Solvability in the sense of sequences to some non-Fredholm operators

Vitaly Volpert 1 Vitali Vougalter 2
1 DRACULA - Multi-scale modelling of cell dynamics : application to hematopoiesis
CGMC - Centre de génétique moléculaire et cellulaire, Inria Grenoble - Rhône-Alpes, ICJ - Institut Camille Jordan [Villeurbanne], UCBL - Université Claude Bernard Lyon 1 : EA
Abstract : We study the solvability of certain linear nonhomogeneous elliptic problems and show that under reasonable technical conditions the convergence in $L^2(\mathbb{R}^d)$ of their right sides implies the existence and the convergence in $H^2(\mathbb{R}^d)$ of the solutions. The equations involve second order differential operators without Fredholm property and we use the methods of spectral and scattering theory for Schrodinger type operators analogously to our preceding work [
Type de document :
Article dans une revue
Electronic Journal of Differential Equations, Texas State University, Department of Mathematics, 2013, 2013 (160), pp.1-16
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00846784
Contributeur : Vitaly Volpert <>
Soumis le : samedi 20 juillet 2013 - 09:06:42
Dernière modification le : mercredi 14 décembre 2016 - 01:03:26

Identifiants

  • HAL Id : hal-00846784, version 1

Citation

Vitaly Volpert, Vitali Vougalter. Solvability in the sense of sequences to some non-Fredholm operators. Electronic Journal of Differential Equations, Texas State University, Department of Mathematics, 2013, 2013 (160), pp.1-16. <hal-00846784>

Partager

Métriques

Consultations de la notice

280