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ABSTRACT 

 

The purpose of this paper is to investigate the mechanical behavior of a sandwich structure 
impacted by a steel ball. Sandwich structures are used as protection devices against rock falls and 
made of a front wall of gabions and an inside layer of sand. Such a structure has been built, 
instrumented and experimentally tested using a pendular impact facility. A granular mechanical 
model of the structure is presented as well as the A – CD2 (Atomized efforts Contact Dynamics 
respecting Clausius – Duhem’s inequality) computational method for multi-body dynamics used to 
compute the impacts on the mechanical model. For four successive impacts with increasing energy 
level, the measured forces, accelerations and displacement in different locations of the structure 
are compared to the data obtained by the numerical simulations. The accuracy of the numerical 
results obtained in this study is encouraging for the use of this computational method in further 
simulations of impacts on granular layers with increased number of grains. However, some 
computational improvements need to be investigated to reduce the computational time. 

Introduction 

The design of protection devices against impacts of rocks is an important topic for engineers 
involved in protection strategies against rock falls as well as for researchers trying to understand 
and to model the resistance of the protection devices. Engineers use to design protection devices 
by empirical approaches or recommendations based on equivalent static solicitations. Hence, many 
experimental and numerical researches are carried out for understanding the mechanical 
phenomena involved during an impact and for improving the rules used to design of the protection 
devices [7, 20].  
In this study, we focus on a type of protection devices named “sandwich structures” [12], which 
are made of a the juxtaposition of a front wall of gabions, that is to be impacted by the block, and 
of a nucleus, or inside layer, of a more deformable matter (in our case, sand) (Figure 1 – 2), which 
is designed to dissipate the impact energy in an optimized way. 
The sandwich structure was studied both experimentally and numerically. The experimental 
impacts have been realized using a pendular impact device designed by CER (Experimental and 
research center in Rouen) (Figure 1 – 2) whereas the numerical simulations have been performed 
at IFSTTAR with the code STTAR3D using the A – CD2 method [1, 21]. 
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Experimental testing of the structure 

Description of the impact station 

The facility used to perform the experimental impacts is a pendulum system, designed and built by 
CER for the purpose of performing experimental impacts on structures. It is a metallic structure 
which enables to swing steel ball (254[mm] of diameter, 260[kg] of weight), maintained by two 
slings, in order to make it impact the tested structure with horizontal speed. 
The ball is lifted to a chosen elevation thanks to a winch and a steel cable fixed to the backside of 
the ball. The maximum dropping height allowed by the facility is 4[m], corresponding to a 10[kJ] 
impact energy named Emax. 
A 3[m] high wall has been built in reinforced concrete and stabilized by a compacted embankment 
in order to maintain the tested structures during the impacts and to enable the measurement of the 
forces generated by the impact at several positions on the backside of the structure (Figure 1). 
 

 
Figure 1 CER’s pendular impact facility. 

 

Impacted structure 

The tested structure consists of a front wall of nine gabions and a sand nucleus. The cubic gabions 
(0.5[m] × 0.5[m] × 0.5[m]) are made of limestone blocks confined by a steel wire net. Each gabion 
consists of about 216 blocks. 
A column of gabions is added on each side of this front wall in order to maintain and stabilize it 
during the impact. 
The nucleus is made of Seine’s sand, D1 classified with w = 7.9%, γh = 18[kN/m3] [9]. 

 

 
Figure 2 Tested sandwich structure. 
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Instrumentation 

The impacted structure is instrumented with sensors measuring accelerations, forces and 
displacements during the impact (Figure 3). 
Accelerometers are used to measure the acceleration of the ball (Figure 4.a) and the acceleration of 
some of the blocks inside the gabions (Figure 4.b). For this purpose, “artificial” blocks made of 
concrete and instrumented with accelerometers are installed inside the gabions (Figure 4.b). 
A steel plate containing 4 strain sensors is located vertically between the backside of the nucleus 
and the concrete wall in order to measure the forces generated by the impacts on the backside of 
the nucleus [13]. 
Additionally, a displacement sensor is placed between the steel plate and the back of the central 
gabion in order to measure the displacement of the gabion-wall during the impact (Figure 4.c). 
 

 
Figure 3 Instrumentation of the structure (a: accelerometers, f: force sensors). 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4 (a) Accelerometer on the iron ball. (b) Accelerometer inside a gabion. (c) Displacement 
sensor. 
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Impacts 

The sandwich structure was impacted four times with increasing energy (20%, 40%, 80% and 
100% of Emax). 
During each impact, the data of all the sensors were recorded simultaneously and the signals were 
processed by a second order Butterworth filter with a cut frequency of 600[Hz] [14]. 

Mechanical model of the structure and numerical 
method for the computations of impacts 

The mechanical complexity of the tested structures makes some assumptions necessary for the 
numerical simulation of the impacts. The impacted structure is regarded as a granular media (the 
gabion – wall) with unilateral boundary conditions at its bottom and at both lateral sides, elastic 
boundary conditions for its contacts with the sand nucleus and “internal” elastic forces due to the 
confinement by the steel wire net surrounding the gabions. 
Thus, the mechanical modeling of the structure requires to create a tridimensional granular media 
representing the collection of limestone blocks (or grains) of the gabion-wall, to model the 
interaction of these “grains” with the sand nucleus and the steel wire nettings and to compute the 
impact of the steel ball by taking into account the unilateral contact boundary conditions between 
grains, grains and steel ball as well as between grains and the bottom and lateral sides of the 
gabion-wall. 
As the computation to perform is the impact of a rigid ball into a multi-body system with unilateral 
contacts and elastic boundary conditions, the code STTAR3D, developed at IFSTTAR for the 
numerical modeling of multi-body dynamics with unilateral contacts and based on the A – CD2 

method [1, 21] is used. 

Mechanical model 

The gabion-wall of the sandwich structure is modeled by a granular media in which each limestone 
block is a polyhedral grain. The grains are assumed rigid and no cracking model is taken into 
account. Thus, the contacts between the grains are the only sources of dissipation in the model. 
The action of the steel wire net is modeled by a confinement force applied to the grains belonging 
to the boundary of each gabion. The sand nucleus is modeled as a Winkler – Westergard solid [2] 
in contact with the grains of the backside of the gabion-wall. 
In order to represent the geometry of the limestone blocks of the gabion, a 12 – sides polyhedral 
shape is used (Figure 5). 
 

 
Figure 5 Shape of the grains. 

 
Each gabion consists of an average number of 216 blocks. A sample of blocks was measured to 
obtain the values of a, b, c and d to use for modeling them as described in Figure 5. The average 
values of these parameters are 7.8[cm] for a, 5.3[cm] for b, 6.5[cm] for c and 3.8[cm] for d with a 
dispersion of 23%.  
Thus, in order to make a numerical gabion, 216 grains of dimensions a, b, c and d randomly 
chosen within the range of +/- 23% of their average values, are randomly disposed and oriented 
inside a 0.5[m] × 0.5[m] × 0.5[m] box, following the algorithm recommended in [8]. This 
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collection of grains is then compacted by numerical simulation until the containing box reaches the 
dimensions of the actual gabions, 0.5[m] × 0.5[m] × 0.5[m] (Figure 6). The numerical compaction 
is done by applying, to each side of the box, inwards percussion on each grain in contact with any 
side of the box. The numerical compactions have been performed using the A – CD2 method. 
 

 
Figure 6 Gabion with 216 grains. 

 
Nine different “numerical” gabions were computed this way. The grid drawn on Figure 6 
represents the 0.5[m] × 0.5[m] × 0.5[m] dimensions of a gabion. 
The steel wire net surrounding a gabion and insuring its confinement is then modeled by a force 
applied to each grain having a part of itself outside the 0.5[m] × 0.5[m] × 0.5[m] gabion and 
proportional to the volume of the grain that is outside this domain (Figure 7). 

Figure 7 The force applied to the grain is proportional to the part of its volume outside the 
boundary of the gabion (left); it is null if the grain is inside of the gabion (right). 

 
The use of k = 1011[N/m3] allowed to obtain nine size – and shape – stabilized numerical gabions 
which are placed like in the experimental structure, in order to build the gabion – wall. 
We thus obtain a system of 1944 polyhedral grains in unilateral contact and submitted to elastic 
confinement forces at the boundary of the gabions. Let us precise that a grain from the boundary of 
a gabion thus is submitted to the confinement force (if a part of it crosses the boundary of the 
gabion he belongs to), to contact forces due to its contacts with grains of the gabion he belongs to, 
but now also to contact forces due to its contacts with grains from the neighbor gabion. 
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Figure 8 The initial position of the ball and the 9 gabions. The transparent yellow region is the 

volume of the sand. 

Boundary conditions 

As the experimental impacts do not show any significant displacement of the two extra columns of 
gabions disposed at each lateral side of the nine gabions wall in order to stabilize it (Figure 9), they 
are not modeled by a collection of grains, but by unilateral contact boundary conditions for the 
grains. Unilateral contact boundary conditions are also applied to the grains of the bottom of the 
wall to model the interaction with the soil. 

 

 
Figure 9 The unilateral boundary condition (black zone). 

 
The backside of the gabion wall is in contact with the nucleus of the structure, its most deformable 
part, made of sand and backed on to a rigid concrete wall. Experimental measurements of Yong’s 
modulus of the used sand have values around 300[MPa] (+/- 7%). This part of the structure is 
modeled by a Winkler – Westergaard (Figure 10) elastic solid [2] in the direction of the impact. In 
this direction, a displacement ∆z corresponds to an elastic force F = kww ∆z. 
This boundary condition is to be applied to each grain of the backside of the gabion wall during 
the impact. According to the measurements of Young’s modulus of the sand, kww is set to 
3×104[N/m]. 
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Figure 10 Winkler – Westergaard boundary condition. 

Numerical model and computational method 

The A–CD2 computational method has been developed at IFSTTAR for the purpose of the 
computation of 3D polyhedral granular media dynamics [3, 15, 16, 21]. 
As in the non – smooth Contact Dynamics method [4], the grains are in unilateral contact. The A-
CD2 method uses a different way of expressing the contact forces, having for consequence a 
different formulation of the equations to solve at each time step. 
The basic assumption made about the evolution of the multi – body system is, that the solids have 
constant velocities inside the discrete time intervals and instantaneous velocity jumps at the 
boundaries of theses intervals. 
The first consequence is that the forces are concentrated in time; they are then called percussions 
and are applied to the solids at the instants of velocity jumps (boundaries of the discrete time 
intervals).  
The second consequence is that two categories of forces must be distinguished: the forces 
depending of the velocities and the ones that do not.  
For the numerical simulation of the impact on the mechanical model of the sandwich structure, the 
forces not depending on the velocities are the gravity force and the elastic forces applied to the 
grains by the Winkler – Westergaard [2] solid and the steel wire netting. The gravity force does 
not depend on the positions and its expression is easy to get for any grain. The mentioned elastic 
forces depend on the positions and therefore need to be computed taking into account the positions 
of the grains. The A – CD2 method considers the positions of the grains at the instant of velocity 
jump to compute these forces. According to the positions of the grains at this instant, these forces 

f
r

are computed using the laws mentioned above. They are to be applied to the grains at the 
instants of time discontinuity, under the form of a percussion of magnitude 
 

tfPex ∆⋅=
rr

 (1) 

 

The time step for the computation is ∆t and the percussion is
exP
r

, pointing out the fact that it is 
independent from the velocities and therefore will be considered as “explicit” in the equations to 
solve for the velocity jumps. 
The forces depending on the velocities are contact forces. Their expression at the instants of 

velocity jumps involves the left and right limits, 
−U and

+U , of the velocities. The left limit of the 
velocities is known at this instant, which is the right hand side boundary of the interval inside 
which the velocities are considered constant. 
Thus, as the percussions corresponding to forces not depending of velocities are known (they are 

explicit percussions), the formulation of the contact percussions as functions of 
−U and

+U , 
together with the balance of momentum equations, lead to an system of equations enabling to 

compute the right limits of the velocities 
+U and to move on for the next time step. 
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Let us mention that the contacts between the grains must be computed previous to solving the 
equations, as the contact forces appear in the equation under the form of percussions applied to the 
corresponding contact points. The contact points are computed by taking into account the positions 
of the solids at the instant of velocity jumps. 
One can summarize the method by the following three recursive steps: 

1. The solids move with constant velocity during ∆t. 
2. The contacts are computed with the positions of the solids and the end of the time step. 
3. The new velocities are computed; they replace the previous ones in step 1. 

Equations for velocity jumps 

As the problem to solve at step 3 is an instantaneous velocity discontinuity, an instantaneous 
collision model is used to describe the velocity jumps. For the sake of simplicity, the model is first 
exposed for a single point colliding to a rigid fixed surface and having an instantaneous velocity 
discontinuity, before generalizing the formulation to a simultaneous collision of N rigid solids [5, 
17]. 

Instantaneous collision model 

As the collision is assumed instantaneous, the velocityU
r

of the point is discontinuous at the 

instant of the collision, having a left and right limit noted
−U

r

and
+U

r

. The contact force is 

concentrated in time, becoming a percussion noted 
intP
r

[5].  

One can also take into account an explicit percussion
exP
r

, not depending onU
r

, also applied to 
the point at the instant of collision.  This explicit percussion is later used to take into account the 
forces not depending on the velocities in the equations of the velocity jumps. 
Under these assumptions the balance of momentum equation for the point with mass m is 
 

( ) exPPUUm
rrrr

+−=− −+ int  (2) 

 

The equation (2) proves the existence of a duality in the sense of internal work between 
intP
r

and 

2

−+ −UU
rr

. Therefore the constitutive laws describing the mechanical interactions between the 

point and the rigid surface during the collision are formulated by expressing 
intP
r

as a function of  

2

−+ −UU
rr

  [18]. 

Constitutive laws 

Constitutive laws have to model the contact interactions during the collision in a way that makes 
sure that the collision is dissipative and that the point does not penetrate the rigid surface. These 
two conditions are made explicit by splitting the internal percussion into a dissipative percussion

dP
r

, modeling the dissipative interaction during the collision and a reactive percussion 
reacP
r

 
insuring the non-interpenetration, which can as well be considered as the reaction to the non – 

interpenetration condition 0≥⋅+ NU
rr

: 
 

reacd PPP
rrr

+=int
 (3) 

 

The dissipative percussion is formulated using a pseudo – potential of dissipation dΦ , which is a 
convex, positive function and null at the origin [18]: 
 








 +
Φ∂∈

+−

2

UU
P dd

rr

r

 (4) 
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The reactive percussion, reaction to the non-interpenetration condition, is formulated using the 

indicator functions KI [5, 18, 21]: 

 









∞

⋅
=⋅







 +
∂∈

−+−

,
2

,
2

NU
KN

UU
IP K

reac

rr

r

rr

r

 (5) 

 

As K  is convex and contains the value 0, the indicator function KI is a pseudo – potential of 

dissipation [18] and the internal percussion can be written 
 

K

d I
UU

P +Φ=Φ






 +
Φ∂∈

+−

,
2

int

rr

r

 (6) 

 
As it is a sum of pseudo – potential of dissipation, Φ is also a pseudo – potential of dissipation. 

This enables to prove the existence and uniqueness of 
+U

r

as well as the fact that the collision is 
always dissipative. 

Simultaneous collision of N solids with explicit percussions resulting from forces 
not depending on velocities 

According to the assumptions made above about the evolution of the system, especially the solids 
moving with constant velocities during ∆t, the problem to solve at an instant of velocity jump has 
to be considered as a simultaneous collision of several solids. Indeed all the contacts occurring 
during ∆t are considered to occur at the instant of velocity jump as they are computed according to 
the positions of the solids at this instant. The problem to solve thus becomes similar to an 
instantaneous collision of several solids with known velocities before the collision. 
Therefore, the instantaneous collision model exposed above for a point has to be generalized for N 

colliding bodies with mass im , center of gravity iG , and an internal tensor iI . 

The set of contacts points among solid i and solid j is denoted by ijS . These contacts among 

solids are assumed to be punctual. The 
thk contact among solid i and solid j takes place at point 

ijkA
r

and int
ijkP
r

is the contact percussion at this point. 

The set of points where explicit percussions are applied to solid i is denoted by '
iS . The percussion 

ex

ilP
r

is applied to the 
thl point of this set noted ilB

r

. 

The velocity of the center of gravity iG is denoted by iU
r

and the rotational velocity by iΩ
r

of solid 

i  and define the vector [ ]K

rr

K ,,,ˆ
iiUU Ω= . 

With these definitions, the relative velocity of solids i and j at their contact point ijkA
r

is given by 

 

( ) ( ) ( )ijkjjjijkiiiijkij AGUAGUAUD ×Ω+−×Ω+=
rrrrrr

,ˆ  (7) 

 

And at point ilB
r

 the velocity of solid i is 

 

( ) ( )iliiiili BGUBUE ×Ω+=
rrrr

,ˆ  (8) 

 

Let [ ]K

r
r

K ,,,ˆ
iiVV ω=  be the virtual velocities vector. The virtual work of the acceleration forces 

is  
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( ) ( )

( ) 






 Ω+Ω
−

+
Ω−Ω

+






 +
−

+
−=−

+−+−
−+

=

+−+−
−+∑

22

22
ˆˆ

1

iiii
iii

N

i

iiii
iii

acc

I

UUVV
UUmUVW

rr
rr

rr

rrrr

rr

ωω
 (9) 

 
The virtual work of contact forces is 
 

( ) ( ) ( )

( ) ( )












 +
−













 +
−=−

−+

−

= += ∈

−+

∑ ∑ ∑

2

,ˆ,ˆ

2

,ˆ,ˆ
ˆˆ

int

1

1 1

intint

ijkijijkij

ijk

N

i

N

ij SA

ijkijijkij

ijk

AUDAUD
P

AVDAVD
PUVW

ijijk

rrrr

r

rrrr

r

r

 (10) 

 
The virtual work of the explicit forces is 
 

( ) ( ) ( )

( ) ( )







 +
−








 +
=−

−+

= ∈

−+

∑ ∑

2

,ˆ,ˆ
2

,ˆ,ˆ
ˆˆ

1 '

iliiliex

il

N

i SB

iliiliex

il

ex

BUEBUE
P

BVEBVE
PUVW

iil
rrrr

r

rrrr

r

r

 (11) 

 

And the principle of virtual work implies that for any V̂  
 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∑ ∑

∑ ∑ ∑

∑

= ∈

−+−+

−

= += ∈

−+−+

=

+−+−
−+

+−+−
−+










 +
−

+

=








 +
−









 +

+






 Ω+Ω
−

+
Ω−Ω+







 +
−

+
−

N

i SB

iliiliiliiliex

il

N

i

N

ij SA

ijkijijkij

ijk

ijkijijkij

ijk

N

i

iiii
iii

iiii
iii

iil

ijijk

BUEBUEBVEBVE
P

AUDAUD
P

AVDAVD
P

I
UUVV

UUm

1

1

1 1

intint

1

' 2

,ˆ,ˆ

2

,ˆ,ˆ

2

,ˆ,ˆ

2

,ˆ,ˆ

2222

r

r

rrrrrrrr

r

rrrr

r

rrrr

r

rr
rr

rr

rrrr

rr ωω

 
(12) 

 
Constitutive laws for the contact percussions are defined using pseudo – potentials defined by the 
same way as for (6) 
 

( ) ( )









 +
Φ∂∈

−+

2

,ˆ,ˆ
int ijkijijkij

ijkijk

AUDAUD
P

rrrr

r

 (13) 

 
Thus (12) becomes 
 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∑ ∑

∑ ∑ ∑

∑

= ∈

−+−+

−

= += ∈

−+−+

=

+−+−
−+

+−+−
−+

≥






 +
−







 +

−








 +
Φ−









 +
Φ

+






 Ω+Ω
−

+
Ω−Ω+







 +
−

+
−

N

i SB

iliiliex

il
iliiliex

il

N

i

N

ij SA

ijkijijkij

ijk

ijkijijkij

ijk

N

i

iiii
iii

iiii
iii

iil

ijijk

BUEBUE
P

BVEBVE
P

AUDAUDAVDAVD

I
UUVV

UUm

1

1

1 1

1

'

0
2

,ˆ,ˆ

2

,ˆ,ˆ

2

,ˆ,ˆ

2

,ˆ,ˆ

2222

r

r

rrrr

r

rrrr

r

rrrrrrrr

rr
rr

rr

rrrr

rr ωω

 
                                                                                                                                                 (14) 
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By introducing the scalar product 
 

iii

N

i

iii IVUmVU ω
r

rrr

Ω+⋅=∑
=1

ˆˆ  (15) 

 

Defining the vector 
exT̂ such as 

 

( )∑ ∑
= ∈

⋅×+⋅=
N

i

iiil

ex

il

SB

i

ex

il

ex GBPVPVT

iil
1 '

ˆˆ ω
r

rrr

r

 (16) 

 
And pseudo – potential Φ  such as 
 

( ) ( )( )∑ ∑ ∑
−

= += ∈

Φ=Φ
1

1 1

,ˆˆ
N

i

N

ij SA

ijkijijk

ijijk

AVDV
r

rr

 (17) 

 
Then (12) becomes 
 

( ) 0
2

ˆˆ
ˆ

2

ˆˆ
ˆˆˆˆ,ˆ ≥









 +
Φ−Φ+

+
−−−∀

−+−+
−+ UU

V
UU

VTUUV ex  (18) 

 

Given that 
N6ℜ has a scalar product defined by ⋅⋅ and given the definition of sub – gradient, 

the formulation (18) is equivalent to the inclusion 
 

( ) 








 +
Φ∂∈−−−

−+
−+

2

ˆˆ
ˆˆˆ UU

TUU ex  (19) 

 

By noting
2

ˆˆ −+ +
=

UU
X , it obtains 

 

( )XXTU ex Φ∂+∈+− 2ˆˆ2  (20) 

 
This inclusion is finally equivalent to the constrained minimization problem 
 

( )

( ){ }plXXC

XTUXXX

l

N

exd

CX

,1,0|

ˆˆ2inf

6 =≤ℜ∈=

+−Φ+ −

∈

φ
 (21) 

 

The function dΦ is the sum of dissipative parts ((4) and (6)), the indicator function being replaced 

by the constraints ( )Xlφ  defining the set C . The variable p is the total number of contacts. A 

contact index l corresponding to the contact point ijkA
r

, the corresponding constraint is 

 

( ) ( ) lijkijijkijl NAXDA
U

DX
rrrrr

⋅









−








= ,,

2

ˆ
φ  (22) 

  

where lN
r

is the normal vector at contact point ijkA
r

pointing towards solid i . 
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Numerical method for the resolution of the velocity jumps 

The function )(XF  is defined by 

 

( ) XTUXXXXF exd ˆˆ2)( +−Φ+= −  (23) 

 

The problem to solve is a constrained minimization problem of )(XF . The solution is a saddle 

point of the Lagrange function [21]: 
 

( ) ( ) ( )∑
=

+=
p

l

ll XXFXL
1

, φµµ  (24) 

 

One can prove the existence and uniqueness of *X and the existence of the Lagrange multipliers 
*µ whereas the uniqueness of *µ is only insured if the corresponding constraints are linearly 

independent [21]. 

 The function )(XF as well as the set C being convex and the constraints being linear, the 

Uzawa method is used tom compute the saddle point ),( ** µX of ),( µXL . From the 

computational point of view, the method consists in solving a succession of unconstrained 
minimization problem: 

a) Let be 
+ℜ∈ p0µ the initial value forµ . 

b) Compute ( ) ( )








ℜ∈+= ∑
=

p

l

N

lln XXXFX
1

6,minarg φµ . 

c) Compute ( ){ }nl

n

l

n

l Xρφµµ +=+ ,0max1 . 

d) Repeat from step (b) until a convergence condition is satisfied. 
 

For the presented application, quadratic pseudo – potentials are used, making ( )XdΦ  a quadratic 

function. Thus, )(XF  is quadratic and the conjugate gradient method is used with accuracy for 

computing step (b). It is applied to the stationary condition 
 

( ) ( ) ( )∑
=

=∇+∇=∇
p

l

nllnn XXFXL
1

0, φµµ  (25) 

 
In step (c), the value of ρ has to be carefully chosen to insure the convergence. Numerical analysis 

[11, 19] and numerical experimentations show that an efficient value is around the average mass of 
the grains in the present situation. 
The resolution of the velocity jump problem enables to obtain the new velocities of all the solids in 
the system and, simultaneously, the contact forces, thanks to the constitutive laws and the 
Lagrange multipliers. 

Numerical computations and comparison with 
experimental results 

Similarly to the experimental testing of the structure, four successive impacts with increasing level 
of energy are computed with the mechanical model of the sandwich structure (Figure 11). The 
constitutive law used for the contact force between grains is 
 

N
UU

kNP N

d
r

rr

rr

⋅






 +
=⋅

+−

2
 (26) 
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and 
 

( )











⋅









⋅






 +
−







 +
=⋅⋅−

+−+−

NN
UUUU

kNNPP T

dd
rr

rrrr

rrrr

22
 (27) 

 
with 
 









×=









×=

−

−

m

Ns
k

m

Ns
k

T

N

2
3

2
3

103.0

105.0

 (28) 

 

The time step used for the computation is [ ]st 310−=∆ , making the friction force between grains 

a linear viscous force with a viscosity coefficient [ ]mNs /3.0=υ . 

To cover the duration of the signals recorded during the experimental collisions, 100 time steps are 
computed for each collision. At each step, the number of contacts to take into account is between 
6200 and 8600 in the system. 
 
 

 
Impact with 20% of Emax 

 

Impact with 40% of Emax 

 
Impact with 80% of Emax 

 

Impact with 100% of Emax 

 
Figure 11 Positions of the steel ball and the grains of the central gabion (the others have been 

skipped) after each one of the four computed impacts. 
 
For each impact, forces, accelerations and displacements are computed in the mechanical model at 
the places where they have been measured during the experiment. Thus, we obtain the numerical 
signals to compare with the experimental ones for the validation of the model. 

Forces 

The forces are measured and computed at the positions f1, f2, f3 and f4 as shown in Figure 3. The 
computation of the forces is made thanks to the deformation of the Winkler – Westergaard solid. 
In the Figure 12 – 15 is shown the comparison of the experimental and numerical signals at each 
one of these spots for the four successive impacts of 20%, 40%, 80% and 100% of Emax. 

 



14 

  

  
Figure 12 Comparison between experimental (blue) and numerical (red) signals ( )tf1 for the four 

impacts of 20%, 40%, 80% and 100% of Emax. 
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Figure 13 Comparison between experimental (blue) and numerical (red) signals ( )tf2 for the four 

impacts of 20%, 40%, 80% and 100% of Emax. 
 

  

  

Figure 14 Comparison between experimental (blue) and numerical (red) signals ( )tf3 for the four 

impacts of 20%, 40%, 80% and 100% of Emax. 
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Figure 15 Comparison between experimental (blue) and numerical (red) signals ( )tf4 for the four 

impacts of 20%, 40%, 80% and 100% of Emax. 

Accelerations 

There are four points where the accelerations were measured: a1, a2, a3 and a4 (Figure 16). The 
first one corresponds to the steel ball horizontal acceleration and the other points correspond to 
horizontal acceleration at specific positions for three grains. The acceleration a2 corresponds to a 
grain located in the back of the gabion, and it has measured the acceleration of the motion toward 
the boundary of the structure (left picture in Figure 16). The acceleration a3 and a4 correspond to 
two grains located in the middle of the structure (right picture in Figure 16) and it has measured 
the acceleration of the motion toward the left and the right of the central gabion respectively. 
In Figure 17 – 19 is shown the comparisons between the experimental and numerical accelerations 
signals for the grains.  

 

 
Figure 16 Distribution of the acceleration points. 
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Figure 17 Comparison between experimental (blue) and numerical (red) acceleration signals for 

the four impacts of 20%, 40%, 80% and 100% of Emax at point a2. 
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Figure 18 Comparison between experimental (blue) and numerical (red) acceleration signals for 
the four impacts of 20%, 40%, 80% and 100% of Emax at point a3. 

 

  

  
Figure 19 Comparison between experimental (blue) and numerical (red) acceleration signals for 

the four impacts of 20%, 40%, 80% and 100% of Emax at point a4. 
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For this reason, it is possible only obtain the experimental acceleration signal during the impact 
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Figure 20. 

 

  
Figure 20 Left: Acceleration signal peaks of the steel ball for impacts with 20%, 40%, 80% and 
100% of Emax. Right: Comparison between experimental (blue) and numerical (red) acceleration 

signals for the four impacts of 20%, 40%, 80% and 100% of Emax at point a1. 

Displacements 

The displacement sensors measured the maximal displacement of the blocks belonging to the 
backside of the gabion – wall during each impact. In the numerical simulation, this displacement is 
computed by comparing the positions of the corresponding grains in the backside of the gabion –
wall to their positions before the first impact. In Figure 21 is shown the comparison between 
maximum displacements for the four impacts with different energy levels. 
 

 

Figure 21 Comparison between experimental (blue) and numerical (red) maximum displacements 
for the four impacts of 20%, 40%, 80% and 100% of Emax. 
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Conclusions 

The primary goal of this study was to measure the shock absorbing capacity of a sandwich 
structure and to test the ability of the A – CD2 method to compute impacts in such structures. 
The accuracy of the numerical results, compared to the experimental measurements, validates the 
use of this method for impact on granular layers. Indeed, the numerical and experimental curves 
have matching shapes and amplitude, although minor differences can be noticed. 
Figures 12 – 15 and Figures 17 – 21 show that the numerical signal is less close to the 
experimental one for the first impact, than it is for the next impacts. The mean reason for this 
difference is due to the compaction. The preparation of the gabions requires a compaction process 
numerically modeled by a succession of uniform impacts. The compaction of the gabions thus 
obtained is different from the compaction of the real gabions. Some rearrangements between the 
grains are still possible and occur during the first computed impact.  
In addition, let’s mention that the experimental signals do not fit as well for acceleration as they do 
for forces and the displacements. It is also obvious that the acceleration signals (both experimental 
and numerical) are much more erratic than the others. To understand this difference, one must 
consider that the acceleration signals have been measured inside the gabions (Figure 4) whereas 
forces and displacements have been measured at the boundary of the gabions. Force chains in 
granular media are discontinuous in time and space [6] during its evolution, such that one single 
grain of the media has strongly non – smooth evolution. For this reason, one can’t hope to obtain 
perfectly matching experimental and numerical signals, but can be satisfied to have obtained 
signals with similar trends and amplitudes. 
 

 
Figure 22 IFSTTAR’s rock fall station in Montagnole. 

 
The study of impacts in a sandwich structure, supported by ANR project REMPARE [22] has 
shown promising results for further studies of the shock absorbing capacity of granular structures. 
As the pendulum impact facility used for this study does not enable impacts with energies higher 
than 10 [kJ], coming impact experiments will be carried out at IFSTTAR’s rock fall station in 
Montagnole (Figure 22). These experiments, scheduled fall 2012, will consist in vertical impacts 
of 500 [kJ] to 3000 [kJ] impact energy. 
As the A–CD2 method has shown his efficiency for the numerical simulation of impacts in 
granular structures in this study; it will also be used to simulate the coming experiences. The 
computational performances will therefore have to be improved in order to simulate impacts in 
larger granular layers or in similar layers with smaller (thus more numerous) grains. For this 
purpose, the implementation of high performance computational techniques in the scope of the A–
CD2 method is investigated at IFSTTAR and Universidad Técnica Federico Santa María with the 
support of the project 11R095 “Chutes de blocs et éboulements rocheux” of IFSTTAR. 
As the experiments described in this paper have been carried out with impact energies lower than 
10[kJ], the limestone blocks have not been significantly cracked or damaged and we have ignored 
these aspects in our mechanical model. As the coming experiments will be carried out with much 
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higher impact energies, the need for adding a cracking model for the grains will be investigated 
when modeling them. 
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