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ABSTRACT

Sister (congeneric) species may exhibit disparate patterns of biogeographic genetic structures due to
different life histories and habitat preferences. The common cockle Cerastoderma edule and the lagoon
cockle Cerastoderma glaucum probably diverged from their common ancestor in the present territory of
Sahara around 5 million years ago. Although it is difficult to separate both species morphologically,
various genetic markers, both mitochondrial and nuclear, clearly distinguish them. Furthermore, their
lifestyles are different, as C. edule has a much less fragmented coastal habitat and a longer duration of
pelagic larval stage than C. glaucum. A comparative genetic analysis was conducted on 17 populations of
C. edule and 13 populations of C. glaucum using a 506 bp fragment of mitochondrial DNA (COI). We tested
the hypothesis that differences in habitat types and life history are reflected in the genetic structure
patterns of these two cockles. Indeed substantial differences in population genetic structures between
them are revealed. Genetic diversity within C. glaucum populations decreases northwards as a conse-
quence of post-glacial (re)colonization from southern refugia, while C. edule displays an opposite pattern
indicating survival in glacial refuges in the northern Atlantic. Among populations within geographic
groups, genetic differentiation is low in C. edule, probably as a result of larval dispersal with coastal
currents, while it is extremely high in C. glaucum, best explained by the fragmented habitats. Interest-
ingly, long distance divergence is less expressed in C. glaucum than in C. edule, which supports the
speculation that migrating birds (frequently observed in lagoons) may occasionally transport the former
more often or more efficiently than the latter. The approach applied in this study (e.g., rarefaction
procedure, selection of samples of both species from the same regions) enabled a new and reliable
comparative analysis of the existing raw datasets.

1. Introduction

Closely related (congeneric) species may exhibit contrasting
patterns of population genetic structure due to various factors (i.e.,
biological, ecological, physiological, behavioral, physical, geological
or environmental) (Bermingham and Moritz, 1998). In sessile
coastal invertebrates, life history traits (e.g., direct development
versus planktonic larvae) mainly determine dispersal capacity
(Teske et al., 2007). Various geographic and hydrological barriers, as
well as habitat preferences influence dispersal success and conse-
quently the level of gene flow (Palumbi, 1994; McMillen-Jackson

and Bert, 2003). Present genetic patterns are also shaped by the
environmental history of the region, mainly Pleistocene glaciations,
which rendered most areas of northern Europe uninhabitable
(Maggs et al., 2008). Therefore, comparative assessments of the
population genetic structures of closely-related species give the
opportunity to understand factors influencing evolutionary
processes on different time scales.

The cardiid bivalves Cerastoderma glaucum and Cerastoderma
edule diverged from their common ancestor in the Mediterranean
Sea and the present territory of Sahara during late Miocene (Rygg,
1970; Levy, 1985; Brock and Christiansen, 1989; Hummel et al.,
1994; Nikula and Vdin6ld, 2003). This divergence was probably
the result of the Messinian salinity crisis during which the
Mediterranean was split into a number of isolated basins and
lagoons with different salinity conditions (Hsii et al., 1977). These



paleogeographic and paleoclimatic events have played an impor-
tant role in the evolutionary history of several marine taxa (Hanel
et al., 2002; Costagliola et al., 2004 and references therein;
Valsecchi et al., 2005) including cardiids (Miiller et al., 1999).
According to the allopatric speciation scenario, which is the most
likely for the two cockles, C. glaucum evolved in the area of the
present Mediterranean Sea in basins with changing salinity and
became adapted to a great salinity range. During isolation by low
sea level, C. edule colonized the coast of the Atlantic Ocean char-
acterized by its tidal movement and alongshore currents. In later
times, C. glaucum managed to spread northwards in competition
with C. edule and settle down at some patches along the Atlantic
coast, probably because of its tolerance of non-tidal water (see
below) (Ansell et al., 1981). In contrast, C. edule did not recolonize
the inner Mediterranean (Rygg, 1970). Taking into account the
morphological similarity of the two cockle species, it is hard to
find definite fossil proof of their divergence scenario. Both taxa
have even similar spawning periods and may co-inhabit calm sea
grass areas or bights along the Atlantic coast. However, cross-
fertilization was never recorded, neither in experimental nor in
natural conditions (Kingston, 1973; Brock, 1978; Gosling, 1980).
There are a few criteria for morphological distinction between the
two species, but none of them seemed to enable unequivocal
separation at all sites of co-occurrence (Brock, 1978; Machado and
Costa, 1994). Nevertheless, biochemical criteria and genetic
markers are able to clearly distinguish both cockles (Brock, 1978;
Brock, 1987; Brock and Christiansen, 1989; Hummel et al., 1994;
André et al,, 1999; Nikula and Vdinold, 2003; Freire et al., 2005;
Ladhar-Chaabouni et al., 2010). Microsatellite primers designed
for C. glaucum did not amplify DNA from C. edule, which also
proves the separate character of these species (personal
observation).

Both Cerastoderma edule and Cerastoderma glaucum are eury-
topic although C. glaucum tolerates wider ranges of temperatures
and salinities (Zaouali, 1974). The larvae of C. edule cannot develop
below the salinity of 16 (Eisma, 1965), whereas C. glaucum tolerates
salinities down to 4 (Practical Salinity Scale) (Mars, 1950). The fact
that C. glaucum tolerates high temperatures better than C. edule is
probably a consequence of its Mediterranean origin and is the
reason why it can live in lagoons with water temperature exceeding
30 °C during summer (Ansell et al., 1981; Wilson and Elkaim, 1997).
However, C. glaucum lacks the tolerance to very loose, well-sorted
sand, which is often characteristic of tidal regions (Brock, 1979). It
was shown that C. glaucum is slower in reburying once washed out
of the sand (Koulman and Wolff,1977). Therefore, it prefers constant
water levels prevailing in isolated lagoons of the Atlantic and parts
of the North Sea, as well as the Baltic Sea, the Mediterranean Sea, the
Black Sea and the Caspian Sea. C. edule is present from the
subtropical coast of West Africa to the Arctic Barents Sea, excluding
marginal seas such as the Baltic and the Mediterranean (Hayward
and Ryland, 1995). Its distribution is much less fragmented than
that of C. glaucum (Brock, 1979, 1980), because it prefers sheltered,
but open tidal zones. There are several areas where the two cockle
species live in sympatry in Portugal (Machado and Costa, 1994),
Finland (Rygg, 1970), Germany (Reise, personal communication),
Norway, Sweden, Denmark, Netherlands, England and France
(Brock, 1987).

A priori biological and ecological differences between Cera-
stoderma glaucum and Cerastoderma edule are grouped in the
Table 1 and will be addressed in more detail later.

Previous studies were mainly focused on morphological and
genetic discrimination of both cockle species (see above), as well as
comparison of their ecology and physiology (e.g., Rygg, 1970;
Boyden, 1972; Brock, 1979, 1980; Lindegarth et al., 1995; Wilson
and Elkaim, 1997). Genetic variability of some European

Table 1
A priori biological differences between C. edule and C. glaucum.

C. edule

Fragmentation of habitat Low
Larval duration About 5 weeks

C. glaucum

Moderate to high
Usually 1-2 weeks

Commercial value Moderate to high None or low
Possibility of dispersal Moderate Low

by ships ballast
Possibility of dispersal Moderate High

by migrating birds

populations of both species was analyzed using isoenzyme elec-
trophoresis (Hummel et al., 1994). Here, for the first time the
population genetic structures (mitochondrial DNA) of a substantial
number of populations of these two well characterized sister
species are compared to elucidate the factors shaping evolutionary
history. This is a comparative analysis of the fragments of the data
published before concerning each of two cockle species separately
(Tarnowska et al., 2010; Krakau et al., 2012). The hypothesis
states that differences in habitat types and life history are
reflected in the genetic structure patterns of these two cockles
indicating the important role of extrinsic and intrinsic factors in
phylogeography.

2. Materials and methods

2.1. Sampling, DNA extraction, amplification and sequencing of
fragments of the cytochrome oxidase subunit I (COI) gene

Samples of Cerastoderma edule were collected from 17 locations
and of Cerastoderma glaucum from 13 locations (Fig. 1), and tissue
was stored in 95% ethanol. Total DNA was extracted from adductor
muscle or foot tissue (about 1 mm?) following the protocol of the
Qiagen DNeasy Blood and Tissue Kit. For C. glaucum a DNA fragment
of 580 bp and for C. edule a fragment of about 700 bp were
amplified and sequenced as described in Tarnowska et al. (2010)
and Krakau et al. (2012) respectively. Finally, DNA of 335 individ-
uals of C. edule and 250 individuals of C. glaucum were analyzed. For
the complete datasets for each species refer to Tarnowska et al.
(2010) and Krakau et al. (2012).

2.2. Data analyses

Sequences from both species were aligned using the BIOEDIT
software (Hall, 1999) and a 506 bp fragment was chosen for further
analysis. The calculation of the average uncorrected percent of
sequence differences between both species, and the amino acid
translation of the sequences were made using MEGA4 (Tamura
et al.,, 2007). The number of segregating sites (S), haplotype diver-
sity (Hp) and nucleotide diversity (7) (Nei, 1987) were computed
using the program DNASP v.4.10.9 (Rozas et al., 2003), as well as D
statistics of Tajima (1989) aimed at testing the hypothesis of
neutrality, which assumes the absence of selection affecting the
genetic marker and a stable effective population size. Allelic rich-
ness was calculated with the CONTRIB software (R. ]. Petit, available
at: http://www.pierroton.inra.fr/genetics/labo/Software/index.
html). It was standardized to cope with uneven sample sizes with
the rarefaction procedure. The relationship between the intrapop-
ulation genetic diversity component of allelic richness (after rare-
faction) and latitude was investigated. Data from four sites, from
which both cockle species were sampled in close locations, were
used to create a phylogenetic haplotype network based on the
median-joining vectors method and generated with NETWORK
v.4.5 (Bandelt et al., 1999).
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Fig. 1. Sampling locations for the two cockle species: (a) C. edule, marked with black circles, (b) C. glaucum, marked with transparent triangles. See Table 2 for site definitions.

Pairwise Fst values between population pairs (Weir and Hill,
2002) were computed using ARLEQUIN v.3.1 (Excoffier et al.,
2005). The non-metric multidimensional scaling (MDS) of Fst
values (XLstat 7.5.2) was applied allowing the presentation of
levels of differentiation between populations of each species
without assuming tree-like relationships. Genetic structures of
the cockles were also examined with the analysis of molecular
variance (AMOVA, Excoffier et al., 1992) using ARLEQUIN v.3.1
(Excoffier et al., 2005). To test the significance, 1000 permutations
were performed. Populations were divided into groups corre-
sponding to geographic regions. The grouping tested for Cera-
stoderma edule was: the Norwegian Sea (BN, BO), the Danish
Straits (FL, KR, NM), the North Sea (LF, SY, LA, TX, SL), the English
Channel and the Atlantic Ocean (DB, TH, RO, AR, LN, AL, MO). For
Cerastoderma glaucum the populations were divided into 5
groups: the Baltic Sea (GD, FI), the North Sea (GE, LV), the Atlantic

Ocean (AC, PT), the Mediterranean Sea (BL, SA, TU, ST) and the
Ionian Sea (GI, ET, PA).

Mantel tests were performed for both species within their
common distribution area (the Atlantic Ocean and the North Sea) in
order to verify whether the genetic structure corresponds to the
isolation by distance model.

3. Results
3.1. Intraspecific genetic structure in both species

For our comparative study we used 335 sequences of Cera-
stoderma edule, which included 64 haplotypes. For Cerastoderma
glaucum, we analyzed 250 sequences which corresponded to 74
haplotypes. The average uncorrected difference between all
C. glaucum and all C. edule haplotypes found in this study was of



26.50%. Translating DNA sequences into amino acids revealed one
non-synonymous mutation in C. glaucum haplotypes and five non-
synonymous mutations in C. edule haplotypes. All of them were
individual singletons. Apart from these haplotypes, there was no
difference in the amino acids composition of the analyzed COI part
between both species.

Intraspecific structuring was much more pronounced in Cera-
stoderma glaucum than in Cerastoderma edule (Fig. 2). In
C. glaucum, only three out of 88 Fst values were not significant (FI-
GD, LV-AC, ET-PA) (Table S1 in the Supplement) (« = 0.05).
Geographically close population pairs often had significant (e.g.,
North Sea, LV-GE: 0.19) and very high (Atlantic, AC-PT: 0.92;
Western Mediterranean, SA-ST: 0.87, SA-BL: 0.77, p < 0.01) Fsr
values. These values between population pairs from the same
basin were similar to the values between the most distant and the
most divergent populations in the C. edule dataset (LA-MO: 0.82,
LA-AL: 0.80). In C. edule, populations could be divided into two
large geographic groups with the border between them in the
region of the English Channel. Two populations from Skagerrak
(FL, KR) were difficult to attribute to one of these groups (Figs. 1
and 2a). After excluding these two populations, the Fsy value
between the two main population groups was 0.57 (p < 0.01).
However, many haplotypes were shared between these groups or
differed by a single mutation (data not shown). The Fst values
were not significant among numerous geographically close pop-
ulations (e.g., most of the populations from the North Sea, SY-LA-
TX-SL, and from the Atlantic Ocean, RO-AR-LN, and both pop-
ulations from Skagerrak, FL-KR) (Table S1 in the Supplement). For
C. glaucum, among group molecular variation explained 24.4% of
molecular variation, among populations within groups molecular
variation, 56.1% of molecular variation and within population
molecular variation, 19.5%. The values of fixation indices were
Fcr = 0.24 (p = 0.03) (among groups), Fsc = 0.74 (p < 0.001)
(among populations within groups), Fst = 0.81 (p < 0.001) (among
populations). As for C. edule, when the populations were grouped
according to geographic regions, among groups molecular varia-
tion explained 42.7% of molecular variation, among populations
within groups molecular variation explained 2.8% of molecular
variation and within population molecular variation, 54.5%. The
values of fixation indices were Fcp = 0.43, Fsc = 0.05, Fst = 0.46 (all
significant p < 0.001).

At four sites both species were sampled in nearby localities: at
the Atlantic coasts of Portugal (AL and PT) and France (AR and AC),
in the English Channel (at opposite sides of it: TH and LV) and in the
North Sea, in Germany (SY and GE) (Fig. 1, Table 2). Samples from

these sites were analyzed in more detail. The haplotype network
including these four populations of each species revealed that the
most divergent population in Cerastoderma edule was the one from
the North Sea (SY) (0.7% of mean distance) and in case of Cera-
stoderma glaucum the one from Portugal (PT) (1.7% of mean
distance) (Fig. 3).

The Mantel test performed for both species on all populations
from the North Sea and the Atlantic Ocean revealed a correlation
between geographical and genetic distances for Cerastoderma edule
(test performed on 11 populations) (p < 0.05), but not for Cera-
stoderma glaucum (test performed on 4 populations) (p > 0.05).
However, when the number of C. edule populations was reduced to
the four sites of nearby occurrence to C. glaucum, the Mantel test
did not reveal a correlation between geographical and genetic
distances (p > 0.05).

3.2. Diversity within populations in both species

The intrapopulation diversity in Cerastoderma edule increased
to the north, whereas in Cerastoderma glaucum, it increased to the
southern direction (Fig. 4a). The square of correlation coefficient
(R?), which is a measure of the reliability of the linear relationship
between the x and the y values, was similar for both species with
the total dataset (0.46 and 0.49). However, there were several
exceptions from these general trends, as both for C. glaucum and
for C. edule on local geographical scales the relationships between
latitude and genetic diversity were sometimes opposite (Fig. 4a).
The contrasting pattern of latitude diversity was confirmed when
only the four sites where both species co-occurred were taken
into consideration (Fig. 4b). In C. edule, the highest allelic richness
after rarefaction (with the sample size set to 10) was found in the
Norwegian Sea (5.25). The mean allelic richness of the pop-
ulations from the North Sea was 3.59. Three populations located
on the southern limit of our samples set, not far from the
entrance to the Mediterranean Sea, had a mean allelic richness of
1.82. In contrast, C. glaucum populations from the North Sea and
the Baltic Sea had a mean allelic richness of 1.58, from the
Atlantic 2.70 and populations from the Mediterranean 3.72
(Table 2). The neutrality tests performed on each sampled pop-
ulations yielded significant results for C. glaucum for three out of
the four localities sampled for both species: two Atlantic coast
populations (AC, p < 0.01; PT, p < 0.05) and one North Sea
population (LV, p < 0.01). In the case of C. edule, the results of
neutrality tests were significant only for one population, the one
from the Irish Sea (DB, p < 0.05).
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Fig. 2. Metric multidimensional scaling (MDS) of population pairwise Fst values: (a) C. edule (stress = 0.127); (b) C. glaucum (stress = 0.226; stress value over 0.2 suggests that the
precision in representing the relationships among populations is limited). Main geographical regions are indicated for each species.



Table 2

Abbreviations and geographic coordinates of sampling sites and genetic diversity of samples. N — number of individuals, Ny — number of haplotypes, b[10]-1 — allelic richness
after rarefaction to 10, Ny — number of unique haplotypes, S — number of polymorphic sites, Hp — haplotype diversity, = — nucleotide diversity.

Region Site Code Coordinates N Ny b[10]-1 Ny S Hp I
C. edule
Norwegian Sea Bodoe, Norway BO 67°17'N, 14°37'E 22 11 6.32 5 12 0.93 0.59
Bergen, Norway BN 60°23'N, 05°20'E 22 8 4.19 3 11 0.77 0.35
Skagerrak Arendal, Norway FL 58°26'N, 08°48'E 20 8 4.89 2 12 0.87 0.57
Kristineberg, Sweden KR 58°14'N, 11°26'E 20 7 3.53 1 7 0.64 0.37
Kattegat Norsminde, Denmark NM 56°02'N, 10°25’E 20 8 4.87 2 9 0.86 0.53
North Sea Limfjord, Denmark LF 56°97'N, 09°20'E 19 9 4.60 4 8 0.77 0.40
Sylt, Germany SY 55°01'N, 08°26'E 19 11 5.79 6 15 0.87 0.45
Langeoog, Germany LA 53°45'N, 07°29'E 21 4 1.83 2 6 0.41 0.15
Texel, the Netherlands TX 53°13'N, 04°94'E 20 6 2.50 2 6 0.45 0.20
North Gluss, Great Britain SL 60°28'N, 01°21'W 20 6 3.25 1 6 0.71 0.31
Irish Sea Dublin, Ireland DB 53°19'N, 06°12'W 23 6 2.17 4 7 0.40 0.12
English Channel Southend, Great Britain TH 51°28'N, 00°42'E 21 8 4.12 5 10 0.72 0.28
NE Atlantic Roscoff, France RO 48°72'N, 03°97'W 23 10 4.43 7 13 0.73 0.29
Arcachon, France AR 44°35'N, 01°14'W 13 3 1.73 1 4 0.41 0.15
Lisbon, Portugal LN 38°43'N, 09°00'W 10 3 2.00 1 5 0.51 0.26
Lagos, Portugal AL 37°07'N, 08°37W 21 5 2.17 3 5 0.42 0.11
Merja Zerga, Morocco MO 34°50'N, 06°14'W 21 3 1.42 0 2 0.40 0.08
C. glaucum
Baltic Sea Tvdrminne, Finland FI 59°50'N, 23°15'E 24 4 1.91 1 3 0.43 0.09
Gdynia, Poland GD 54°40'N, 18°30'E 18 3 1.37 1 2 0.31 0.06
North Sea Ellenbogen, Sylt, Germany GE 55°02'N, 8°24'E 19 3 1.99 0 2 0.69 0.18
Lake Veere, the Netherlands LV 51°35'N, 3°38'E 19 3 1.05 1 9 0.21 0.19
Northeastern Atlantic Arcachon, France AC 44°41'N, 1°03'W 32 11 3.13 10 10 0.53 0.14
Ria Formosa, Portugal PT 37°00'N, 7°58'W 22 6 227 5 7 0.41 0.13
Western Mediterranean Etang de Berre, France BL 43°24'N, 5°08'E 21 11 5.16 8 19 0.81 0.57
Cabras, Sardinia SA 39°56'N, 8°31'E 21 10 4.81 7 10 0.78 0.34
Rades, Tunisia TU 36°47'N, 10°17'E 25 10 5.08 5 15 0.86 0.74
Sicily, Italy ST 37°47'N, 12°26'E 17 6 3.61 2 5 0.77 0.22
Ionian Sea Etolikon, Greece ET 38°28'N, 21°18'E 10 7 6.00 4 15 0.91 0.99
Papas Lagoon, Greece PA 38°12'N, 21°22'E 11 6 4.51 3 15 0.73 0.89
Gialova, Greece GI 36°57'N, 21°40'E 11 4 2.82 1 8 0.60 0.45

4. Discussion

The analyses revealed several notable differences in the genetic
structure patterns of the two cockle species. The main disparities
consist of: (1) ageneral higher level of interpopulation divergence in
Cerastoderma glaucum than in Cerastoderma edule, (2) a very high
level of divergence between some geographically close populations
of C. glaucum, contrasted with the genetic similarities among pop-
ulations of C. edule within geographical regions, (3) intrapopulation
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Fig. 3. Haplotypes networks of (a) C. edule and (b) C. glaucum restricted to haplotypes
from the four sites where both species co-occur.

diversity within C. edule increasing toward the north, and in
C. glaucum, decreasing toward the north. Different intrinsic and
extrinsic factors have influenced both species since their diver-
gence. Main possible explanations of factors shaping differences in
genetic structure of these cockles are grouped in Table 3 and dis-
cussed below.

4.1. Geographical and hydrological barriers

Relatively little genetic structuring was found among
geographically close populations of Cerastoderma edule (MDS,
AMOVA and Mantel test), in accordance with previous allozymes
analysis of populations from the southern British coast (Beaumont
and Pether, 1996) and other European sites (Hummel et al., 1994).
The low level of genetic structuring is probably due to a continuous
distribution area, which facilitates gene flow. In this species tides
together with water currents present in the Atlantic Ocean play the
important role in the larval transport. However, gene flow seems to
be impeded in the region of the English Channel, which has been
shown to act as a barrier for larval dispersal in many marine
invertebrates (e.g.,, Roman and Palumbi, 2004; Jolly et al., 2005;
Derycke et al., 2008). The internal counterclockwise circulation
patterns in the central and northern North Sea may play a role as
a distribution barrier (Brown et al., 1999).

In contrast to Cerastoderma edule, the lagoon cockle Cera-
stoderma glaucum is present in the Mediterranean. In general,
coastal currents are much faster in the Atlantic than in the Medi-
terranean, which was evoked as a probable reason of the differ-
ences in the dispersal rates of Sargassum muticum (Shanks et al.,
2003 and references therein). Theoretically, this could account for
differences in dispersal distances of planktonic larvae between
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these cockle species. However, the lagoon cockle often inhabits
isolated water bodies and is thus much more influenced by
geographical barriers to gene flow than C. edule at open intertidal
coasts. We consider habitat fragmentation to be the main factor
shaping the genetic structure of C. glaucum. It leads to a high level of
genetic structuring among populations, which is a typical pattern of
lagoon species (Johnson and Black, 1998; Darling et al., 2004; Astolfi
et al., 2005). However, there are some areas like e.g., the Baltic Sea,
where C. glaucum forms continuous populations along a large part
of the coastal zone. The two populations from the Baltic Sea are
genetically similar to each other, which supports the hypothesis
that habitat continuity is a major factor influencing gene flow in
Cerastoderma. Water currents appear to play little role in the long
distance transport of C. glaucum larvae, because of the habitat
fragmentation. The consequence of low level of gene flow among
C. glaucum populations could be the lower recolonization capacity
compared to C. edule, which is crucial for the conservation of local
populations.

4.2. Planktonic larvae properties

In sessile benthic organisms the planktonic larvae play an
important role in population dispersal and exploring new habitats.
Both cockle species investigated here have planktonic larvae.
However, the duration of the larval stage is of approximately five
weeks in the intertidal Cerastoderma edule and much shorter in
Cerastoderma glaucum (Boyden, 1971; Barnes, 1980). In C. glaucum,
metamorphosis usually starts after less than two weeks (Lauckner,
1972; Kingston, 1974; Wotowicz, 1987). The duration of the plank-
tonic larval stage is often considered to reflect the dispersal capacity
(e.g., Hellberg et al., 2002). For many species this duration is posi-
tively correlated with dispersal distance (reviewed in Shanks et al.,
2003). Therefore, even in the absence of geographical barriers, the
short duration of the larval stage of C. glaucum alone could theo-
retically explain a higher genetic structure among populations than

Table 3

in C. edule. However, the duration of the larval stage may vary within
species (e.g., Mytilus galloprovincialis: 14 days to 6 weeks, Mytilus
californianus: 9—45 days) (Becker et al., 2007) and may depend on
environmental conditions (e.g., temperature: O’Connor et al., 2007
and references therein). Local variations in life—history parame-
ters, such as larval duration, but also delay of metamorphosis,
initiation of spawning, local mortality or vertical position of the
larvae within the water column, may provoke differences in the
genetic structures of two closely-related species as shown for
Mytilus (Becker et al., 2007). On the other hand, there are many
proofs that gene flow is not necessarily proportional to the duration
of the larval stage (e.g., Todd et al., 1998; Eckert, 2003; Teske et al.,
2007). Closely-related species with similar life history and
dispersal abilities may have contrasting levels of genetic structuring
(Patarnello et al., 2007). Moreover, a comparative study of 41 species
with pelagic development proved that the duration of the plank-
tonic larval phase is uncorrelated with overall population subdivi-
sion (Kelly and Palumbi, 2010 and references therein).

4.3. Alternative dispersal means

The natural dispersal by planktonic larvae is not the only
dispersal means accessible to cockles. A widely discussed
dispersal vector of marine organisms is ship ballast water, which
caused numerous invasions of non-native species (reviewed in
Carlton and Geller, 1993). The transport of planktonic larvae in
ballast water seems possible for both cockles, but more likely for
Cerastoderma edule, as the most typical habitats of Cerastoderma
glaucum are often excluded from ships’ circulation as they have
little connection with an open sea or ocean. Moreover, water has
been used as ship ballast only since around 1900 (Fofonoff et al.,
2003), so it might only be a very recent factor influencing gene
flow. Solid ballast, which had been used before, could play a role
in dispersal of benthic species, but not for cockles, which require
a sandy bottom.

A simplified comparison of genetic structures of C. glaucum and C. edule, and possible factors provoking certain traits.

Genetic structure trait C. edule C. glaucum Possible explaining factors
Diversity within population Low to high Low to high - Mortality

- Recruitment

- Effective population size

- Demographic history
Differentiation between Low High to extremely high, - Fragmentation of habitat

neighboring populations

Latitudinal gradient of genetic diversity Increasing to the north

geographical discontinuities

Increasing to the south

Duration of planktonic larval stage

Different dispersal modes

Genetic drift and founder effect after extinction events
due to Pleistocene glaciations

- Possible glacial refugia in the north in case of C. edule




The common cockle Cerastoderma edule is a popular sea food in
several European countries and may be influenced directly by
human transport, as was the case for Mytilus edulis, where the
absence of clear division within European populations was attrib-
uted to aquaculture based mixing (Riginos and Henzler, 2008). In
addition, dredging of cockles could provoke local homogenization
of populations (Ferns et al., 2000; Piersma et al., 2001; Leitao and
Gaspar, 2007). However, there is no indication on that code of
practice for cockle farmers in Europe. In contrast, Cerastoderma
glaucum has a marginal commercial value (Arjonilla et al., 1994),
but it may be transported accidentally with aquacultured species or
as a result of other anthropogenic activities. Lagoons and estuaries
proved to be common sites for anthropogenic introduction of alien
species (Ruiz et al., 1997). Nevertheless, our studies do not show any
clear indications for detectable human influence on genetic pop-
ulation structures in both species.

In conclusion, long distance dispersal through planktonic larvae,
for aquaculture purposes or with ballast water seems unlikely for
Cerastoderma glaucum. Potential vectors of dispersal of cockles on
different geographical scales are birds which may externally trans-
port juveniles attached to algae or other debris or adults attached
directly to birds’ foot or neck. Past and present long distance
dispersal via migrating birds may to some extent explain
geographical discontinuities in the genetic structure of C. glaucum
(discussed in Tarnowska et al., 2010, 2012). Eggs of C. glaucum stick
to the surface of submerged plants, and juveniles climb and attach
to substrata with their byssal gland, so they could be transported
on birds together with plants (Reise, 2003). Although, Cerastoderma
edule is a morphological sibling of C. glaucum and could be
theoretically transported in the same way, we do not observe
geographical discontinuities in genetic structure. In this species the
main dispersal means seems to be its planktonic larvae. However,
successful recruitment of larvae is the condition of effective
dispersal. In the case of C. edule, recruitment was proved to be
influenced by many factors, such as predation on postlarvae, sedi-
ment composition or fisheries (Beukema and Dekker, 2005).

4.4. Local adaptations and selection

Tolerance to environmental factors have an important influence
on present distribution areas, in particular on its fragmentation,
and consequently on genetic structure. Both Cerastoderma glaucum
and Cerastoderma edule seem to display high phenotypic plasticity.
For example, it has been suggested that C. glaucum is able to
regulate its metabolism by reducing energy expenditure to survive
at high temperatures (Wilson and Elkaim, 1997). Apart from
phenotypic plasticity, local adaptations may also enable the cockles
to inhabit given environmental conditions (Tarnowska et al., 2009).
Especially in C. glaucum, local selection might have influenced
genetic structures, as habitat fragmentation reduces gene flow
between localities and thus helps locally adapted genes to increase
in frequency as a result of natural selection. A possible selection
signature was detected in this species in one microsatellite locus
(Tarnowska et al., 2010). The neutrality tests gave significant results
for C. glaucum at three out of four sites from where both species
were sampled from nearby locations in the North Sea and Atlantic.
It suggests that the lagoon cockle is subject to either selection or to
demographic fluctuations in these areas (Hartl and Clark, 1997).
Neutrality tests were not significant for C. edule from the corre-
sponding sites. If the reason of the significant results of neutrality
test for three populations of C. glaucum is demographic fluctua-
tions, rather than a selective sweep, this suggests that the (re)
colonization of these areas is more recent for C. glaucum than for
C. edule, so the populations expand demographically. In the case of
C. edule the neutrality test was significant only for the population

from Ireland (DB), which suggests either a selective event or
a recent (after glaciations) reduction of population size followed by
demographic expansion.

4.5. Pleistocene events influencing present genetic structures in
both species

Genetic structures of species with distribution areas reaching
the north of Europe are often still reflecting the influence of
Pleistocene glaciations. Due to the lack of suitable habitats during
ice ages, northern populations are assumed to be (re)established
after glaciations. Therefore, southern populations are considered
older. They usually bear higher genetic diversity than their
northern counterparts, which have experienced severe genetic drift
due to bottlenecking and/or founder events associated with post-
glacial colonization (reviewed in Hewitt, 2000; Maggs et al., 2008).
In Cerastoderma glaucum, the south-north pattern of genetic
diversity reflects this common assumption. In contrast, the intra-
population diversity of Cerastoderma edule increases northwards.
Although the general patterns of genetic diversity seem contrast-
ing, the results should be interpreted with caution, as within
regions the genetic diversities are sometimes variable and the
trends are not straightforward. The high genetic diversity of C. edule
in the northern regions (almost 3 times higher than in C. glaucum
near the Sylt Island, Germany) is unexpected taking into account
the young geologic age of this region (about 8000 years before
present). Moreover, this diversity seems to have evolved in the
north, as many haplotypes present in the north are not retrieved in
the south. The presence of C. edule in glacial refugia in the north
would be the simplest explanation of this pattern, but their exis-
tence is still under debate. However, several recent studies support
the idea of northern refugia with the first strong indication on the
existence of glacial refugia in the western English Channel area
(Stewart and Lister, 2001; Riginos and Henzler, 2008; Provan and
Bennett, 2008; Maggs et al., 2008).

5. Conclusions

Present-day genetic patterns of sister species may reveal impor-
tant differences being a synergic effect of many past and present
processes. Therefore, specifying factors shaping these differences is
an opportunity to better understand the importance and the effects
of gene flow, selection and other mechanisms. The results of this
study suggest that differences in species-specific factors can result in
the development of quite disparate patterns of population genetic
structure and phylogeography for species of the same origin.
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