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Abstract: This paper proposes a set-membership method based oreirdealysis to solve the pose tracking problem.
The originality of this approach is to consider weak sendata: the visibility between two robots. By using a
team of robots and this boolean information (two robots seh ether or not), the objective is to compensate
the odometry errors and be able to localize, in a guarantesgl tive robots in an indoor environment. This
environment is supposed to be defined by two sets, an innesrandter characterizations. Simulated results
allow to evaluate the efficiency and the limits of the progbseethod.

1 INTRODUCTION information is the visibility between two robots: two
robots are visible if there is no obstacle between them,
Robot localization is an important issue in mobile €lse there are not visible. This is a boolean informa-
robotics (J. Borenstein, 1996; M.J. Segura, 2009; tion defined in Section 2.1.
J. Zhou, 2011) since it is one of the most basic re- Note that this information does not depend of the
quirement for many autonomous tasks. The objective robots’ orientation. That is the reason w8yis as-
is to estimate the pose (position and orientation, Fig- sumed to be given by a compass. The objective is
ure 1) of a mobile robot by using the knowledge of an then to estimate the position= (xy,,X,)" of a robot
environment¢.g.a map) and sensors data. ri.
A robot r; is characterized by the following dis-
crete time dynamic equation:
qi (k+1) = f(ai(k), ui(k)) 1)
with k the discrete timeg; (k) = (xi(k), 6 (k)) the pose
of the robotx; (k) = (xy,(K), %y, (k)T its position, and
ui (k) the input vector (associated with the odometry
and the compass). The functidncharacterizes the
robot’s dynamics. In order to exploit the visibility in-
Figure 1: A robotr; with a poseqg; = (x;,6;). The vector formation a team ofmrobots® = {rq,---,ri,---,fm}
Xi = (x1;,X)" represents its position ar its orientation have to be considered.
in the environment. In this paper the environment is assumed to be an
In this paper the pose tracking problem is consid- indoor environmentE composed byn obstaclesE;,

ered: the objective is to compute the current pose ofaJh 1, ¢ - dTSlstvc\e/nvlironmenttls not IT:nown but is
robot knowing its previous one and avoiding its drift- charac erlze y two known sets (see FigureRy,

ing. To compensate the drifting, due to odométry an inner characterization, argi™ an outer character-

Jr
errors, external data are necessary. Contrary to mosi!zat_'l_On SIUChﬂ?f Cblz CE ¢- bershi h
of the localisation approaches that use range sen- 0 Solve this problém a set-membership approac
sors (P. Jensfelt, 2001; K. Lingemann, 2005; Abeles of the localization problem based on interval analy-

2011) this paper tends to prove thagakinformations , Si?’ is considered (E. Seignez, 20.05; Jaulin! 20.09)' In
can lead to an efficient localization too. The chosen this context the.the_ LUVIA aIgontth(ocaI!satlon
Updating with Visibility and Interval Analysis) has

1Sensors that compute the moves of a robot. been developed to solve the pose tracking problem.




Figure 2: Example of an environment and its characteriza- T
tions. The black shapes correspond to the environrgnt
the dark grey shapes correspond to an outer characteriza-_. -
tion £+ and the light grey shapes correspond to an inner Figure 3 Example of visibility. The black shapes represent
characterizatioE . Note thatZ~ can be empty. the environmentE andrq, rp andrg three robots. In this
example:(X1VXa), (X1VX2)z, (X2VX3)z.

2 ALGEBRAIC TOOLS 29
This section introduces some algebraic tools needful _ .
in this paper. First the visibility is defined in Section An intervalis a closed subset &, noted|x] = [x,x],

2.1. Then interval analysis is presented in Section 2.2 With x its lower bound an its upper bound. An
and the environment characterizations are presentednterval vector(L. Jaulin, 2001; R. E. Moore, 2009),

Interval analysis

in Section 2.3.
2.1 The visibility

The consideredveakinformation to solve the pose
tracking problem is the visibility between two robots.
This corresponds to two binary relations: the visibil-
ity relation and the non-visibility relation (Definitions
1 and 4). Figure 3 shows an example of visibility in-
formations.

Note that assuming thag andx; are the positions
of two robots,Sedx1,x2) denotes the segment from
X1 t0 Xo.

Definition 1. The visibility between two robots and
ro with their respective positions, andx; in an en-
vironmentZ is a binary relation noted/ such as

(x1Vx2)z < Sedxi,x2) N‘E = 0.
Properties 2.
-V is symmetric,
(XzVXl)Z,
- Vis reflexive, i.e¥x, (XVX)¢.
Remark 3. V is not transitive sincéx;Vxz)z and
(X2VX3)Z + (X1VX3)£.
Definition 4. The non-visibility between two robots
r1 and r; with their respective positions; andx; in
an environment is a binary relation noted/ such

as
3)

)

i.evX1, VX2, (X1VX2)z =

(x1VX2)z < Sedxy, X2) N'E # 0.
Properties 5.
- V is the complement of,
-V is symmetric, i.€VXy,VXz, (X1VX2)z =
(X2Vx1)£.
Remark 6. V is not transitive sincéx;Vxz)z and
(X2VX3) g 2 (X1VX3)z.

or abox [X] is defined as a closed subsetitt.[x] =

([Xl]v [Xz]v"') = ([ﬁax_l]v [&;X_Z],)
The size of a box is defined as

Sizd[x)) = (X —x) x (G —x) x - (4)

It can be noticed that any arithmetic oper-
ators such as+,—,x,+ and functions such as
expsin,sqrsqrt,... can be easily extended to inter-
vals (Neumaier, 1991).

The hull of a set of intervals corresponds to the
smallest connected interval that enclosed all the inter-
vals. It can be easily extended to interval vectors.

The Bisec{) function divides an intervak] into
two intervals|xs] and [xz] such as[xi] U [x2] = [X],

[x1] N [x2] = 0 andSizé[x1]) = Sizé[x2]). As for the
hull, the bisection can be extended to interval vectors.

2.3 The environment characterization

As said in Section 1, the environmeftis charac-
terized by two set€~ and‘EZ™. In this paper those
sets are assumed to be interval segment sets. In this
section interval segments are first defined then a final
definition of £~ andE™ is given.

Definition 7. Let[x1] and[x2] be two boxes, an inter-

val segment (see Figure 4) is defined by

Sed [xa], [x2]) = {Sedx1,x2)[x1 € [x1],x2 € [x2]}
(5)
Note that it is possible to extend the segment in-
tersection to interval segments.
Proposition 8. Let Seg[x1], [x2]) and Seg[xs], [Xa])
be two interval segments, the two following conditions
hold

IntersectSed|[x1], [x2]), Sed[x3],[X4])) <O (6)



Seg(xi], [xa))

Figure 4: An interval segment. The light grey boxes repre-

sent the ended boxes of the interval segment and the black

shape represents the interval segment.

= the two interval segments intersect,
Intersect{Sed|[x1], [X2]), Sed[xa],[X4])) > 0

= the two interval segments do not intersect.
Where the Intersect(.,.) function is defined in Ap-
pendix Definition 17.

Proof. for (6)
Intersect{Sed|[x1], [X2]), Sed[xs],[Xa])) < O
VX S [xi],i

(@)

1,4,

= = )
Intersec{Sedxi,X2),Sedxs,X4)) < 0

= WX € [x],i = 1,---,4, Sedxi,x2) and
Sedxs, X4)) intersect

= Sed[x1],[x2]) andSed[x3], [X4])) intersect.

The same holds for (7). O

In the following £~ andE™ are two sets of inter-
val segments defined by:

£ = | Sed[e;]. [e],]), (8)
11,)2

£ = | seqlef]. [ef,)- ©)
J1:)2

Eq

o

Figure 5: An obstaclez; (black shape) known by an in-
ner characterizatioBed[e; ], (€, ]) (light grey) and an outer

characterizatioSege; |, [e]]) (dark grey).

3 INTERVAL EXTENSION OF
THE VISIBILITY

In order to solve the problem with a set-membership

approach the visibility and non-visibility definitions

have to be extended to the interval analysis context.

Definition 9 is an extension of Definitions 1 and 4.

Definition 9. Let[x4] and[x,] be two boxes, and an
environmente

(Xa]V[x2) £ & VX1 € [X1], VX2 € [X2], (X1VX2)£, (10)
([X1)V[x2]) & & VX1 € [X1], VX2 € [X2], (X1VX2) . (11)

£
- X9, [XZ]
[X1]Xl/ X2,
Xll//
Seg([xal, [x])

Figure 6: In this exampléx1]V[x2]) £ and([x1]V[x2]) ¢ are
both false (sincéxy, Vo, )z and (X1, Vxo,) ).

Remark 10. Note that([x1]V[x2])z and ([x1]V [X2]) £
can be both false as depicted in Figure 6.

Lemma 11. Let r; and r, be two robots with their
respective positiong; € [x1] andxz € [x2] and an
environmentE with an inner approximatiort ™~ :

(xaVx2)£ = ([x1]V[x2])£- is false (12)
Proof.
(xaVx2)z = Sedx1,x2)NE =0,
= Sedx1,X2)NE~ =0sinceE™ C £,
= (x1Vx2)g-,
= 3xi; € [xa],3Xi; € [x2] [ (X, VXiy) -,
= ([X1]V[x2])- is false.
|

Lemma 12. Let r; and r, be two robots with their
respective positiong; € [x1] andxz € [x2] and an
environmentE with an outer approximatioE™:

(x1VX2)z = ([X1]V[X2]) ¢+ is false  (13)
Proof.
(x1VXx2)z = Sedxi,X2)N‘E #0,
= Sedx1,X2)NE' # 0sinceE C ET,
= (X1VX2)g+,
= 3, € [x1), 3%, € [xa] | (%, Vi) -+,
= ([X1]V[x2]) -~ is false.
O

Lemma 13. Let r; and r, be two robots with their
respective positiong; € [x1] andxz € [x2] and an
environmentE with an outer approximatiorE™:
(xa]V[x2]) £+

= Vj, IntersectSed|[x], [x2]), ;") > 0

Proof.
([xa]V[x2]) -+
= VX1 € [X1], X2 € [X2], (X1VX2) £+,
= VX1 S [X1], VX2 €
Intersec{Segdxi, x2), ;") > 0,
= V], IntersectSed|x1], [x2]), ;") > 0.

(14)

[X2],Vj,

O

Lemma 14. Let r; and r, be two robots with their
respective positiong; € [x1] and x2 € [Xz] and an
environmentE with an inner approximatiort~:

(xa]V[x2]) -

= 3j | IntersectSed|x1],[x2]),E;") <0

, (15)



Proof.
(xa]Vxa])z- —
= VX1 € [X1], VX2 € [X2], (X1VX2) £,
= 3Jj | VX1 € [x1],¥x2 € [x2],
IntersectSedxi,x2), ;") <0,
= 3j | IntersectSed|[x4], [x2]), E; ) <O.

O

From those lemmas it is possible to deduce the
following propositions:

Proposition 15. Let r; and 1, be two robots with their
respective positiong; € [x1] and xz € [x2] and an
environment with an inner approximatiort —:

(x1Vx2)z = V|, IntersectSed x4}, [x2]), E; ) > 0
(16)

Proof.
(x1Vx2)g B
= ([X1]V[X2])- is false (Lemma 11),
= (3] | IntersectSed x4, [x2]), ;") <0) is
false (Lemma 14),
= Aj | IntersectSed x4}, [x2]), ;") < 0.
= Vj,IntersectSed|[x4], [xz]), ;") > 0.
O

Proposition 16. Let r; and 1 be two robots with their
respective positiong; € [x1] and x2 € [x2] and an
environmentE with an outer approximatiort ™

(x1Vx2)z = 3] | IntersectSed|[xi], [x2]), ;") <0
(17)

Proof.
(x1Vx2)g
= ([x1]V[x2]) g+ is false (Lemma 12),
= (vj,Intersec{Sed|[x], [x2]), Z;") > 0) is
false (Lemma 13),

= 3] | IntersectSed[x1], [x2]), E;

) <o.

O

4 THE LUVIA ALGORITHM

Algorithm 1 computes the robots’ pose in a
bounded error context and for each robot the LU-
VIA algorithm (Algorithm 2) contracts the robot’s es-
timated pose to all consistent values according to the
environment approximations and the visibility mea-
surements. Note that Algorithm 3 performs a visibil-
ity test using the Propositions 15 and 16. This algo-
rithm has three possible return values:

- true if ([x1]V[x2])z*,

- falseif ([x1]V[x2])z+,
- indeterminate if no conclusion can be done.

Algorithm 1: The pose tracking algorithm
Data: R, E~, E"

1 Vri € R initialize [gi(0)] ;

2 for k=1toend do

3 | Vi€ R [ai(K)] = F([ai(k— D), [ui(k—D)));

4 vri € R,yi(K) = new measurement set;

5 vri € R, LUVIA (ri,yi(k), R, E~,E");
Result R.

5 RESULTS AND CONCLUSION

In order to test this pose tracking approach, a simula-
tor has been developed. The simulated environment
has a 10< 10m size, see Figure 7. At each iteration
a robot does a 10cm distance move with a bounded
error of £0.1cm and a bounded compass error of
+25deg. In the later, the results are obtained for
1500 iterations of the pose tracking algorithm. Note
thatvr; € %, Sizd[xi(0)]) = 1n? andx;(0) € [xi(0)],
with x; (0) the initial position ofr;.

The processor used for the simulations has the fol-
lowing characteristics:

Intel(R) Core(TM)2 CPU - 6420 @ 2.13GHz.

5.1 Influence of the number of robots

A set-membership approach considers a bounded
error context: all the inputs and variables of the robots The objective it to evaluate the effect of the number of

are supposed to be in intervaésg. u; (k) € [u;(k)] and
qi (k) € [ai (k)] with xi (k) € [xi (k)]

Each robotr; € & does a measurement vector
yi(k) at timek.

Yi(k) = (yiz(K), - Yiir (K, -+, yim(K)T - (18)

with y;ir(K) € {true,false} the visibility between the
robotsri and ri at time k. Note thaty;/ (k) =
true means(xjVxy)z while y;: (k) = false means
(XiVXi/)f.

robots for th% localization. The considered environ-

mentisE = |J ;. Figure 8 represents the obtained
j=1
results.

It appears that for a given environment a minimal
number of robots is necessary to perform an efficient
pose tracking. It can be explained by the fact that with
few robotsy; (k) carries few information. In this con-
figuration, at least 7 robots are necessary to perform
an efficient localization.



Algorithm 2: LUVIA algorithm

Data: ri,Yi, R, E~,E"
1 L=0, Lok=0;
2 L.Pushback[x;(K)]);
3 while £.Siz€) > 0do

4 [X] = L.Popout();

5 bisect= falsg

6 for riy € R (with i #i’) do

7 if y;i; = true then

8 consistent=
Visibility_Tes{[x], [xj(K)], £7);

9 else

10 consistent=
Visibility_Tes{[x], [xi (kK)], E");

11 if consistent= true then

12 consistent= false

13 else ifconsistent= false then

14 L consistent= true;

15 if consistent= false then

16 | break;

17 else ifconsistent= indeterminate then

18 L bisect= true;

19 if consistent£ false then

20 if bisect= true and Siz€|[x]) > € then

21 | Bisec([x], £);

22 else

23 | Lox-Pushback([x]);

R_esult Hull (Lok).

Algorithm 3: Visibility _test
Data: [x1], [X2], E*

1 visible= true;

2 for £ € £* do

3 inter = IntersectSed [x1], [X2]), Ef);

4 if inter < O then

5 visible= false

6

7

8

9

break;
else ifinter # O then
| visible= indeterminate;

Result visible

On the other hand, too many robots do not im-
prove significantly the localization but increase the
computation time. This localization maximal preci-
sion is directly dependent &~ andE*. In this ex-
ample, over 9 robots the results are similar.

2

Z:w .i. X7
Es
@ ) X530 Eio

Eq
X8
Ein

\ X1 f/xm
Z -
Z D\@

8

Figure 7: The simulated environment. The black shapes
11

correspond to the environmert = U Ej and the grey
=

boxes correspond to the initial box{as( 0)] of the robots
such asx (O) € [xi(0)], x; the initial position of the robot
neRr,i= -,11. Note that for legibility reasoi™ and

E~ are not represented. The doted lines do not represent
obstacles but robot’s move limits.
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Figure 8: Results over 1500 iterations.
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5.2 Influence of the number of obstacles

In this section the influence of the number of obstacles
over the localisation results is evaluated. A team of 7
robots is considere® = {r;},i=1,---,7. Figure 9
represents the obtained results.

It appears that for a given number of robots it ex-
ists a minimal and a maximal number of obstacles that
allow to perform an efficient localization. It can be
explained by the fact that without any obstacle, the
robots see each other all the time, so the visibility
sensor returns always the same value and does not
provide useful information. It is the same argument
with too many obstacles.

In Figure 9 it is possible to see that under 4 ob-
stacles and over 8 obstacles, the pose tracking does
not lead to an efficient localization of the robots. It
also appears that 7 obstacles do not lead to an effi-
cient pose tracking. Hence the success of the pose
tracking depends on the positions and the sizes of the



obstacles in the environment.

centimetres seconds
1400 6

1000 I / :
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~Maximal execution

1200 time

.~ Mean execution
time

800 11
600 11
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012345678 91011
segments

Figure 9: Results over 1500 iterations.

5.3 Conclusion

In this paper it is shown that using interval analysis it

is possible to perform a pose tracking of mobile robots

even assuming weak informations as the visibility be-
tween robots. The LUVIA algorithm is a guaranteed
algorithm that exploits this boolean information.

Itappearsin Section 5.2 that characterizing the en-
vironments by counting the number of obstacles is not

pertinent here. In a future work it could be interest-
ing to characterize the environment by visibility zones
allowing to calculate a minimal number of robots re-
quired to perform a pose tracking, according to the
number and/or the size of the zones.

Finally it could be interesting to process an exper-
imentation with actual robots.
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APPENDIX

Segment Intersection

The functionintersect), Definition 17, allows to test
the intersection between two segments.

Definition 17. Let Se@x1,x2) and Se@xs, x4) be two
segments, the function

Intersec{Sedxi, x2), Sedxsz, Xa)) (19)

is defined by

IntersectSedx1,X2), SedXs,Xa))
Max(Sid&x1,Sedxs,X4)) Sidgxz,Sedxs, X4))
Siddxs, Sedx1,X2)) - Siddxa, Sedx1,X2))).

whereSid«), Definition 18, allows to test the side
of a point with a segment.

Definition 18. Let Se@x1,x2) be a segment and; be
a point, the function Sides, Sedxi,x2)) is defined

Sidexs, Sedx1,X2)) = (20)

with detthe determinant.

det(Xg — X1 X2 — Xl)7

Figure 10 represents three intersection tests.

eIntersect(Seg(x1,x2),
Seg(x3,%x4)) <0
eIntersect(Seg(x1,Xa),
Seg(xs,%g)) > 0

(S

) =

X3
X1

X2
eIntersect(Seg(x3,X4),
Seg(xs,Xg 0

Figure 10: Threéntersect) tests.
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