Robust vision-based robot localization using combinations of local feature region detectors

Arnau Ramisa 1, 2, * Adriana Tapus 3 David Aldavert 4 Ricardo Toledo 4 Ramon Lopez de Mantaras 2
* Auteur correspondant
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
4 Computer Vision Center
CVC - Computer Vision Center (Centre de visio per computador)
Abstract : This paper presents a vision-based approach for mobile robot localization. The model of the environment is topological. The new approach characterizes a place using a signature. This signature consists of a constellation of descriptors computed over different types of local affine covariant regions extracted from an omnidirectional image acquired rotating a standard camera with a pan-tilt unit. This type of representation permits a reliable and distinctive environment modelling. Our objectives were to validate the proposed method in indoor environments and, also, to find out if the combination of complementary local feature region detectors improves the localization versus using a single region detector. Our experimental results show that if false matches are effectively rejected, the combination of different covariant affine region detectors increases notably the performance of the approach by combining the different strengths of the individual detectors. In order to reduce the localization time, two strategies are evaluated: re-ranking the map nodes using a global similarity measure and using standard perspective view field of 45°. In order to systematically test topological localization methods, another contribution proposed in this work is a novel method to see the degradation in localization performance as the robot moves away from the point where the original signature was acquired. This allows to know the robustness of the proposed signature. In order for this to be effective, it must be done in several, variated, environments that test all the possible situations in which the robot may have to perform localization.
Type de document :
Article dans une revue
Autonomous Robots, Springer Verlag, 2009, 27 (4), pp.373-385. 〈10.1007/s10514-009-9136-9〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00847376
Contributeur : Adriana Tapus <>
Soumis le : mardi 23 juillet 2013 - 14:16:06
Dernière modification le : vendredi 6 janvier 2017 - 01:22:39
Document(s) archivé(s) le : jeudi 24 octobre 2013 - 04:35:12

Fichier

tapus_AutonomousRobots2009.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Arnau Ramisa, Adriana Tapus, David Aldavert, Ricardo Toledo, Ramon Lopez de Mantaras. Robust vision-based robot localization using combinations of local feature region detectors. Autonomous Robots, Springer Verlag, 2009, 27 (4), pp.373-385. 〈10.1007/s10514-009-9136-9〉. 〈hal-00847376〉

Partager

Métriques

Consultations de
la notice

463

Téléchargements du document

286