Skip to Main content Skip to Navigation
Journal articles

Stratified critical points on the real Milnor fibre and integral-geometric formulas

Abstract : Let $(X,0) \subset (\mathbb{R}^n,0)$ be the germ of a closed subanalytic set and let $f$ and $g : (X,0) \rightarrow (\mathbb{R},0)$ be two subanalytic functions. Under some conditions, we relate the critical points of $g$ on the real Milnor fibre $X \cap f^{-1}(\delta) \cap B_\epsilon$, $0 < \vert \delta \vert \ll \epsilon \ll 1$, to the topology of this fibre and other related subanalytic sets. As an application, when $g$ is a generic linear function, we obtain an ''asymptotic" Gauss-Bonnet formula for the real Milnor fibre of $f$. From this Gauss-Bonnet formula, we deduce ''infinitesimal" linear kinematic formulas.
Complete list of metadatas

Cited literature [9 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00848992
Contributor : Nicolas Dutertre <>
Submitted on : Monday, July 29, 2013 - 4:38:49 PM
Last modification on : Monday, March 9, 2020 - 6:15:54 PM
Document(s) archivé(s) le : Wednesday, October 30, 2013 - 4:12:52 AM

Files

DutertreProcTrotman.pdf
Files produced by the author(s)

Identifiers

Citation

Nicolas Dutertre. Stratified critical points on the real Milnor fibre and integral-geometric formulas. Journal of Singularities, Worldwide Center of Mathematics, LLC, 2015, 13, pp.20. ⟨10.5427/jsing.2015.13e⟩. ⟨hal-00848992⟩

Share

Metrics

Record views

582

Files downloads

268