Some special solutions to the Hyperbolic NLS equation

Abstract : The Hyperbolic Nonlinear Schrodinger equation (HypNLS) arises as a model for the dynamics of three-dimensional narrowband deep water gravity waves. In this study, the Petviashvili method is exploited to numerically compute bi-periodic time-harmonic solutions of the HypNLS equation. In physical space they represent non-localized standing waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them using symbolic dynamics and the language of substitutions. Finally, the dynamics of a slightly perturbed standing wave is numerically investigated by means a highly acccurate Fourier solver.


https://hal.archives-ouvertes.fr/hal-00846801
Contributeur : Denys Dutykh <>
Soumis le : mardi 25 février 2014 - 10:27:02
Dernière modification le : lundi 21 mars 2016 - 17:36:21
Document(s) archivé(s) le : dimanche 25 mai 2014 - 11:05:57

Fichiers

LV_DD_FF-2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00846801, version 2
  • ARXIV : 1307.5507

Collections

Citation

Laurent Vuillon, Denys Dutykh, Francesco Fedele. Some special solutions to the Hyperbolic NLS equation. 25 pages, 10 figures, 56 references. Other author's papers can be found at http://www.denys-dutyk.. 2014. <hal-00846801v2>

Exporter

Partager

Métriques

Consultations de
la notice

313

Téléchargements du document

160