Towards Nonlinear Photonic Wires in Z-cut LiNbO3
Oleksandr Stepanenko, Emmanuel Quillier, Hervé Tronche, Pascal Baldi, Pierre Aschieri, Sarah Benchabane, Marc de Micheli

To cite this version:
Oleksandr Stepanenko, Emmanuel Quillier, Hervé Tronche, Pascal Baldi, Pierre Aschieri, et al.. Towards Nonlinear Photonic Wires in Z-cut LiNbO3. Laser Optics 2012, Jun 2012, Saint-Petersbourg, Russia. hal-00849124
Towards Nonlinear Photonic Wires in Z-cut LiNbO$_3$

Oleksandr Stepanenko1, Emmanuel Quillier1, Hervé Tronche1, Pascal Baldi1, Pierre Aschiéri1, Sarah Benchabane2 and Marc De Micheli1

1LPMC, Université de Nice Sophia Antipolis, Parc Valrose 06108 Nice Cedex2, FRANCE
2FEMTO ST, Université de Franche-Comté, 32 Avenue de l’Observatoire, 25044 Besançon Cedex, FRANCE
marc.de-micheli@unice.fr

Abstract: Using a modified Proton Exchange process we have realized Photonic Wires in X-cut LiNbO$_3$. They exhibit highly confined mode, low propagation losses, low strain induced polarization coupling and no reduction of the nonlinear properties. We are now transferring this technique to Z-cut LiNbO$_3$ in order to realize very efficient nonlinear devices in PPLN.

Introduction

Realizing photonic wires, in which the size of the mode is smaller or equal to the wavelength, in a nonlinear material is very attractive and the interest has already been exposed many times. Using a simple waveguide fabrication technique based on a special proton exchange process, we have been able to realize such photonic wires in X-cut LiNbO$_3$. They have been realized on 3” wafers and present highly confined modes (1.5x1.5 μm @ 1.5μm), low propagation losses, low strain induced polarization coupling and no reduction of the nonlinear properties. These waveguides are excellent candidates for realizing highly efficient electro-optic devices and present a very good adaptation to photonic crystals that are today realizable in lithium niobate1, which opens the way to the realization of a completely new device family. In order to benefit of the same advantages to realize nonlinear devices we have extended this waveguide fabrication technique to Z-cut LiNbO$_3$ and we will present material and optical characterization of these.

Waveguide fabrication

In the early 80’s when the Proton Exchange technique was presented for the first time2 to fabricate waveguides in lithium niobate, it attracted a lot of interest because of its ability to produce a high increase (0.1) of the extraordinary index of the crystal, and therefore highly confining waveguides. But after a while, it appears that these waveguides were presenting a dramatic reduction of the electro-optic and nonlinear coefficient of the material. In all the efficient devices that have been reported using Proton Exchanged waveguides, the waveguides were presenting a low confinement ($\Delta n \leq 0.03$) and were identified as Annealed Proton Exchanged waveguides (APE) 3 or Soft Proton Exchanged waveguides (SPE) 4. Around 2000, it was reported that it was possible to obtain highly confining waveguides without damaging the nonlinear coefficient of the crystal using the Vapor Phase Exchange process (VPE) 5. Unfortunately, this technique was very difficult to control and no device using it has been reported. Using another approach, we call HiSoPE for High Index Soft Proton Exchange process, we have been able to solve this reproducibility problem and obtain waveguides presenting both high confinement ($\Delta n = 0.1$), step index profiles, and preserved nonlinearities.

Nonlinearity measurement

We have investigated the influence of HiSoPE on the second order optical nonlinearity using reflected SHG measurements from the polished planar waveguide end face6. The results indicate that it is possible to realize highly confining waveguides on both X- and Z-cut wafers, without degrading the nonlinear properties of the material

Photonic wires fabrication and characterization.

The photonic wires were realized using a standard UV lithography process allowing fabricating strip waveguides with a width varying from 1 to 2 μm. The first waveguides were realized on X-cut wafers, and measurement performed on 25 mm waveguides cavities indicate that the propagation losses are in the order of 4dB/cm.

Acknowledgement:

The authors want to thank ANR for the financial support through project : ANR-09-NANO-004-01 phoXcry and CNRS Network CMDO+ for facilitation of the collaboration.
