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Abstract. This article proposes a model-based testing approach for cooperating 

robotic systems. Coloured Petri Nets are used for capturing the high 

behavioural multiplicity of such systems in a compact and scalable way. For the 

purpose of systematically extracting test cases from underlying models, a 

number of coverage criteria based on different model entities is introduced. 

Finally, in order to ensure practicality, an incremental testing procedure based 

on increasingly refined coverage concepts is proposed. 
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1 Introduction 

Reliable cooperation of autonomous, programmable systems assumes that each entity 

was developed such as to include individual capabilities for sensing its environment, 

reasoning about the options it offers and deciding for one among several optional 

behaviours in order to maintain a safe co-existence with the other entities and to 

contribute to the achievement of a common target. 

 

In contrast to conventional distributed sub-systems subject to a central controller 

continuously allocating decoupled jobs to each of the communicating partners, 

modern robotic systems are characterized by high degrees of individual autonomy [1]; 

this is envisaged for the purpose of increasing flexibility, performance and robustness, 

in particular by permitting to react quickly and appropriately to unforeseen situations 

by immediate local intervention. 

 

While certainly adding to the attractiveness of future robotic-based applications, this 

vision admittedly suffers from a number of limitations, especially concerning the 

reliability and safety of cooperative behaviour under any operational circumstance. In 

fact, the flexibility and the agility announced by highly autonomous systems may 

reveal as risky if the huge width of potential asynchronous behaviour may allow for 



sporadic unsafe interactions. It is therefore required to exclude inacceptable side 

effects by a thorough analysis of all possible interactions. 

 

Due to the physical multiplicity of interacting scenarios, exhaustive static verification 

is not practicable; a preliminary model-based behavioural representation, however, 

provides useful support to successive testing phases based on stepwise refined 

coverage criteria. 

 

For this purpose, the present article deals with testing of cooperative autonomous 

systems by means of model-based coverage criteria. It is organized as follows: 

Chapter 2 highlights the main peculiarities of the Coloured Petri Nets modelling 

language and justifies its choice for the following considerations. Chapter 3 

introduces a number of increasingly refined coverage concepts and organizes them in 

a common subsumption hierarchy. Finally, Chapter 4 suggests how to make use of 

these coverage concepts in the course of successive testing phases based on 

increasingly enriched contextual views of operational context. 

2 CPN for Modelling Cooperating Autonomous Systems 

Coloured Petri Nets (CPN) [2] is a formal discrete-event language for modelling and 

validating complex concurrent systems. In particular, CPN has proven to be adequate 

for capturing the high behavioural multiplicity of cooperating autonomous systems 

thanks to its inherent scalability and expressiveness [3]. The following remarks 

outline substantial concepts and benefits of CPN, while for a detailed definition of the 

modelling language the reader is kindly referred to [2] or [3]. 

 

Similarly to classical Place/Transition Petri Nets [4], also CPN graphs are directed 

bipartite graphs containing place and transition nodes, where edges are denoted as 

input arcs if they connect a place with a transition and as output arcs if they connect a 

transition with a place. Contrary to classical Petri Nets with generic tokens, however, 

CPN tokens are assigned type-specific values named colours; more precisely, each 

CPN place is assigned a type called colour set consisting of all different colours 

tokens may assume in that place. Colour set assignments as well as annotations of 

arcs by expressions and of transitions by guards are expressed in the functional 

programming language SML [5]. 

 

A CPN transition is enabled as soon as each variable contained in any of its input arc 

expressions can be bound to a colour of the corresponding input place, such that w.r.t. 

this variable binding all input places contain at least as many tokens as determined by 

evaluating the corresponding input arc expression, while satisfying any potential 

guard of the transition considered. Firing a transition enabled by a given variable 

binding results in the consumption of input place tokens in quantity and colour 

determined by corresponding input arc expressions, followed by the production of 

output place tokens in quantity and colour determined by corresponding output arc 

expressions. 

 



Concerning the modelling of cooperating robotic systems, CPN provides substantial 

benefits by offering a relatively intuitive graphical representation supporting 

visualization by simulation. At the same time, CPN offers the appropriate expressive 

power by being capable of capturing the high variety of potential interactions arising 

by cooperation of the robotic entities involved. Thanks to the concept of colour sets, 

CPN allows to store relevant information in type-specific tokens, thus avoiding the 

need to expand the graph by additional places and transitions. Hereby it supports not 

only compactness, but in particular scalability by permitting to adapt to different 

application-specific conditions. 

 

An example outlining the benefits of CPN was presented in [6]. It is intended to 

represent the movement of forklifts within a logistic warehouse, where an arbitrary 

number of robots move along a narrow lane consisting of an arbitrary number of 

segments for the purpose of accomplishing loading missions. Hereby, decisions on the 

behaviour of each robot have to be taken as autonomously as possible. The resulting 

CPN model allows to abstract both from the subjects (robots) and their environment 

(segments). In particular, it offers a topology-neutral representation which can be 

easily adapted to plant-specific environmental conditions just by varying the initial 

CPN markings according to the actual numbers of robots and segments. Generic 

actions are classified (e.g. robot forward movement, switching positions with a facing 

robot, alarming a human operator) and represented by transitions. On the other hand, 

action instances referring to specific robots and to specific segments are captured by 

so-called CPN events, i.e. transitions with enabling variable bindings. Further 

refinement is provided by specifying the global context in which a specific action is 

carried out. This information is captured by so-called CPN states, encoded by net 

markings allowing for the inclusion of further forklifts not directly involved in the 

action considered, but potentially interfering in future.  

3 Coverage Criteria and Subsumption Hierarchy 

According to the principles of model-based testing, test cases are to be derived 

systematically from underlying CPN models. A CPN-based test case is defined as a 

pair consisting of an initial state and a finite sequence of events. For the purpose of 

providing adequate stopping rules to the testing phase, this section introduces 

coverage metrics based on transition, event and state entities. The following criteria 

were partly inspired by [7] and [8] where transition-based and state-based coverage 

criteria for so-called Predicate/Transition Petri Nets [9] were defined. Different 

classes of coverage criteria for CPN were identified as follows: 

  



Transition-based coverage criteria demand for the execution of basic actions resp. 

sequences of basic actions; we distinguish between  

 

 the “all transitions”- criterion requiring every transition to be fired; 

 the “all transition pairs”- criterion requiring every transition as well as any 

possible pair of consecutive transitions to be fired; 

 the “all transition sequences”- criterion requiring any possible sequence of 

transitions to be fired. 

 

By restricting the observation to generic action classes, the transition-based coverage 

concept does not require to take into account the colour of tokens involved in 

transition firings. 

 

Event-based coverage criteria demand for the occurrence of events, i.e. specific 

action instances, resp. sequences of events; we distinguish between 

 

 the “all events”- criterion requiring every event to occur;  

 the “all event pairs”- criterion requiring every event as well as any possible pair 

of consecutive events to occur;  

 the “all event sequences”- criterion requiring any possible sequence of events to 

occur. 

 

These criteria explicitly consider the colours and amount of tokens involved in 

transition firings. On the other hand, they intentionally miss global information 

outside the narrow scope of the actions addressed. 

 

State-based coverage criteria demand for the reaching of states, i.e. CPN markings, 

resp. sequences of states; we distinguish between 

 

 the “all states”- criterion requiring every state to be reached; 

 the “all state pairs”- criterion requiring every state as well as any possible pair of 

consecutive states to be reached; 

 the “all state sequences”- criterion requiring any possible sequence of states to be 

reached. 

 

State-based coverage criteria capture global information about operational pre- and 

post-conditions potentially encountered before and after an event occurrence. 

 

Assuming a common initial CPN marking, the coverage criteria introduced above can 

be organized in the subsumption hierarchy shown in Figure 1. Implications between 

criteria are indicated by arrows pointing from a stronger to a weaker criterion. For a 

more detailed explanation of the relations between the coverage criteria proposed, the 

reader is kindly referred to [6]. 



 

 

Fig. 1. Subsumption hierarchy of CPN-based coverage criteria 

4 Incremental Testing Procedure 

The subsumption hierarchy shown in Figure 1 illustrates a fundamental refinement 

relation between criteria, as stronger coverage concepts placed in the upper part of the 

picture result from weaker ones (shown in the bottom part) by including additional 

contextual details. This insight suggests to organize the overall testing process in an 

incremental fashion by starting with a narrow testing focus restricted to generic 

actions and by gradually enriching the scope of behavioural variety with further 

contextual information. The resulting procedure is summarized in Figure 2. 

 

Fig. 2. CPN entities involving different degrees of contextual detail  

Referring to the cooperating forklifts presented as example in Section 3, generic 

action testing aims at verifying basic, but non-trivial functionalities like sensing, self-

localisation and motor activities of robots. The following testing phase addresses local 

context by adding further contextual information on specific action instances like 

movement on segments of varying grip or slope. As a further refinement step, a third 

and final structural testing phase is intended to capture also global states encountered 

before and after any event occurrence. Covering consecutive state pairs does not only 

address specific action instances, but also global environmental conditions. In case of 

the forklift factory, state pairs may capture the information on the positioning of any 

other robot not directly involved in the action under test, but potentially affecting its 
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future behaviour, e.g. a traffic jam to be encountered after the switching of positions 

of two facing robots. 

 

The three testing phases mentioned so far are characterized by systematic, structural 

demands ignoring the frequency of occurrence of individual events under given 

circumstances. Obviously, full coverage may only be achieved up to practicable 

sequence lengths. Nonetheless, this testing process is considered as extremely useful 

to support accurate preliminary verification activities carried out for the purpose of 

detecting faults; it does not allow, however, to assess operational reliability. For this 

purpose, systematic testing must be followed by a profile-based field testing phase 

with state sequences weighted according to their expected operational frequency and 

safety criticality. 

 

Table 1 summarizes the overall testing procedure we propose. 

 

Table 1. CPN-based testing procedure 

5 Conclusion 

In this article a step-wise CPN-based testing approach for cooperating robotic systems 

was introduced. To provide measureable stopping rules to the structural test, different 

coverage criteria were defined and hierarchically organized in a subsumption 

hierarchy. The implications between the coverage concepts suggest a traceable 

structural testing procedure consisting of three major steps: 

 

 generic action testing addressing basic actions; 

 local context testing addressing data-specific action instances;  

 global context testing addressing state-dependent action instances. 

 

While these systematic testing phases are essential for capturing the multiplicity of 

interaction scenarios, they must be followed by a fourth phase based on operational 

profiles supporting reliability assement by statistical testing [10].  

 

Ongoing work is being devoted to automatic test case generation via evolutionary 

techniques which already proved as successful approaches in more conventional 

software testing areas [11], [12].  

 

Entities to be covered Testing objective

Structural
testing

transitions / transition sequences generic actions

events / event sequences local context

state pairs / state tuples global context

Field testing profile-specific state sequences operational conditions
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