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Abstract. The objective of this paper is to propose a low-cost, robust Error De-
tection And Correction (EDAC) solution for use in applications such as nano
satellites, where price is a primary concern. Different methods have been eval-
uated, with the main result mitigation Single Event Effects causing bit-flips in
system memory utilizing Bose-Chaudhuri-Hocquenghem (BCH) codes. The gen-
eral implementation is resource intensive and the algorithm has been adapted to
the embedded platform. The codes have been implemented on a low-cost micro-
controller with a real time operating system and faults have been injected during
run-time to emulate a radiation environment. The performance impact and dy-
namic behavior of the algorithms is studied with third party trace analysis tools.

1 Introduction

The gateway to space for research institutions and commercial actors has traditionally
been associated with a very high cost. Recent year’s development of small, inexpensive
satellites known as pico and nano satellites can change this by considerably lowering
both the price point of satellite construction and launch.

An interesting development along these lines has been the introduction of the Cube-
Sat platform. To help universities worldwide perform space research the CubeSat plat-
form was developed in 1999 by, among others, California Polytechnic State Univer-
sity and Stanford University. The CubeSat programs goal is to provide practical, cost-
effective and reliable launch opportunities for small satellites and their payloads through
a standardized platform measuring form 10 *x 10 % 10 ¢m to 10 % 10 % 30 ¢m [10] [13]
[14]. The community also maintains an overview of available launch providers, includ-
ing contact information, a service that simplifies launch tremendously.

The small standardized form factor makes it more feasible to combine the CubeSats
with other payloads, keeping the launch costs low. The co-launch with other payloads
is facilitated in the CubeSat standard by providing pre-authorized specifications for ma-
terials, physical launch stress and separation of satellite and launch vehicle in orbit.In
addition, the satellites often use Commercial of-the-shelf (COTS) electronic compo-
nents, further decreasing satellite costs.

This paper aims to investigate low-cost methods to increase mission lifetime of
small COTS based satellites. The theory and methods that are used are well known,
but the application is novel. The CubeSat community is composed of a large number
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of universities, private firms and even high schools [13]. One of the primary goals with
CubeSats is to provide an educational platform. A consequence of this is that the teams
working on the satellites have varying degrees of competence, and a robust design be-
comes even more important. The StudSat project at NTNU started as far back as the
early 2000s [9] and have launched two satellites. The first exploded during launch and
communication was never achieved with the second satellite. This history clearly states
the concern both for low cost and dependability for the current satellite.

The use of COTS based solutions allows for fast development with modern tools
and enables the designers to get full advantage of the economy of scale with cheap
and plentiful components and development tools. Due to the typically shorter lifespan
of these satellites compared to traditional endeavors, it is possible to use newer, more
innovative and even unproven components and designs without running unacceptable
financial risks. This is interesting as it allows for rapid development and advancement
in an otherwise conservative industry.

The majority of the reported work in this paper has been to study the satellite and
its systems, as well as suggesting solutions to the problems that are likely to be en-
countered. Due to cost concerns, availability and needed simplicity due to students,
CubesSats [13] [14] are usually based on the use of COTS components. A number of
different factors, that will be detailed later in this paper make these components vul-
nerable to the environment in space. In this paper we explore measures to alleviate the
impact of these factors to the reliability, availability and survivability of the satellite.

Fig. 1. NUTS - NTNU Test Satellite

1.1 Problem

One of the main challenges for space applications is the hard radiation operating con-
ditions [3] [5]. Radiation hardened electronic components and fault tolerant hardware
have been used in space systems for a number of years to either ensure error free opera-
tion or to mask the occurrence of errors from the operation of the system. In the context
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of a CubeSat, however, the main challenges of high reliability system design are slightly
different. It is still desirable with a high reliability system, but the budgetary constraints
are much stricter than for commercial or government satellites.

In addition to being considerably more expensive, radiation hardened components
traditionally lag behind their non-hardened equivalents in performance. This means that
one gets a less capable system at a higher price point. At he same time, high availability
design for CubeSats is usually not so important since the system does not control crit-
ical applications, but rather performs data collection tasks of an exploratory nature. It
is important to receive correct data and to know if the satellite has suffered a malfunc-
tion, but the timeliness is of less importance. This means that on line redundant backup
components can be omitted as long as we ensure that the system does not malfunction
critically (i.e. fail without coming back up again). By using software methods, com-
bined with some simple measures of redundancy for the most important subsystems,
it is therefore possible to get higher performance, more flexibility and lower price, all
without hot standby redundant backup components. The reason for this software ap-
proach is twofold. The most important systems in the NTNU Test Satellite (NUTS)
have already been realized in hardware, and a redesign at such a late stage is not desired
by the project management. The second reason is that we want the proposed solutions
to be relevant for projects that do not have the resources to build a conventional high
reliability system.

When considering the different reliability measurements it is important not to im-
pact the performance of the rest of the system to an unacceptable degree. If we can ac-
cept restarts and possible data loss when mitigating the effects of Single Event Phenom-
ena (SEP), it is possible to mask the errors from the operation of the system by power
cycling, checkpointing and Error Detection and Correction (EDAC). Power cycling im-
plemented in the power supply and backplane logic clears Single Event Latchups (SEL)
form components while checkpointing and EDAC clears faults from Single Event Up-
sets (SEU) in memory. This further promotes safe operation and increases the likelihood
of not loosing mission critical or payload data. Student satellites do not have access to
the established solutions because of budget constraints, and have to rely on ingenious
solutions and COTS hardware to have a usable system even in extreme conditions.

The problems with COTS components in space are numerous, as detailed by NASA
[3]. In brief, radiation effects known as SEP, can occur when cosmic radiation strikes
certain parts of the semiconductor material, as outlined by Fig. 2. If the cosmic ray has
enough energy it can alter the electrical charge and thereby alter the digital value in
the component. This is known as a bit-flip and can corrupt saved data in addition to
causing instability in the system. The expected number of errors estimated by NASA is
1072 errors/bit—day [3]. For NUTS [11] [12] this results in hundreds of errors per day
in RAM and and up to a thousand errors per day in the flash data-banks. The expected
radiation level is 10-100 Gy per gram of silicon per year with an orbital inclination
between 20 and 85 degrees [3]. The large variance stems from the fluctuations in the
solar cycle which determines the flux of both solar and galactic radiation. NUTS will
have an even higher inclination and therefore even higher worst case radiation levels
can be expected. With the total dose failure level of flash memories from 50-150 Gy
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and microprocessors from 150-700 Gy [3] of radiation, both can experience failure of a
permanent nature during the satellite’s mission lifetime.
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Fig. 2. Mechanisms for Heavy Ion and Proton SEU effects [5]

2 Error Detection and Correction, EDAC

Due to the random nature of the expected fault it is difficult to determine if the data
variables are safe to use. To counteract faults we could store the variables multiple
times and do a majority voting on the correctness or have an error correcting algorithm
such as BCH [2, p. 155] codes to correct the faults at run-time. Since executing BCH
codes in an individual task adds a layer of complexity, we have implemented a system
task in order to manage the secure storage and recovery of protected data.

A specialized EDAC system task with practical interface functions eases the de-
velopment by removing the sometimes complex algorithms from the other modules. A
module based design is also favorable in programming because of the increased ease of
maintaining and ensuring the correctness of smaller modules. This point applies even
more for reliable systems [1, p. 202].

3 Checkpointing

Checkpointing is a proven solution in software system redundancy. This enables the
system to roll back in the case of an error or initialize quickly and without losing critical
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data in the event of a system restart [7]. It is important to ensure that the system is able
to roll back multiple instances in case there is some unforeseen fault present.

Power cycling of faulty modules is implemented in the backplane. The modules of
the satellite must therefore tolerate a sudden reset without losing any significant amount
of progress or data (i.e. at least the loss of data must be known). It must be known that
the reset is due to an error in operation as there are some events such as antennae
deployment and detumbling that should only be executed once. Including these events
in the saved system state will provide a simple measure of ensuring operational progress
for the satellite.

4 Testing

The most realistic test would be to expose the system to a radiation environment and
measure how the system holds up under real stress. While this might be desirable for
the finished system it is not very useful when testing specific algorithms or sub modules
in the system. The reason for this is that it is very difficult to control which modules
is to be tested and next to impossible to replicate the exact error conditions in order to
determine the severity of the fault.

Another alternative is to simulate random error occurrence via Joint Test Action
Group (JTAG) port in the software running on the CPU boards [8]. This is somewhat
better because the efficiency, e.g. of the error correcting code, can be determined di-
rectly since the number of inserted faults is known. Arguments against this testing
regime is the lack of some realistic errors. Latchup, for instance, is hard to simulate
in software.

With these considerations in mind, the preferred testing method is to simulate errors
with JTAG injection of faults during runtime. This is the most economically viable
option for us, while at the same time allowing for repeatable test runs and allowing us
to focus on specific parts of the system.

5 Other Methods

In addition to EDAC and Checkpointing, a number of other features are being imple-
mented. Master-Slave functionality allows for a spare control computer in case the main
crashes. The Watch Dog Timer (WDT) ensures that the system does not deadlock for-
ever, e.g. while interfacing with other system components. A periodic reset protects
against any undetected failures that linger in the system. The ability to disable faulty
modules completely (i.e. power down) safeguards against a malfunctioning module af-
fecting the rest of the system. Finally, the ability to perform an integrity check on the
program memory makes it possible to detect and possibly restore errors.

6 Scope

The scope of this work is limited to soft and transient faults. If the components malfunc-
tion due to effects such as charge distribution, Single Event Latchups or Single Event
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Gate Ruptures, the power system and backplane is designed to cycle the power of the
components. If components are damaged there are backups for the most important ones,
for others the system will operate with reduced functionality.

This paper aims to investigate how to achieve high dependability in a simple system
with the use of software methods only. The reason for this approach is twofold: The
hardware for the most important systems have already been completed, and a redesign
at such a late stage is not desired by the project management. Additionally we want the
proposed solutions to be relevant for projects that do not have the resources to build a
system with high dependability through conventional means.

7 Experiments

7.1 Functional Overview

Figure 3 shows the components of the system and a brief presentation of functionality
is provided in Fig. 4. This is the principal design: The system is assumed to start in
a normal state. The system does not, however, assume correct operation, and the first
action after startup is to perform a CRC of program memory. If a fault is discovered the
EDAC attempts to correct the data. If the error can not be recovered the system enters
the checkpoint stages (c1, ca, ..., ¢,). If the rollback is successful the system continues,
if not it resets.

Host computer:
Generates fault
distribution

ead results

Generated faults

JTAG: UC3:

Access Executing satellite
memory and Inject faults SW with EDAC
inject faults and checkpointing

Fig. 3. Test Environment

7.2 Test Environment

The experimental systems consists of a host computer and an Xplained development
board [15] from Atmel. The development board uses the AT32UC3-A3256 microcon-
troller [16], the same microcontroller as the NTNU satellite. The Xplained executes the
EDAC and checkpointing system and two tasks that requests protected memory from
the EDAC system. The software for the Xplained have been developed on Atmel Studio
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Fig. 4. Functionality Description

6.0.1996 with the AVRGCC 3.4.1.95 tool chain. We use the Atmel Software Framework
(ASF) to provide drivers for external components and a protocol stack for communica-
tion between the host computer and the Xplained board. The operating system used is
FreeRTOS 7.0.0. The host computer generates errors in a certain distribution to emu-
late radiation and injects these through a JTAG interface while monitoring the EDAC
results.

In order to have more control of the results we have configured a representative test
system. The representative code only includes the necessary components (FreeRTOS,
ASF and BCH codes). This way we have the desired control of the execution environ-
ment. One reason for the necessity of this is that the code for the full satellite system is
written by many individuals and due to its size it is difficult to maintain a comprehensive
overview of all occurring events.

The main satellite repositories have 23405 lines of C and assembly code. The de-
velopment environment for the representative test system have 18036 lines of code
consisting mainly of operating system and drivers. The difference between the satel-
lite repositories and the representative system is approximately 5400 lines of code. The
implementation of EDAC and checkpointing adds approximately 2700 lines. It is sig-
nificantly easier to control the representative system, since the omitted lines are contin-
uously changing and perhaps not structured optimally having been written by students
and not professional programmers.

The microcontroller has limited RAM to store the protected data. To compensate for
this, and leave a bigger portion of system memory to tasks such as image compression,
we store most of the protected data in flash memory. When the variables are requested
they are loaded from flash to RAM. The protected data in the flash is corrected pe-
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riodically. To communicate between tasks on the microcontroller we use the built in
queues in FreeRTOS. In the representative test system we protect a smaller amount of
data compared to the requirements of the finished satellite. To compensate for this we
increase the intensity of the emulated radiation. The emulated error distribution of the
protected data is generated and transferred to the microcontroller.

The result from use of the error correcting code is in Tab. 1. The protected memory
is divided in blocks of 1008 bytes as this is the best fit between an even number of 9 byte
BCH codes and the flash page size of 1024 bytes. Table 1 presents the results from the
correction of three blocks of memory. The faults are generated as a normal distribution
and injected. The faults that can not be corrected leads to errors. In Tab. 2 the number
of faults per BCH code entry is bounded to the maximum correctional capability of
the code. When the number of faults increase past 224 we cross this threshold. Table 2
is included to demonstrate the maximum effectiveness of the correctional codes under
ideal circumstances.

11T

Fig. 5. UC3-A3 Xplained and JTAG ICE3

8 Results and Observations

The preliminary results are encouraging. The chosen parameters can detect and correct
up to 2 randomly occurring errors per stored variable, and if the faults are located fa-
vorably, up to 224 errors per protected data block. Upon a closer examination of the
injected errors we observe that the system runs to completion if the number of errors
per message block is lower or equal to the number of errors the BCH codes can correct.
Reed-Solomon (RS) error correction might have been a better choice since they perform
better than BCH codes in burst error cases [2, p. 113].Nevertheless, with the expected
fault intensity of 10~5errors/bit — day it is very unlikely that the number of errors
in a message block will exceed the codes’ capacity. The decoding of RS and BCH has
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Table 1. Error correction

Block 1 Block 2 Block 3  |Error Comparison|Fault Generator
Faults Errors|Faults Errors|Faults Errors| Mean | Std.Dev | i | o | seed
32 0 28 0 36 0 0 0 0.3|0.5| 13585
69 0 63 0 65 0 0 0 0.6/0.5| 13585
132 0 128 0 128 0 0 0 1.2]0.5| 13585
163 0 152 0 156 0 0 0 1.4(0.5| 13585
169 0 161 1 165 0 0.33 0.47 |1.5|0.5| 13585
181 0 175 3 177 0 1 1.41 |1.6/0.5| 13585
191 4 195 5 188 3 4 0.82 |1.7]|0.5| 13585
204 8 | 204 9 |200 7 8 0.82 |1.8]|0.5| 13585
210 9 | 215 11 | 213 11 | 1033 | 094 |1.9/0.5| 13585
222 13 | 223 15 | 229 20 16 294 ]2.0/0.5| 13585
235 18 | 230 30 | 235 24 24 490 |2.1|0.5| 13585
244 26 | 240 27 | 243 27 | 26.67 | 047 |2.2|/0.5| 13585

Table 2. Error correction for ideal case

Injected faults Errors

128 0
224 0
256 32

similar performance and as part of future work we could change the implementation to
get better results in those cases.

While the general implementation of BCH (N, K) codes is costly and very in-
efficient [2, p. 161], by taking advantage of specific aspects of the BCH codes and
using look-up tables, we have optimized the implementation for our microcontroller.
By choosing constant values for /N and K we do the heavy computation of the gen-
erator polynomial coefficients in advance. With these techniques in place, the number
of required cycles can be reduced by up to 51% [2, p. 164], but the precise compu-
tational cost may vary with the chosen embedded processor. The typical features that
affect performance is word length (32, 16 or 8-bit) and if the processor uses soft float or
has floating point processing implemented in hardware. Other factors such as the abil-
ity to use specific processor capabilities such as special instructions for digital signal
processing can also increase performance.

For testing purposes, optimized BC'H (67,53) codes have been implemented. This
code length is used in the European Digital Video Broadcasting standard [17] and it is
therefore easier to find hardware implementations if increased performance is required.
However, the final parameters should be adjusted based on how much computational
power that is available after the payload and radio systems have been fully integrated
and tested. This is due to the energy budget. The codes should not run a significant
amount of time since the available battery power is limited.
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9 Discussion and Conclusion

The main focus of this work has been to study the NTNU satellite to date and present
possible solutions to some of the problems. The work aims to implement a more reliable
overall system. The bulk of the work has been to understand the satellite’s systems and
reason which solutions that are most fitting to solve the expected problems.

The different problems are presented together with suggested solutions. Further,
it details how these problems can be solved with the constraint of using the already
developed satellite systems.

Some of the strategies for low-cost components can be questioned. Why use a low-
cost component when the launch cost is very high? But then again these components
have the low complexity required to be included in student designs. Even with these
low-cost solutions one should remember that a processor that costs $1 today can be
more powerful and uses much less power than the processors in the $100-$1000 from
25 years ago. When this is combined with the wide availability of inexpensive sensors,
the result is that it is possible to collect much more data at a lower cost than before.
For the same reasons it is also possible to deploy redundant sensors, and as with the
processors, the inexpensive cameras of today can have far greater capability than those
used by NASA in the 70s.

The future work will focus on implementation of the solutions discussed in this
paper. As more of the subsystems reach completion they have to be integrated in the
scheduling and fault recovery schemes of the satellite. The available processing power
will be determined by the system’s operating parameters and the load of other tasks such
as the compression algorithms. Because of this it is not advantageous to provide a finely
tuned system at this point, but rather to focus on a useful module for the satellite being
built now. An exhaustive fault injection test to determine how the full system performs
under stress is planned as the system reaches completion. With the chosen strategy
for protecting code and data in the presence of cosmic rays, using simple methods in
software have the possibility of enhancing the dependability significantly.

References

1. Daniel P. Siewiorek and Robert S. Swarz, Reliable Computer Systems, Design and Evaluation.
Digital Press, Burlington, 2nd Edition, 1992.

2. Hazarathaiah Malepati, Digital Media Processing, DSP Algorithms Using C. Newnes,
Burlington, 2010.

3. Space Radiation Effects on Electronic Components in Low-Earth Orbit, PRACTICE NO. PD-
ED-1258, JPL NASA, APRIL 1996.

4. Edward M. Silverman, Space Environmental Effects on Spacecraft: LOE Materials Selection
guide, NASA Contractor Report 4661 Part 1, 1995.

5. Sammy Kayali, Space Radiation Effects on Microelectronics, JPL NASA

Emma Litzier, System Overview - Space Segment, http://nuts.cubesat.no/the-satellite, 2013.

7. Amund Skavhaug and Odd Pettersen microFaultTolerant (uFT) - A system for achieving cost
effective fault tolerance in microcontroller based equipment, Real-Time Systems, 1995. Pro-
ceedings., Seventh Euromicro Workshop on, Conference Publication, 1995

o



Error Detection and Correction for Low-Cost Nano Satellites 11

8. Olof Hannius and Johan Karlsson, Impact of Soft Errors in a Jet Engine Controller, Computer
Safety, Reliability, and Security Lecture Notes in Computer Science, Volume 7612, Springer,
2012.

9. Jan Tommy Gravdahl, Egil Eide, Amund Skavhaug, K Svartveit, KM Fauske, Fredrik Mietle
Indergaard, Three axis Attitude Determination and Control System for a picosatellite: Design
and implementation, Proceedings of the 54th International Astronautical Congress, 2003.

10. Kjell Arne @degaard and Amund Skavhaug Survey of correction methods for faults and
errors induced by cosmic radiation on operating system level in CubeSats, IAA-CU-13-09-
09,2013, http://nuts.cubesat.no/publications—-and-reports.

11. Roger Birkeland and Odd Gutteberg, Overview of the NUTS CubeSat Project, IAA-CU-13-
09-09, 2013, http://nuts.cubesat .no/publications—and-reports.

12. NUTS - Publications and reports, http://nuts.cubesat.no/
publications—and-reports

13. Cubesat Specification, http://www.cubesat.org/images/developers/cds_
revl2.pdf

14. CubeSat mission statement, http://cubesat.org/index.php/about-us/
mission-statement

15. UC3-A3 Xplained, http://www.atmel.com/tools/UC3-A3XPLAINED.aspx

16. AT32UC3A3, http://www.atmel.com/Images/doc32072.pdf

17. Digital Video Broadcasting (DVB); Framing structure, channel coding and mod-
ulation for digital terrestrial television, European Broadcasting Union, 2004.
http://www.etsi.org/deliver/etsi_en/300700_300799/300744/01.
05.01_40/en_300744v0105010.pdf



