Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the $N$-dimensional boundary null-controllability in cylindrical domains

Abstract : In this paper we consider the boundary null-controllability of a system of $n$ parabolic equations on domains of the form $\Omega =(0,\pi)\times \Omega_2$ with $\Omega_2$ a smooth domain of $\R^{N-1}$, $N>1$. When the control is exerted on $\{0\}\times \omega_2$ with $\omega_2\subset \Omega_2$, we obtain a necessary and sufficient condition that completely characterizes the null-controllability. This result is obtained through the Lebeau-Robbiano strategy and require an upper bound of the cost of the one-dimensional boundary null-control on $(0,\pi)$. This latter is obtained using the moment method and it is shown to be bounded by $Ce^{C/T}$ when $T$ goes to $0^+$.
Type de document :
Article dans une revue
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2014, 52 (5), pp.2970-3001. 〈10.1137/130929680〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00845994
Contributeur : Guillaume Olive <>
Soumis le : jeudi 18 juillet 2013 - 13:03:20
Dernière modification le : mercredi 10 octobre 2018 - 01:26:34
Document(s) archivé(s) le : samedi 19 octobre 2013 - 05:50:09

Fichier

boundary-controllability-for-p...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Assia Benabdallah, Franck Boyer, Manuel Gonzalez-Burgos, Guillaume Olive. Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the $N$-dimensional boundary null-controllability in cylindrical domains. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2014, 52 (5), pp.2970-3001. 〈10.1137/130929680〉. 〈hal-00845994〉

Partager

Métriques

Consultations de la notice

620

Téléchargements de fichiers

304