An entanglement-enabled delayed-choice experiment
Florian Kaiser, Thomas Coudreau, Pérola Milman, Daniel Barry Ostrowsky, Sébastien Tanzilli

To cite this version:

HAL Id: hal-00847637
https://hal.archives-ouvertes.fr/hal-00847637
Submitted on 24 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An entanglement-enabled delayed-choice experiment

Florian Kaiser¹, Thomas Coudreau², Perola Milman³, Daniel B. Ostrowsky¹, Sébastien Tanzilli¹
¹LPMC, Université Nice - Sophia Antipolis, CNRS UMR 7336, Parc Valrose, 06108 Nice, France
²Laboratoire MPQ, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7162, 75013 Paris, France

Bohr’s complementarity notion is at the heart of quantum physics. It suggests that quantum systems are observed as waves or particles depending on the type of measurement, i.e. the experimental arrangement, they are subjected to [1]. For instance (see FIG. 1), sending single photons to an open or closed Mach-Zehnder interferometer (MZI) leads to the observation of particle or wave behaviours, respectively [2]. In 1984, Wheeler proposed a “Gedanken” delayed-choice experiment in which the interferometer configuration is chosen at will by the experimentalist only after the experiment has already passed the input beam-splitter (BṠin) of the device [3]. This experiment was realized using a single photon source and showed that Bohr’s complementarity notion was still obeyed [4].

It was recently proposed to take Wheeler’s experiment one step further by employing an output “quantum beam-splitter” (QBS), i.e. preparing BṠout in a coherent superposition of being absent and present [5]. This allows choosing the type of measurement, i.e. wave or particle, only after having determined the state of the QBS, which can be (in principle) infinitely delayed. We realized such an experiment by exploiting the resource of entanglement, in this case pairs of polarization entangled photons. The behaviour of one of the paired photons, called the corroborative photon, allows determining the state of the QBS, and consequently, which test photon behaviour (wave, particle, or both) is observed.

By manipulating the corroborative photon polarization state, we demonstrate a continuous morphing of the test photon from wave to particle behaviour. This refutes simple models of single photons behaving exclusively as waves or particles (see FIG. 2) [6]. The state of the QBS is determined via the measurement of the corroborative photon (not shown) only after the test photon has already been detected. The space-like separation between the two measurements invalidates local-hidden variable models associated with pre-existing information about the measurement outcomes. In other words, when the test photon is detected, no information is available about the type of measurement it underwent. These results still perfectly obey Bohr’s complementarity notion and its extension [7].

Entanglement is at the heart of our approach. It permits observing genuine quantum behaviour for the test photons. The entanglement quality is verified by the violation of the Bell inequalities with more than 10 standard deviations [6].

Trying to explain the results of our quantum version of Wheeler’s experiment in classical terms causes severe contradictions, but the results are in perfect agreement with quantum physics, in which the measurement timing order does not matter. The beauty of such an experiment is that space and time do not seem to play any role [6, 8, 9].

References: