Solving Independent Component Analysis Contrast Functions with Particle Swarm Optimization

Abstract : Independent Component Analysis (ICA) is a statistical computation method that transforms a random vector in another one whose components are independent. Because the marginal distributions are usually unknown, the final problem is reduced to an optimization of a contrast function, a function that measures the independence of the components. In this paper, the stochastic global Particle Swarm Optimization (PSO) algorithm is used to solve the opti- mization problem. The PSO is used to separate some selected benchmarks signals based on two different contrast functions. The results obtained using the PSO are compared with classical ICA algorithms. It is shown that the PSO is a more powerful and robust technique and capable of finding the original signals or sources when classical ICA algorithms give poor results or fail to converge
Type de document :
Communication dans un congrès
ICANN-2010, 20th International Conference on Artificial Neural Networks, Sep 2010, Thessaloniki, Greece. pp.519-524, 2010
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00848817
Contributeur : Vicente Zarzoso <>
Soumis le : lundi 29 juillet 2013 - 12:01:28
Dernière modification le : lundi 29 juillet 2013 - 12:01:28

Identifiants

  • HAL Id : hal-00848817, version 1

Collections

Citation

Jorge Igual, Jehad Ababneh, Raúl Llinares, Julio Miró-Borrás, Vicente Zarzoso. Solving Independent Component Analysis Contrast Functions with Particle Swarm Optimization. ICANN-2010, 20th International Conference on Artificial Neural Networks, Sep 2010, Thessaloniki, Greece. pp.519-524, 2010. <hal-00848817>

Partager

Métriques

Consultations de la notice

63