, Ω10, Ω11} = 0,

{Ω1, Ω4, Ω5, Ω8, Ω12} > 0,

Ω7 < 0, Ω4 = −Ω7, Ω5 = L2

L1
Ω8,

(7)
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implies the convergence of the estimation vector x̂ toward the system state X.
In the experimental tests the gains were set as:

• Ω1 = 10, Ω4 = 40000, Ω5 = 52000, Ω7 = −40000, Ω8 = 40000, Ω12 = 50000.

These gain values are chosen empirically, according to (7), numerous exper-
imental tests and in order that the estimates converge quickly to the states.
The sampling frequency is 100 Hz, and the chattering is avoided by using a
linear function (Levant (1993)).

Wheel-force transducers

Correvit sensorDynamometric hub

Fig. 4. INRETS MA Laboratory’s experimental vehicle. Dynamometric hubs: wheel–
force transducers. Correvit sensors: sideslip angle and velocity transducers.

2.2 Experimental results - observer SMO

The INRETS MA vehicle (see Fig. 4) is a Peugeot 307 equipped with a number
of sensors including centimetric GPS, accelerometers, odometers, gyrometers,
steering angle, three Correvits and four dynamometric hubs. The three Corre-
vits (non-contact optical sensor) gives measurements of the sideslip angles and
velocities of the vehicle rear, the front-right wheel and the rear-right wheel.
The dynamometric hubs are placed at the four wheels and provide measure-
ments of tire forces and wheel torques.
This study included two experimental tests: a slalom and a roundabout. These
tests are representative of both longitudinal and lateral dynamic behaviors.
The vehicle trajectories and the acceleration diagrams are shown in Figs. 5
and 6.
These experimental tests were performed in dry asphalt. During the first test
(slalom), the vehicle first accelerated up to γx = 0.3 g (situation 1), then
negotiated a slalom (−0.6 g < γy < 0.6 g, situation 2), before finally deceler-
ating to γx ≈ −0.5 g (situation 3). In the second test the vehicle negotiated a
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Fig. 5. Slalom experimental test, vehicle position, acceleration diagram.
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Fig. 6. Roundabout experimental test, vehicle position, acceleration diagram.

roundabout at maximum steering angle of 11o. The two diagrams show that
the vehicle is subject to lateral accelerations lower than 0.7 g.

The estimation results are presented in two formats: as numerical estimation
results compared with measurements, and as tables of normalized errors. The
normalized error εz for an estimation z is defined as:

εz(i) =
100 · |z(i) − zmeas(i)|

max |zmeas(i)|
. (8)

This quantity is calculated for each sample. The vehicle parameters are Iz =
3000 kg.m−2, L1 = 1.12 m, L2 = 1.46 m, m = 1447 kg. The estimates of
the tire forces along the wheel axis are obtained by applying the following
equations:

Fxw1 = Fx1 cos(δ) + Fy1 sin(δ), Fyw1 = Fy1 cos(δ) − Fx1 sin(δ). (9)

Fig. 7, Fig. 8, Table 1 and Table 2 present SMO observer results for the
two tests. These tables show the mean and the standard deviation of the
normalized errors. The state estimates were initialized with the maximum
measurements during the test (for instance x̂2(t = 0) = 5448N in the slalom
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Fig. 7. Slalom test. SMO observer. Tire force estimates.

Table 1
Slalom test, SMO observer, maximum absolute values, normalized mean errors and
standard deviation (Std)

Slalom max |zmeas| mean(εz) std(εz)

Fy1 6282 N 4.1% 3.8%

Fy2 3663 N 2.2% 1.9%

Fx1 6181 N 3.8% 3.6%

ψ̇ 33.6 o/s 0.5% 0.3%

test). In spite of these initializations the estimates converge quickly to the
measurements, showing the good convergence properties of the observer.
Moreover, the SMO observer produces satisfactory estimates close to mea-
surements for the two tests (normalized mean errors and standard deviation
less than 6 % in Table 1 and Table 2). These good experimental results con-
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Fig. 8. Roundabout. SMO observer. Tire force estimates.

firm that the observer approach may be appropriate for the estimation of tire
forces.

Table 2
Roundabout test, SMO observer, maximum absolute values, normalized mean errors
and standard deviation (Std)

Roundabout max |zmeas| mean(εz) std(εz)

Fy1 4010 N 5.2% 3.4%

Fy2 3215 N 3.7% 3.2%

Fx1 3434 N 4.8% 3.9%

ψ̇ 23.0 o/s 0.2% 0.2%
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3 Sideslip angle and wheel cornering stiffness observer, EKF

This section introduces tire-force modeling and presents the observer EKF for
the estimation of sideslip angle and wheel cornering stiffness. The filter EKF
is constructed by combining models characterizing the vehicle sideslip angle
and the tire-road contact forces. The sideslip angle evolution is formulated by
using the single-track model, (Segel, 1956):

β̇ = 1
mVg

[Fxw1 sin(δ − β) + Fyw1 cos(δ − β) + Fyw2 cos(β)] − ψ̇. (10)

The wheel sideslip angles and the center of gravity sideslip angle are linked
with the following relationships:

β1 = δ − β − L1ψ̇

Vg

, β2 = −β + L2ψ̇

Vg

. (11)

The tire forces are usually modeled as a function of slips between tire and
road, such as the wheel longitudinal slip and the wheel sideslip angle (Pacejka
& Bakker, 1991; Burckhardt, 1993; Canudas-De-Wit, Tsiotras, Velenis, Basset
& Gissinger, 2003). Fig. 9 illustrates different lateral tire-force models (linear,
linear adaptive and Burckhardt for various road surfaces, (Kiencke & Nielsen,
2000)).
For normal driving situations, lateral tire forces are usually considered linear
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Fig. 9. Lateral tire force models: linear, linear adaptive, Burckhardt for various road
surfaces.

10



with respect to sideslip angle (linear model, cumulative lateral tire-force for
each axle):

Fywi(βi) = Ciβi, i = 1, 2, (12)

where Ci is the wheel cornering stiffness (a parameter closely related to tire-
road friction).
When road friction changes or when the nonlinear tire domain is reached,
wheel cornering stiffness varies. Some studies have described observers which
take cornering stiffness (or road friction) variations into account (Rabhi, M’Sirdi,
Zbiri & Delanne, 2005; Ray, 1997). In (Rabhi, M’Sirdi, Zbiri & Delanne, 2005)
tire-road parameters are identified with a sliding-mode observer, while in (Ray,
1997) tire-road forces are modeled with an integrated random walk model
(F̈ = 0).
In this study, an adaptive tire-force model is proposed (hereafter termed the
”linear adaptive force model”). This model is based on the linear model to
which a readjustment variable ∆Cai has been added to correct wheel corner-
ing stiffness errors (Fig. 9):

Fywi(βi) = (Ci + ∆Cai)βi, i = 1, 2. (13)

The variable ∆Cai is included in the state vector of the EKF observer and its
evolution equation is formulated according to the model (∆Ċai = 0).
The EKF observer is constructed with state X′∈R3, input U′∈R4 and mea-
surement Y′∈R3 as:

X′ = [x′1, x
′

2, x
′

3] = [β,∆Ca1,∆Ca2],

U′ = [u′1, u
′

2, u
′

3, u
′

4] = [δ, ψ̇, Vg, Fxw1],

Y′ = [y′1, y
′

2, y
′

3] = [Fyw1, Fyw2, γy].

(14)

The measurement model is

y′1 = (C1 + x′2)β1, y′2 = (C2 + x′3)β2,

y′3 = 1
m

[(C1 + x′2)β1 cos(u′1) + (C2 + x′3)β2 + u′4 sin(u′1)].
(15)

Consider the state estimates denoted as x̂′ = [x̂′1, x̂
′

2, x̂
′

3]. The state evolution
model of EKF is:

˙̂x
′

1 =
u′4 sin(u′1 − x̂′1) + Fauxi1 cos(u′1 − x̂′1) + Fauxi2 cos(x̂′1)

mu′3
− u′2,

˙̂x
′

2 = 0, ˙̂x
′

3 = 0,

(16)
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where the auxiliary variables Fauxi1 and Fauxi2 are calculated as:

Fauxi1 = (C1 + x̂′2)(u
′

1 − x̂′1 −
L1u

′

2

u′
3

),

Fauxi2 = (C2 + x̂′3)(−x̂
′

1 +
L2u

′

2

u′
3

).
(17)

The extended Kalman filter EKF is based on a study by (Kalman, 1960)
and constructed according to an algorithm proposed in (Mohinder & Angus,
1993). The EKF algorithm is set according to noise variance-covariance ma-
trices. These matrices, denoted as Qs, Qe and Qm, are associated respectively
to the noises of the measurements, the inputs and the models. These noises
are assumed to be Gaussian, white and centered. The variance-covariance ma-
trices are set according to the vehicle state. This is explained with the Figs.
10 and 11.
Fig. 10 presents the measurements of the front lateral tire forces Fy1 as a func-
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Fig. 10. Experimental test measurements of the front lateral tire forces as a function
of the front wheel sideslip angles.

tion of the front wheel sideslip angles β1 (for a slalom test). Fig. 11 illustrates
straight lines representing different potential cornering stiffnesses estimates
(Ci + ∆Cai = Fyi/βi). Neglecting the force saturation, the estimation of cor-
nering stiffness is not adapted in four zones:

• in zones 1 and 2: when βi ∗ Fyi < 0 (not adapted because the cornering
stiffness must be positive),
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Fig. 11. Experimental test measurements of the front lateral tire forces as a function
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stiffnesses (Ci + ∆Cai = Fyij/βij). State zones 1, 2, 3 and 4 are not adapted for
the estimation of cornering stiffness. The observer EKF mainly corrects cornering
stiffness in zones 5 and 6.

• in zones 3 and 4: when the lateral dynamic is low: Fyi < λi (threshold),
because some ratios Fyij/βij may have very different values in these zones.

The variance-covariance matrices (Qs, Qm) are set in order that the cornering
stiffness estimation is performed mainly in zones 5 and 6.
The variance-covariance matrices are set

• in zone 1,2,3,4:
Qs = diag[1e6,1e6,1e6],
Qm = diag[1e-13, 0, 0],

• in zone 5,6:
Qs = diag[0.1, 0.1, 0.1],
Qm = diag[1e-13, 0.24, 0.24].

An observability function was calculated using a Lie derivative method, (Ni-
jmeijer & Van der Schaft, 1990). The rank of the observability function, which
was calculated along experimental trajectories, corresponded to the state vec-
tor dimension (3), and consequently system EKF was locally observable.
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3.1 Experimental results - observer EKF

In order to demonstrate the improvement provided by the observer using the
linear adaptive force model (13), another observer constructed with a linear
force model (12) was used in comparison (observer denoted ORL). The ro-
bustness of the two observers was tested with respect to tire-road friction
variations by performing the tests with different cornering stiffness parame-
ters ([C1, C2] ∗ 0.5, 1, 1.5 with C1 = 65000 N.rad−1 and C2 = 50000 N.rad−1).
The different observers were evaluated for the two tests presented in section
2.2.
Figs. 12-13 show the results for the ORL observer (using the linear force model)
when estimating rear sideslip angle. The ORL observer gives good results
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Fig. 12. ORL observer (linear tire-force model), rear sideslip angle estimates,
with different stiffness settings.
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Fig. 13. ORL observer (linear tire-force model), rear sideslip angle estimates,
with different stiffness settings.

when cornering stiffnesses are approximately known ([C1, C2] ∗ 1). However,
this observer is not robust when cornering stiffnesses change ([C1, C2]∗0.5, 1.5).
When cornering stiffness is reduced ORL overestimates rear sideslip angle
(in absolute value) and, conversely, when cornering stiffness is increased rear
sideslip angle is overestimated.
Fig. 14, Fig. 15, Table 3 and Table 4 present rear sideslip angle estimation
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results obtained with the adaptive observer EKF for the two tests. The per-
formance robustness of EKF is satisfactory since rear sideslip angle is well
estimated and similar irrespective of cornering stiffness settings. This result
is confirmed by the EKF normalized errors (Table 3 and Table 4) which are
approximately similar.
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Fig. 14. Slalom test, EKF observer (linear adaptive force model), with dif-
ferent cornering stiffness settings Rear sideslip angle estimates.

Table 3
Slalom test, EKF observer, maximum absolute values, normalized mean errors and
standard deviation (Std) of the rear sideslip angle

Slalom (C1, C2) ∗ 0.5 (C1, C2) (C1, C2) ∗ 1.5

max |β2| 5.7o 5.7o 5.7o

mean(εz) 5.0% 4.4% 5.1%

std(εz) 5.9% 5.2% 5.5%
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Fig. 15. Slalom test, EKF observer (linear adaptive force model), with dif-
ferent cornering stiffness settings. Rear sideslip angle estimates.

Fig. 16 and Fig. 17 present the front and rear cornering stiffness estimates
(Ci + ∆Ci). It can be seen that the cornering stiffness estimates remain ap-
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Table 4
Roundabout test, EKF observer, maximum absolute values, normalized mean errors
and standard deviation (Std) of the rear sideslip angle

Roundabout (C1, C2) ∗ 0.5 (C1, C2) (C1, C2) ∗ 1.5

max |β2| 5.4o 5.4o 5.4o

mean(εz) 8.1% 6.4% 5.9%

std(εz) 7.4% 6.6% 6.5%

proximately constant when the lateral dynamic (sideslip angles, lateral tire
forces) is low, that is to say during the first 10 s in the case of the slalom,
and the first 9 s in the case of the roundabout. Then, at the beginning of the
slalom at 10 s or at the beginning of the roundabout at 9 s, the lateral dy-
namic becomes sufficiently large, and the estimates of the cornering stiffness
converge quickly to the same values. The new information obtained from ∆Cai
may be used as an indication of the road friction. Indeed, for same values of
the wheel sideslip angle, a significative change of ∆Cai variable can indicate a
road friction change (Baffet (2007)).
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Fig. 16. Slalom test, EKF observer (linear adaptive force model), with dif-
ferent cornering stiffness settings [(C1, C2) = (65000, 50000) ∗ (0.5, 1, 1.5) N.rad−1].
Front and rear cornering stiffness estimates Ci + ∆Cai.
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Fig. 17. Roundabout test, EKF observer (linear adaptive force model),
with different cornering stiffness settings [(C1, C2) = (65000, 50000) ∗ (0.5, 1, 1.5)
N.rad−1]. Front and rear cornering stiffness estimations Ci + ∆Cai.

4 Sensitivity to vehicle mass

This section presents the sensitivity of the estimation process when the vehicle
mass is unknown. Three tests are performed with a different mass (m = 1447
kg,m+300,m−300). Fig. 18 and Table 5 represent the results. Concerning the
tire forces, estimates raise when the mass parameter is increased (in absolute
value), and conversely, estimates decrease when the mass is reduced. The tire
force estimates converge to different values, showing that SMO is sensitive to
changes in vehicle mass. As regard rear sideslip angle, the variations induced by
mass change are lower than those of the tire force estimates. This is confirmed
by the Table 5, where normalized mean errors of Fy2 varies from 2.2 % to 10.4
%, whereas normalized mean errors of β2 changes from 4.4 % to 5.4 %. This
can be explained by regarding the sideslip angle model (10), where the mass
change in the denominator is partially compensated for the force change in
the numerator.

5 Conclusion

This study deals with two vehicle-dynamic observers constructed for use in a
two-block estimation process. The block 1 mainly estimates tire-forces (with-
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Table 5
Slalom test, robustness to vehicle mass (m = 1447 kg). Maximum absolute values,
normalized mean errors and standard deviation (Std)

Slalom m− 300 kg m m+ 300 kg

Fy1 max|zmeas| 6282 N 6282 N 6282 N

mean(ǫz) 8.0% 4.1% 4.9%

std(ǫz) 8.2% 3.8% 4.8%

Fy2 max|zmeas| 3663 N 3663 N 3663 N

mean(ǫz) 10.4% 2.2% 4.7%

std(ǫz) 10.1% 1.9% 4.5%

Fx1 max|zmeas| 6181 N 6181 N 6181 N

mean(ǫz) 5.9% 3.8% 5.5%

std(ǫz) 5.9% 3.6% 8.1%

β2 max|zmeas| 5.7o 5.7o 5.7o

mean(ǫz) 5.4% 4.4% 5.1%

std(ǫz) 5.8% 5.2% 5.7%
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Fig. 18. Slalom test, with different mass settings: m+300 kg, m = 1447 kg, m−300
kg.

out an explicit tire-force model), while the block 2 calculates sideslip angle
and corrects cornering stiffnesses (with an adaptive tire-force model).
The first observer SMO (block 1), a sliding mode observer, was constructed
by finding the gains with respect to the convergence. The experimental evalu-
ations of SMO are satisfactory, showing estimates close to the measurements
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and good convergence properties.
The second observer EKF (block 2), an extended Kalman filter combined with
an adaptive tire-force model, was evaluated for different cornering stiffness set-
tings and was compared with an observer constructed with a fixed tire-force
model (ORL). Results show that ORL is not robust when cornering stiffness
parameters change, whereas EKF gives good estimates of the sideslip angle.
This result justifies the use of an adaptive tire-force model.
The different results show the potential of the two-block estimation process.
The first block has the advantage of providing satisfactory force estimates
without a tire-force model, whereas the second block provides robust sideslip
angle estimates with respect to cornering stiffness changes.
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A Convergence of the SMO observer

The aim is to set gains Ω1, ...,Ω12 which lead to the state estimation errors ˜X
converging toward 0. The evolution equations for the state estimation errors
are the following:

˙̃
X = Ẋ − ˙̂x,

˙̃x1 = 1
Iz

[L1x̃2 − L2x̃3] − Ω1sign(ỹ1) − Ω2sign(ỹ2) − Ω3sign(ỹ3),

˙̃x2 = −Ω4sign(ỹ1) − Ω5sign(ỹ2) − Ω6sign(ỹ3),

˙̃x3 = −Ω7sign(ỹ1) − Ω8sign(ỹ2) − Ω9sign(ỹ3),

˙̃x4 = −Ω10sign(ỹ1) − Ω11sign(ỹ2) − Ω12sign(ỹ3).

(A.1)

Proposition 1. Consider the following Lyapunov functions (Φ1,Φ2,Φ3,Φ4):

Φ1 = 1
2
x̃2

1, Φ2 = 1
2
x̃2

4, Φ3 = 1
2
(x̃2 + x̃3)

2,

Φ4 = 1
2
(L1x̃2 − L2x̃3)

2.
(A.2)

If the derivatives of the Lyapunov functions are negative, then the estimates

x̂ will converge toward the system states X.
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Proof 1. The Lyapunov functions Φ1, ...,Φ4 are positive along all state tra-
jectories, and consequently if the derivatives Φ̇1, ..., Φ̇4 are negative, then the
Lyapunov functions will converge toward zero. This entails the following con-
vergence:

x̃1 −→ 0, x̃4 −→ 0, x̃2 + x̃3 −→ 0, L1x̃2 − L2x̃3 −→ 0. (A.3)

and consequently: x̂1 −→ x1, x̂4 −→ x4. The convergence x̃2+ x̃3 −→ 0 implies
two possibilities at the switching surface:

• either [x̃2 −→ 0 and x̃3 −→ 0], then x̂2 −→ x2 and x̂3 −→ x3,
• or [x̃2 −→ −x̃3], then the convergence A.3 implies x̃2(L1 + L2) −→ 0, this

entails the convergence x̂2 −→ x2 and x̂3 −→ x3.

Remark 1. The Lyapunov functions A.2 correspond to the estimation errors
for: yaw rate ψ̇ (Φ1), lateral acceleration γy (Φ2), yaw acceleration ψ̈ (Φ3),
longitudinal acceleration γx (Φ4). Gains Ω1, ...,Ω12 are chosen so as to make
the Lyapunov function derivatives negative.

Proposition 2. If the gains are selected such that:

Ω1 ≥ |Ω2| + |Ω3| + | 1
Iz

(L1x̃2 + L2x̃3)| + ǫ,

Ω12 ≥ |Ω11| + |Ω10| + ǫ,
(A.4)

where ǫ > 0 then the estimates of the yaw rate x̂1 and longitudinal tire force
x̂4 converge toward the states x1 and x4 respectively.

Proof 2a. The derivative of the Lyapunov function Φ1 is:

Φ̇1 = x̃1
˙̃x1,

Φ̇1 = x̃1[
1
Iz

(L1x̃2 − L2x̃3) − Ω1sign(ỹ1) − Ω2sign(ỹ2)

− Ω3sign(ỹ3)],

Φ̇1 = −x̃1[Ω1sign(x̃1) + Ω2sign(x̃2 + x̃3) + Ω3sign(x̃4)

− 1
Iz

(L1x̃2 − L2x̃3)].

(A.5)

Using the triangle inequality and A.4 now gives the following inequality for
the Lyapunov function

Φ̇1 ≤ −x̃1 ǫ sign(x̃1) < 0.
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This derivative is negative and Φ1 is positive, and consequently this induces
the convergence Φ1 −→ 0 x̃1 −→ 0 and therefore x̂1 −→ x1.

Remark 2a. At the switching surface ˙̃x1 = 0 this result implies:

signeq(x̃1) = 1
Ω1Iz

[L1x̃2 − L2x̃3]. (A.6)

Proof 2b. The derivative of the Lyapunov function Φ2 is:

Φ̇2 = x̃4
˙̃x4,

= x̃4 [−Ω10sign(ỹ1) − Ω11sign(ỹ2) − Ω12sign(ỹ3)] ,

= x̃4 [−Ω10sign(x̃1) − Ω11sign(x̃2 + x̃3) − Ω12sign(x̃4)] .

(A.7)

Using the triangle inequality and A.4 now gives the following inequality on
the Lyapunov function Φ2

Φ̇2 ≤ −x̃4 ǫ sign(x̃4) < 0.

This derivative is negative and Φ2 is positive, and consequently this implies
the convergence Φ2 −→ 0, x̃4 −→ 0 and therefore x̂4 −→ x4.

Proposition 3. Choosing the gains such that:

Ω5 + Ω8 ≥ |Ω6| + |Ω9| + ǫ,

Ω4 = −Ω7 > 0,

Ω5 = Ω8L2/L1,

(A.8)

where ǫ > 0, implies convergence of lateral tire force estimates (x̂2, x̂3) toward
the states (x2, x3).

Proof 3a. The derivative of the Lyapunov function Φ3 is:

Φ̇3 = (x̃2 + x̃3)( ˙̃x2 + ˙̃x3),

= (x̃2 + x̃3)[−(Ω4 + Ω7)sign(ỹ1) − (Ω5 + Ω8)sign(ỹ2)

− (Ω6 + Ω9)sign(ỹ3)].

(A.9)

Using A.8 and the triangle inequality yields the following inequality:

Φ̇3 ≤ −(x̃2 + x̃3) ǫsign(x̃2 + x̃3) < 0.
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Consequently, with Φ3 positive this implies convergences Φ3 −→ 0 and x̃2 +
x̃3 −→ 0.

Proof 3b. The derivative calculation of Lyapunov function Φ4 gives:

Φ̇4 = (L1x̃2 − L2x̃3)(L1
˙̃x2 − L2

˙̃x3),

Φ̇4 = (L1x̃2 − L2x̃3)[(−L1Ω4 + L2Ω7)sign(ỹ1)

+ (−L1Ω5 + L2Ω8)sign(ỹ2)].

(A.10)

Applying the result (A.6) and choosing Ω4 = −Ω7, (A.10) becomes:

Φ̇4 = (L1x̃2 − L2x̃3)[
Ω7

Ω1Iz
(L1 + L2)(L1x̃2 − L2x̃3)

+ (−L1Ω5 + L2Ω8)sign(ỹ2)].
(A.11)

Specifying Ω5 = Ω8L2/L1 and Ω7 < 0 means that the derivative:

Φ̇4 = Ω7(L1+L2)
Ω1Iz

(L1x̃2 − L2x̃3)
2 < 0, (A.12)

becomes negative, which implies the convergences Φ4 −→ 0, and therefore
L1x̃2 − L2x̃3 −→ 0. Moreover, x̃2 + x̃3 −→ 0, consequently this induces the
convergence (x̂2, x̂3) −→ (x2, x3).

B Nomenclature

Table B.1 and Table B.2 present the different notations.
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Table B.1
Nomenclature (first part).

Symbol Description

C1 Front cornering stiffness (N.rad−1)
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Fxw2 Rear longitudinal tire force (in wheel axis) (N)

Fyw1 Front lateral tire force (in wheel axis) (N)

Fyw2 Rear lateral tire force (in wheel axis) (N)

Ω1, ...,Ω20 SMO sliding mode observer gains

Iz Yaw moment of inertia (kg.m−2)

L1 Center of gravity to front axle distance (m)

L2 Center of gravity to rear axle distance (m)

m Vehicle mass (kg)

Qe Variance-covariance matrix for input noises
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Table B.2
Nomenclature (second part).

Symbol Description

x, y Longitudinal and lateral vehicle positions (m)

X,Y SMO, state, measurement vectors

x̂ SMO, state estimation vector

X̃ SMO, vector of state estimation errors

ŷ SMO, vector of measurement estimates

Ỹ SMO, vector of measurement estimation errors

X′,U′,Y′ EKF, state, input, measurement vectors

x̂′ EKF, state estimation vector

ŷ′ EKF, vector of measurement estimates
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