
HAL Id: hal-00848597
https://hal.science/hal-00848597

Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based Testing of Cooperating Robotic Systems
using Coloured Petri Nets

Raimar Lill, Francesca Saglietti

To cite this version:
Raimar Lill, Francesca Saglietti. Model-based Testing of Cooperating Robotic Systems using Coloured
Petri Nets. SAFECOMP 2013 - Workshop DECS (ERCIM/EWICS Workshop on Dependable Embed-
ded and Cyber-physical Systems) of the 32nd International Conference on Computer Safety, Reliability
and Security, Sep 2013, Toulouse, France. pp.NA. �hal-00848597�

https://hal.science/hal-00848597
https://hal.archives-ouvertes.fr

Model-based Testing of Cooperating Robotic Systems

using Coloured Petri Nets

Raimar Lill, Francesca Saglietti

Chair of Software Engineering

University of Erlangen-Nuremberg

Martensstr. 3

91058 Erlangen, Germany

raimar.lill@informatik.uni-erlangen.de

saglietti@informatik.uni-erlangen.de

Abstract. This article proposes a model-based testing approach for cooperating

robotic systems. Coloured Petri Nets are used for capturing the high

behavioural multiplicity of such systems in a compact and scalable way. For the

purpose of systematically extracting test cases from underlying models, a

number of coverage criteria based on different model entities is introduced.

Finally, in order to ensure practicality, an incremental testing procedure based

on increasingly refined coverage concepts is proposed.

Keywords: model-based testing, cooperating autonomous systems, Coloured

Petri Nets, coverage metrics, incremental testing procedure

1 Introduction

Reliable cooperation of autonomous, programmable systems assumes that each entity

was developed such as to include individual capabilities for sensing its environment,

reasoning about the options it offers and deciding for one among several optional

behaviours in order to maintain a safe co-existence with the other entities and to

contribute to the achievement of a common target.

In contrast to conventional distributed sub-systems subject to a central controller

continuously allocating decoupled jobs to each of the communicating partners,

modern robotic systems are characterized by high degrees of individual autonomy [1];

this is envisaged for the purpose of increasing flexibility, performance and robustness,

in particular by permitting to react quickly and appropriately to unforeseen situations

by immediate local intervention.

While certainly adding to the attractiveness of future robotic-based applications, this

vision admittedly suffers from a number of limitations, especially concerning the

reliability and safety of cooperative behaviour under any operational circumstance. In

fact, the flexibility and the agility announced by highly autonomous systems may

reveal as risky if the huge width of potential asynchronous behaviour may allow for

sporadic unsafe interactions. It is therefore required to exclude inacceptable side

effects by a thorough analysis of all possible interactions.

Due to the physical multiplicity of interacting scenarios, exhaustive static verification

is not practicable; a preliminary model-based behavioural representation, however,

provides useful support to successive testing phases based on stepwise refined

coverage criteria.

For this purpose, the present article deals with testing of cooperative autonomous

systems by means of model-based coverage criteria. It is organized as follows:

Chapter 2 highlights the main peculiarities of the Coloured Petri Nets modelling

language and justifies its choice for the following considerations. Chapter 3

introduces a number of increasingly refined coverage concepts and organizes them in

a common subsumption hierarchy. Finally, Chapter 4 suggests how to make use of

these coverage concepts in the course of successive testing phases based on

increasingly enriched contextual views of operational context.

2 CPN for Modelling Cooperating Autonomous Systems

Coloured Petri Nets (CPN) [2] is a formal discrete-event language for modelling and

validating complex concurrent systems. In particular, CPN has proven to be adequate

for capturing the high behavioural multiplicity of cooperating autonomous systems

thanks to its inherent scalability and expressiveness [3]. The following remarks

outline substantial concepts and benefits of CPN, while for a detailed definition of the

modelling language the reader is kindly referred to [2] or [3].

Similarly to classical Place/Transition Petri Nets [4], also CPN graphs are directed

bipartite graphs containing place and transition nodes, where edges are denoted as

input arcs if they connect a place with a transition and as output arcs if they connect a

transition with a place. Contrary to classical Petri Nets with generic tokens, however,

CPN tokens are assigned type-specific values named colours; more precisely, each

CPN place is assigned a type called colour set consisting of all different colours

tokens may assume in that place. Colour set assignments as well as annotations of

arcs by expressions and of transitions by guards are expressed in the functional

programming language SML [5].

A CPN transition is enabled as soon as each variable contained in any of its input arc

expressions can be bound to a colour of the corresponding input place, such that w.r.t.

this variable binding all input places contain at least as many tokens as determined by

evaluating the corresponding input arc expression, while satisfying any potential

guard of the transition considered. Firing a transition enabled by a given variable

binding results in the consumption of input place tokens in quantity and colour

determined by corresponding input arc expressions, followed by the production of

output place tokens in quantity and colour determined by corresponding output arc

expressions.

Concerning the modelling of cooperating robotic systems, CPN provides substantial

benefits by offering a relatively intuitive graphical representation supporting

visualization by simulation. At the same time, CPN offers the appropriate expressive

power by being capable of capturing the high variety of potential interactions arising

by cooperation of the robotic entities involved. Thanks to the concept of colour sets,

CPN allows to store relevant information in type-specific tokens, thus avoiding the

need to expand the graph by additional places and transitions. Hereby it supports not

only compactness, but in particular scalability by permitting to adapt to different

application-specific conditions.

An example outlining the benefits of CPN was presented in [6]. It is intended to

represent the movement of forklifts within a logistic warehouse, where an arbitrary

number of robots move along a narrow lane consisting of an arbitrary number of

segments for the purpose of accomplishing loading missions. Hereby, decisions on the

behaviour of each robot have to be taken as autonomously as possible. The resulting

CPN model allows to abstract both from the subjects (robots) and their environment

(segments). In particular, it offers a topology-neutral representation which can be

easily adapted to plant-specific environmental conditions just by varying the initial

CPN markings according to the actual numbers of robots and segments. Generic

actions are classified (e.g. robot forward movement, switching positions with a facing

robot, alarming a human operator) and represented by transitions. On the other hand,

action instances referring to specific robots and to specific segments are captured by

so-called CPN events, i.e. transitions with enabling variable bindings. Further

refinement is provided by specifying the global context in which a specific action is

carried out. This information is captured by so-called CPN states, encoded by net

markings allowing for the inclusion of further forklifts not directly involved in the

action considered, but potentially interfering in future.

3 Coverage Criteria and Subsumption Hierarchy

According to the principles of model-based testing, test cases are to be derived

systematically from underlying CPN models. A CPN-based test case is defined as a

pair consisting of an initial state and a finite sequence of events. For the purpose of

providing adequate stopping rules to the testing phase, this section introduces

coverage metrics based on transition, event and state entities. The following criteria

were partly inspired by [7] and [8] where transition-based and state-based coverage

criteria for so-called Predicate/Transition Petri Nets [9] were defined. Different

classes of coverage criteria for CPN were identified as follows:

Transition-based coverage criteria demand for the execution of basic actions resp.

sequences of basic actions; we distinguish between

 the “all transitions”- criterion requiring every transition to be fired;

 the “all transition pairs”- criterion requiring every transition as well as any

possible pair of consecutive transitions to be fired;

 the “all transition sequences”- criterion requiring any possible sequence of

transitions to be fired.

By restricting the observation to generic action classes, the transition-based coverage

concept does not require to take into account the colour of tokens involved in

transition firings.

Event-based coverage criteria demand for the occurrence of events, i.e. specific

action instances, resp. sequences of events; we distinguish between

 the “all events”- criterion requiring every event to occur;

 the “all event pairs”- criterion requiring every event as well as any possible pair

of consecutive events to occur;

 the “all event sequences”- criterion requiring any possible sequence of events to

occur.

These criteria explicitly consider the colours and amount of tokens involved in

transition firings. On the other hand, they intentionally miss global information

outside the narrow scope of the actions addressed.

State-based coverage criteria demand for the reaching of states, i.e. CPN markings,

resp. sequences of states; we distinguish between

 the “all states”- criterion requiring every state to be reached;

 the “all state pairs”- criterion requiring every state as well as any possible pair of

consecutive states to be reached;

 the “all state sequences”- criterion requiring any possible sequence of states to be

reached.

State-based coverage criteria capture global information about operational pre- and

post-conditions potentially encountered before and after an event occurrence.

Assuming a common initial CPN marking, the coverage criteria introduced above can

be organized in the subsumption hierarchy shown in Figure 1. Implications between

criteria are indicated by arrows pointing from a stronger to a weaker criterion. For a

more detailed explanation of the relations between the coverage criteria proposed, the

reader is kindly referred to [6].

Fig. 1. Subsumption hierarchy of CPN-based coverage criteria

4 Incremental Testing Procedure

The subsumption hierarchy shown in Figure 1 illustrates a fundamental refinement

relation between criteria, as stronger coverage concepts placed in the upper part of the

picture result from weaker ones (shown in the bottom part) by including additional

contextual details. This insight suggests to organize the overall testing process in an

incremental fashion by starting with a narrow testing focus restricted to generic

actions and by gradually enriching the scope of behavioural variety with further

contextual information. The resulting procedure is summarized in Figure 2.

Fig. 2. CPN entities involving different degrees of contextual detail

Referring to the cooperating forklifts presented as example in Section 3, generic

action testing aims at verifying basic, but non-trivial functionalities like sensing, self-

localisation and motor activities of robots. The following testing phase addresses local

context by adding further contextual information on specific action instances like

movement on segments of varying grip or slope. As a further refinement step, a third

and final structural testing phase is intended to capture also global states encountered

before and after any event occurrence. Covering consecutive state pairs does not only

address specific action instances, but also global environmental conditions. In case of

the forklift factory, state pairs may capture the information on the positioning of any

other robot not directly involved in the action under test, but potentially affecting its

all state
sequences

all state
pairs

all
states

all event
sequences

all event
pairs

all
events

all transition
sequences

all transition
pairs

all
transitions

global context

local context

generic actionstransitions

events

states

future behaviour, e.g. a traffic jam to be encountered after the switching of positions

of two facing robots.

The three testing phases mentioned so far are characterized by systematic, structural

demands ignoring the frequency of occurrence of individual events under given

circumstances. Obviously, full coverage may only be achieved up to practicable

sequence lengths. Nonetheless, this testing process is considered as extremely useful

to support accurate preliminary verification activities carried out for the purpose of

detecting faults; it does not allow, however, to assess operational reliability. For this

purpose, systematic testing must be followed by a profile-based field testing phase

with state sequences weighted according to their expected operational frequency and

safety criticality.

Table 1 summarizes the overall testing procedure we propose.

Table 1. CPN-based testing procedure

5 Conclusion

In this article a step-wise CPN-based testing approach for cooperating robotic systems

was introduced. To provide measureable stopping rules to the structural test, different

coverage criteria were defined and hierarchically organized in a subsumption

hierarchy. The implications between the coverage concepts suggest a traceable

structural testing procedure consisting of three major steps:

 generic action testing addressing basic actions;

 local context testing addressing data-specific action instances;

 global context testing addressing state-dependent action instances.

While these systematic testing phases are essential for capturing the multiplicity of

interaction scenarios, they must be followed by a fourth phase based on operational

profiles supporting reliability assement by statistical testing [10].

Ongoing work is being devoted to automatic test case generation via evolutionary

techniques which already proved as successful approaches in more conventional

software testing areas [11], [12].

Entities to be covered Testing objective

Structural
testing

transitions / transition sequences generic actions

events / event sequences local context

state pairs / state tuples global context

Field testing profile-specific state sequences operational conditions

Acknowledgement: It is gratefully acknowledged that part of the work reported was sponsored

by the German Federal Ministry of Education and Research BMBF (Bundesministerium für

Bildung und Forschung) in cooperation with the European Union Research Programme

ARTEMIS (Advanced Research and Technology for Embedded Intelligence and Systems),

project R3-COP (Resilient Reasoning Robotic Co-operating Systems).

References

1. Saglietti, F., Söhnlein, S., Lill, R.: Evolution of Verification Techniques by Increasing

Autonomy of Cooperating Agents. In: Autonomous Systems Developments and Trends,

Studies in Computational Intelligence, vol. 391, pp. 353-362. Springer (2011)

2. Jensen, K., Kristensen, L. M.: Coloured Petri Nets: Modelling and Validation of

Concurrent Systems. Springer (2009)

3. Lill, R., Saglietti, F.: Model-based Testing of Autonomous Systems based on Coloured

Petri Nets. In: ARCS 2012 Workshops Proceedings, LNI, vol. 200, pp. 241-250.

Gesellschaft für Informatik (2012)

4. Murata, T.: Petri Nets: Properties, Analysis and Applications. In: Proceedings of the IEEE,

vol. 77, no. 4, pp. 541-580. IEEE (1989)

5. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML

(Revised). MIT Press (1997)

6. Lill, R., Saglietti, F.: Test Coverage Criteria for Autonomous Mobile Systems based on

Coloured Petri Nets. In: 9th Symposium on Formal Methods for Automation and Safety in

Railway and Automotive Systems (FORMS/FORMAT 2012), pp. 155-162. Institut für

Verkehrssicherheit und Automatisierungstechnik, Braunschweig (2012)

7. Zhu, H., He, X.: A Theory of Testing High Level Petri Nets. In: Proc. 16th Int. Conf. on

Software - Theory and Practice, pp. 443-450. Publishing House of Electronics Industry

(2000)

8. Zhu, H., He, X.: A Methodology of Testing High-Level Petri Nets. In: Information and

Software Technology, vol. 44, no. 8, pp. 473-489. Elsevier (2002)

9. Genrich, H. J., Lautenbach, K.: System Modelling with High-Level Petri Nets. In:

Theoretical Computer Science, vol. 13, issue 1, pp. 109-136. Elsevier (1981)

10. Söhnlein, S., Saglietti, F., Bitzer, F., Meitner, M., Baryschew, S.: Software Reliability

Assessment based on the Evaluation of Operational Experience. In: Proc. 15th Internat.

GI/ITG Conference on Measurement, Modelling, and Evaluation of Computing Systems

and Dependability and Fault Tolerance, LNCS, vol. 5987, pp. 24-38. Springer (2010)

11. Pinte, F., Oster, N., Saglietti, F.: Techniques and Tools for the Automatic Generation of

Optimal Test Data at Code, Model and Interface Level. In: Companion of 30th

International Conference on Software Engineering (ICSE 2008), pp. 927-928. ACM

(2008)

12. Meitner, M., Saglietti, F.: Software Reliability Testing Covering Subsystem Interactions.

In: Proc. 16th International GI/ITG Conference on Measurement, Modelling and

Evaluation of Computing Systems and Dependability and Fault Tolerance (MMB & DFT

2012), LNCS, vol. 7201, pp. 46-60. Springer (2012)

