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Abstract. This paper deals with the nonparametric estimation of the conditional tail index in
presence of random covariates. In particular, it is assumed that the conditional response distri-
bution belongs to the max-domain of attraction of the extreme value distribution, and its tail
index is estimated locally within a narrow neighborhood of the point of interest in the covariate
space. The moment estimator, originally introduced in Dekkers, Einmahl, & de Haan (1989), is
adjusted to the local estimation context, and its asymptotic properties are investigated under
some mild conditions on the response distribution, the density function of the covariates, the
kernel function, and for appropriately chosen sequences of bandwidth and threshold parameters.
The finite sample performance of the proposed estimator and an alternative from the recent
extreme value literature are evaluated with a small simulation study. We also illustrate the
practical applicability of the estimator on the world catalogue of earthquake magnitudes.

Résumé. Nous considérons dans cet article ’estimation non paramétrique de I'indice de queue
conditionnel en présence de covariables aléatoires. Sous I’hypothese que la loi conditionnelle des
réponses appartient au domaine d’attraction d’une loi des extrémes, nous estimons son indice de
queue localement dans le voisinage d’un point de I’espace des covariables. L’estimateur des mo-
ments introduit par Dekkers, Einmahl, & de Haan (1989) est adapté au contexte de Iestimation
locale. Ses propriétés asymptotiques sont établies sous des hypotheses convenables sur la loi
conditionnelle, la densité des covariables, le noyau et pour un choix approprié de la fenétre et du
seuil. Nous illustrons le comportement a distance finie de notre estimateur sur simulations et
le comparons a une alternative introduite récemment dans la littérature. L’utilisation pratique
sur des données de magnitudes de séismes est également proposée.
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1 INTRODUCTION

In extreme value theory the estimation of the extreme value index assumes a central position.
Estimation of the extreme value index « in the univariate framework has been considered ex-
tensively, and a vast literature has been dedicated to it. See for instance Beirlant et al. (2004),
and de Haan & Ferreira (2006), for recent accounts on this topic. We consider here a regression
setting where the response variable Y is recorded along with a random covariate X. Let the
conditional distribution function of Y given X = z be F(y;z) and set F(y;x) := 1— F(y;z). We
assume that F(y;x) belongs to the max-domain of attraction of the generalized extreme value
distribution, i.e. there exists a constant y(x) and a positive rate function a(.; ), such that

i YY) —U(t:2)
t—00 a(t; )

with
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for every y > 0, where U (t;x) is the tail quantile function defined as

Ul(t;z) ::inf{y:F(y;a;) 21—1}, t>1.

The parameter ~y(x), called the conditional extreme value index or also conditional tail index,
gives important information about the tail heaviness of F(y; ). It allows to distinguish between
heavy tails (y(z) > 0), moderate tails (y(z) = 0) and light tails (y(x) < 0). In the present paper
we introduce a nonparametric estimator for -y(z) based on local estimation within a narrow
neighborhood of the point of interest in the covariate space. In particular we will adjust the
moment estimator, originally proposed by Dekkers, Einmahl, & de Haan (1989) as estimator
for the extreme value index in the univariate context, to the setting of local estimation. Un-
like classical regression analysis with a focus on the estimation of the mean of the conditional
response distribution, we consider here a regression problem where interest is in estimating the
conditional tail index. There are many practical instances where it is more relevant to study
the tail of the conditional response distribution rather than the mean. In fact, for heavy-tailed
response distributions the conditional expectation might not exist. Also, estimation of the con-
ditional tail index is generally a first step in an extreme value analysis, since e.g. estimation of
extreme quantiles or small tail probabilities will require an estimate for ~y(x).

To illustrate the practical applicability of our method we will consider the world catalogue of
earthquakes which contains information about earthquakes that have happened between 1976
and present. Accurate modeling of the tail of the earthquake energy distribution has clearly a
large practical relevance since severe earthquakes cause a lot of damage and losses. With our
method we can link the tail of this earthquake energy distribution to local factors, which allows
to differentiate the risks geographically. This information is useful for e.g. engineers in order to
determine the strength of structures like buildings, bridges and nuclear reactors. Other applica-
tions concern the study of claim sizes in insurance as a function of risk factors, estimation of the



tail of the diamond value distribution conditional on the variables size and color, the analysis
of survival at extreme durations, to name but a few.

The estimation of the tail index with fixed, i.e. nonrandom, covariates has been investigated
rather extensively in the recent extreme value literature, and we refer to Chapter 6 in Coles
(2001) and Chapter 7 in Beirlant et al. (2004), and the references therein, for an overview
of the available methodology. Less attention though has been paid to the random covariate
case, despite its practical interest, and most of the available methods are situated in the class
of the Pareto-type distributions, corresponding to y(z) > 0. Wang & Tsai (2009) developed a
parametric estimation method based on maximum likelihood in the Hall subclass of Pareto-type
models (Hall, 1982). Nonparametric kernel methods were introduced in Daouia et al. (2011),
who used a fixed number of extreme conditional quantile estimators to estimate the conditional
tail index, for instance using the Hill (Hill, 1975) and Pickands (Pickands, 1975) estimators,
whereas Goegebeur, Guillou, & Schorgen (2013) developed a nonparametric and asymptotically
unbiased estimator based on weighted exceedances over a high threshold. The estimation of
the tail index for the complete max-domain of attraction in presence of random covariates has
hardly been considered. We are only aware of the attempt made by Daouia, Gardes, & Girard
(2013), generalizing the methodology of Daouia et al. (2011). In particular, a fixed number of
kernel estimators for extreme conditional quantiles was plugged in a refined Pickands estima-
tor (Drees, 1995) for the extreme value index, and its asymptotic properties were established,
though assuming that the distribution function is twice differentiable.

The remainder of this paper is organized as follows. In the next section we introduce the es-
timator and study its asymptotic properties under some mild regularity conditions. The finite
sample performance of the estimator and an alternative procedure from the recent extreme value
literature are evaluated with a small simulation experiment in Section 3. In Section 4 we illus-
trate the applicability of the method on the world catalogue of earthquake magnitudes. The
proofs of all results are postponed to Section 5.

2 THE LOCAL MOMENT ESTIMATOR AND ASYMPTOTIC
PROPERTIES

Let (X;,Y;),i=1,...,n, be independent copies of the random vector (X,Y) € R x R, where
the conditional distribution of Y given X = z satisfies (1). The basic building block for our
estimator is the statistic

1 n
T (2, K) := — > K, (¢ = X;) (I0Y; — lnwn)}, 1{Y; > wa} £ =0,1,....6, (3)
=1

K-
where K, (z) := <h';”>
satisfying h, — 0 as n — oo, (x)+ := max(0,z), 1 {A} denotes the indicator function of the

event A and w, is a local non-random threshold sequence satisfying w, — y*(x) for n — oo,

, K is a joint density on RP, h, is a positive non-random sequence



where y*(z) indicates the right endpoint of F(y;z) defined as y*(z) := sup{y : F(y;z) < 1}.
This statistic was introduced and studied by Goegebeur, Guillou, & Schorgen (2013) in the
framework of conditional Pareto-type tails, and will also serve as our basic building block in the
creation of the local moment estimator.

In order to obtain the limiting distribution of the statistic (3) we need to impose a second order
condition on the tail behavior of F(y;x), specifying the rate of convergence in (1). For more
details about second order conditions we refer to e.g. Bingham, Goldie, & Teugels (1987) and
de Haan & Stadtmiiller (1996).

Assumption (R) There ezists constants y(x) € R and p(x) <0, a positive rate function a(.;x)
and a function A(.;x) not changing sign ultimately, with A(t;x) — 0 for t — oo, such that

Ul(ty;x)—U(t;x
( ya()t;x)( d - DV(@ (y)

e Do) v
with
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for all y > 0.

This second order condition is widely accepted in the extreme value literature, and is not
very restrictive. Note that (R) implies that |A| is regularly varying with index p(z), i.e.
limy o0 % = y*®) ¥y > 0, (see e.g. de Haan & Stadtmiiller, 1996).

Since our main statistic (3) is expressed in terms of log-excesses, we need a reformulation of (4)
in terms of InU(y; z). To this aim we introduce some notation. We refer to Fraga Alves et al.

(2007) for more details. Let

Aiz) = Gk = 14@), 74(a) = max(0.0(2)

and

Ux) = tlgglo <U(t;x) — a’i?»’”?) eR for 0 <~(z) < —p(x).

Then, according to Theorem 2.1 in Fraga Alves et al. (2007), we have that

A(t;2) — 0 and (t’x)—>c, for t — oo,

A(t; x)
if p(z) # y(x), where
0, V(@) <plz) <0
c= %, 0 < —p(z) <v(z) or (0 <~v(x) < —p(x) and ¢(x) =0)
+o0, v(z) + p(x) =0 or (0 < y(x) < —p(z) and 4(x) # 0) or p(z) < y(x) <0
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With this notation we set

A(t; ), €= %00
L ~(z) ) _ =)
B(t, :IT) = —y(x)-i—p(w)A(t’ ZE‘), c= y(x)+p(x)
A(t; o), otherwise

As a first step in the development of our local moment estimator we study the asymptotic
behavior of (3) under Assumption (R). To this aim, in Lemma 1, we establish the asymptotic
expansion of the following conditional expectation

m (wp, t;z) :=E [(lnY —lnwn)t+ H{Y >wn}; X = x] )

Lemma 1 Case (i), t = 0:

m (s i) = F (wni ).

Assume (R) with p(z) # y(x), then for w, — y*(x) we have that:
Case (ii), t = 1:

F (wn; @) [v(x) + =k B (F 1 x) (1 +o(1))} : ~(z) > 0

(@)’

m (wp, t; ) =

P (R S
F(wn;) U(<F(wlm).x)> =@ * BB (Fie) o)), (@) <0

where
pla) = { ek 7(9?)32(:%)
—y(z), c¢=+o0
altia) (1= 557 ) . (@) < p(a) =0
a*(t; ) == a(t;z) (1— B;J((tg) . () <plz)<0 ’
a(t;x) (1+ 25&2)96)) , plz) <v(z) <0
a(t;x), p(z) <v(x)=0
and )
@A) Y(z) < p(x) =0
W oy = 7 TG e <=0
“T@aa@a-mey A <v@) <0
=t p(z) < 7(z) =0
Case (iii), t = 2:
F (wi) [29%(2) + 2R B (i) (1+0(1)] (@) >0

m (wn, t;z) =

F(wn;z) ;m)

2
— a* %,1
F (wn; @) (U(<F(w1”’ ) )> [t + 00w B (Famyi®) (o)) @) <0



where

2(2—3~(x)) i
'y(x)(l—’(y(:v))z(il)—?y((x)))Q’( ; Y(z) < p(x) =0
2(2—2v(z)—p(x
b oy = PRI @)=l (=27 V(@) <pla) <0
z),p(x —18+(z
I @ =21 ) =5 @) pz) <~(z) <0
—6, p(z) <y(z)=0

We now assume that the random vector X has density g(x) for x € RP. This density function
is assumed to follow a Holder condition. Let || - || be some norm on RP.

Assumption (G) There exists ¢ > 0 and ng > 0 such that |g(x) — g(2)| < cgllx — 2|7 for all
x,z € RP,

Concerning the kernel function K we introduce the following condition which is standard in
local estimation. It is also used in Daouia, Gardes, & Girard (2013) and Goegebeur, Guillou, &
Schorgen (2013).

Assumption (K) K is a bounded density function on RP, with support Q included in the unit
hypersphere in RP.

Besides Assumption (R), which describes the tail behavior of U(.; z), we also need a condition to
control the oscillation of U(y; ) when considered as a function of the covariate x. This condition
is formulated in terms of the conditional expectation m(wy,t; ).

Assumption (F) The conditional expectation m(wy, t; x) satisfies that, for w, — y*(x), hy, — 0,

m(wn, t;x — zhy)

®(wp, hp;x) == sup sup —1| = 0ifn— .

te{0,1,...,6} z€Q m(wnat§ x)

To deal with the randomness in X we consider now the unconditional expectation
M (K, t;2) == E [Kp, (2 — X) (InY —Inw,)’, 1{Y > w,}],

which corresponds in fact with the expectation of T, ) (z, K), since the summands in (3) are inde-
pendent and identically distributed random variables. Lemma 2 states the asymptotic expansion
of m, (K,t;x).

Lemma 2 Assume (R) with p(x) # v(x), (G), (K) and (F). For all x € RP where g(z) > 0 we
have for n — oo with hy, — 0 and w, — y*(x),

it (K t;2) = m (wn, £2) g(2) (1 4+ O(h) + O (® (wn, i 7))

Note that in the case where ¢t = 0, the result of Lemma 2 can in fact be obtained without
assuming (R).



As our next step in the construction of an estimator for the extreme value index in a regression
context, we need to establish the asymptotic normality of a vector of appropriately normalized
statistics of the form (3). This is done in Theorem 1. Inspired by Lemmas 1 and 2, we define

1 (t)
Fona)e@ Ty’ (z, K), ~v(x) >0

ﬁf) (x,K) :=

U(é;ﬂ ' (t)
F(wn;x) 1 Tn (-T,K)a ’Y(SC) S 0

a (f«uln;m ) ) Floniala(e)

and
T;’L = |:T7(LO) ($, KO)a T’I’(Ll) (.7), K1)7 TT(L2) (.TC, K2)] .

Theorem 1 Let (X1,Y1),...,(X,,Y,) be independent copies of the random vector (X,Y), and
let g denote the density function of X. Assume (R) with p(z) # v(x), (G) and (F) are satisfied
and that the kernel functions Ko, K1 and Ky satisfy (K). For all x € RP where g(z) > 0 we
have that if hy, — 0, wp, — y*(z) and nhhF (wp; ) — 0o for n — oo, then

nhEF (wn;2) [T, — E(T,)] 2 N3 (0,5),
where the elements of X are given by
ORI 0)  (a) > 0

Yk = . J,k=0,1,2.
G+ Kkl <0
g(@) I (1—in(x))’ V(z) <

Looking at the moment estimator from the univariate framework (Dekkers, Einmahl, & de Haan,
1989), and the results we have obtained so far, we introduce our local moment estimator

2
(1) <%%“m)
T (2, K 1 o
Fula) o= By Ly AT e
T (&, Ko) 2 1) (2,12)
70 (2,Ko)

-1

: (®)

for kernel functions K, K7 and K. Indeed, using the leading terms of the asymptotic expansions
for E(T, T(Lj )(ac, Kj)), j =0,1,2, as given by Lemmas 1 and 2, one easily motivates intuitively that
An(x) is an estimator for y(z). We focus here on an adjustment of the moment estimator,
but a similar idea could as well have been applied to other estimators for v(z) € R, like e.g.
the probability weighted moment estimator (Hosking & Wallis, 1987) and the mixed moment
estimator (Fraga Alves et al., 2009). Using the result of Theorem 1 we can now obtain the
limiting distribution of (5), when properly normalized.

Theorem 2 Let (X1,Y7),...,(Xy,Y,) be independent copies of the random vector (X,Y), and
let g denote the density function of X. Assume (R) with p(z) # ~(z), (G) and (F) are
satisfied and that the kernel functions Koy, Ky and Ky satisfy (K). For all x € RP where



g(z) > 0 we have that if h, — 0, w, — y*(x) and nhLF (wy;z) — 00 for n — oo with

nhbF (wn;x)B (=——:2) — M) for some constant \(z) € R, nhf{i_%gf wp;x) — 0 and
F(wn;z)

nhhF (wn; ) ®2 (W, hn; ) — 0, then

RO F (wns @) Fu(@) — 7(2)) B N (M), V/EV),

where
Y(z)(A—p(=))+p(x)
@ —p)? =) >0
'u/ g
1 2 T z)<
(1= 2(@)(@ = (@) |20 ) + 5L = 20@)BG )| + HARELE () <0
and
1—7§)
V= 1@
2v*(x)
when y(x) > 0, while
(1 = 7(2))(1 = 27(z))
V= 2(1 —v(x))*(1 — 2v(x)

when y(x) < 0.

The bias component p in Theorem 2 can be calculated as

(1—w<}(%%§_%§§)—)§1§3)_p(m)) Y(z) < plz) <0
p={ _OA@)I=3G) p(z) <y(x) <0

e 0= —pla) <7(a) or (0 < 7(e) < —p(a) and €(a) = 0)
s (@) +p(z) =0 or (0 <~(z) < —p(z) and £(z) # 0)

(14~(2))?

and thus it corresponds with the bias of the moment estimator in the univariate context, as
given in Theorem 3.5.4 in de Haan & Ferreira (2006), if one takes the slightly different definition
of the function @ there into account. For the special case where the three kernel functions are
equal, the asymptotic variance expression simplifies and is given by

2 2 T
=\ I BE0A@)? A=29() A1) +62()) :
O @)1 @) (@) <0

where K denotes the common kernel function. Note that apart from the scaling factor || K||3/g(x)
this variance expression coincides with the asymptotic variance of the moment estimator. As
expected, the asymptotic variance of our estimator is inversely proportional to g(z).



3 SIMULATION EXPERIMENT

In the simulation experiment we compare our local moment estimator with the estimators pro-
posed in Daouia, Gardes, & Girard (2013). They consider the class of estimators for ~(x),
defined by

@) ie LS ( n (7j00:7) = G (734100 7) ) ©)
A () == — miln | = - ,

’ Inr = / dn (Tj—i-lan; .CE) —qn (Tj+2an; :L’)

with J > 3, r,a, € (0,1), and for j =1,...,J, 7; = r/~1, 7; a sequence of weights summing to
one, and

Gn(a; x) := inf {y : I%n(y, x) < a} ,

with "
i K, (2= X5) 1{Y; >y}

Fnlo):= > K, (w = Xi)
In particular they propose to use J = 3 or J = 4 with r = %, while the weights 7; are chosen as
constant weights 11 = ... =mj_o = ﬁ or linear weights m; = U—Sﬁ forj=1,...,J =2
With these settings we get the two estimators
SRPL _ 1 ( Gn (T1O0; ) — G (T2 T) ) 7)
o (J=2)Inr Gn (Tj—100; %) — Gn (T0n; )

and

~RP?2 L 2 = Gn (Tjan§ :L') —qn (Tj+1an§ :U)
V)= (J-—1)(J—=2)Inr Z;ln (dn (Tj_10n;%) — Gn (Tjan;a:)> ' (8)

Note that for J = 3, the two estimators are identical. In Figure 1 we compare the asymptotic
variance of the local moment estimator, with the asymptotic variance of ﬁﬁp’l(x) and ’ny’Q(a:)

for J = 3,4, in the case where all kernel functions are chosen to be equal. In the plot we have

2
fixed % = 1, since this term appears in the expression of the asymptotic variance for all the
estimators. It appears that for y(z) > —0.6 the local moment estimator has the smallest asymp-

totic variance, while 'yfp’l(x) is best for —2 < «y(z) < —0.6 and this estimator also seems to
have the smallest asymptotic variance of the benchmark estimators over a wide range of values

for y(x).

For the practical implementation of the local moment estimator, we have to choose the band-

width h,, and the threshold wy,, where we use for the latter the (k + 1)-th largest response in

the ball B(z, h,). In all cases the kernel functions are chosen as the biquadratic kernel function
15

K(2) = 1o (1- )’ 1z e [-1,1)}.

Selection of (hy,, k) is done using (i) an oracle strategy and (i¢) a completely data driven method.



The oracle strategy was proposed in Gardes, Girard, & Lekina (2010) and consists in selecting
(hn, k) as follows:

(ho, ko) == arhgrr]lcinﬁ (n(),7()) (9)
with
1L
. A 2
A2 (3u(),7() == 7 3 G (20) =7 (20))%, (10)
/=1
where z1,..., 21 are points regularly spaced in the covariate space. This method requires the

knowledge of the function 7(z), which is unknown in practical situations. To deal with this we
also use a two step method, which is completely data driven. First, the bandwidth parameter
hy is selected using a cross validation criterion introduced by Yao (1999), implemented by
Gannoun et al. (2002) and considered in an extreme value context by Daouia et al (2011) or
Daouia, Gardes, & Girard (2013). It consists in selecting h,, by

n n
. 2
he = argmin Y (1 (Y; <Y} — Fo_; (Yj;Xi)) : (11)
hn€M i3 =1
where H is a grid of values for h,, and

Foi(yiw) = Dkt Kn (2 = X)) 1{Yy <y}
n,—i \Ys . ZZ:LIWQI Khn (:L‘ — Xk)

Next for each 2z, we do the following
e Compute 4, (z¢) for k = 5,6, ..., kmax, where kpax is chosen appropriately.
e Split the estimates 4, (z¢) into blocks of size L\/kmaXJ.

e For each block we compute the standard deviation of the estimates for 7 (z;). For the
block with the smallest standard deviation, we select the median of the estimates.

Note that in the oracle approach both h, and k are selected globally, while in the data driven
approach h,, is selected globally and k is selected locally.

We compare the estimators on three conditional distributions of Y given X = z. The conditional
distributions we consider are

e The reversed Burr(n(z),(x), \(x)) distribution, left-truncated at 0 and with right end-
point, 3*(z),

x ()T A=)
1= Flysa) = (SO0 <y <y @A) () ) > 0

10



for which v(x) = —W and p(z) = —ﬁ. Here we always use n(z) = 3 and y*(z) = 5,
while we consider the cases

v(z) = —% (110 + sin(mc)> (; - %exp <—64 (37 - ;>2>> ;

with A(x) fixed at the values A(x) = 0.5,1,1.5, or 7(x) fixed at the values 7(x) =
0.5,1.5,2,2.5, and the case

v(z) = —i <110 + sin(m:)) (E - %exp (‘64 <33 - ;>2>> ;

with A(z) = 2. Note that the function (x) is chosen differently in the last case, in order
to satisfy the requirement v(x) # p(x). Such type of functions y(z) was also considered
in Daouia et al. (2011), though in the framework of Pareto-type distributions. They are
differentiable with several stationary points.

The strict Weibull(\(z), 7(z)) distribution,
L= Flyia) = ey > 0:M@). () > 0,

for which «y(z) = 0 and p(x) = 0. Note that this distribution does not fit in to our
framework since y(z) = p(z), but we include it to see how our estimator performs when
the assumptions are violated. We consider the cases

1
L (& + sin(rz)) (% — Zexp (—64 (z— %)2))

with 7(z) fixed at some constant, and

ANz) =

1
% (%0 + sin(mz)) <% — %exp <—64 (z — %)2))

with A(z) fixed at some constant.

7(z) =

The Burr(n(z),(x), \(z)) distribution,

o Az)
V=P = (o) > Ol (). @) > 0,

for which ~(x) = W and p(z) = —ﬁ. We consider the case

1/1 11 1 1\*
v(x) = 5 (10 + Sln(ﬂ'I)) (10 — 5 &xXP (—64 <x - 2) )) ,
with n(x) = 1 and different but fixed values of A(x).

11



The distribution of X is in all cases chosen as the Unif(0, 1) distribution. For all distributions
we simulate N = 500 samples of size n = 1000 and as measures of efficiency, we compute the
absolute bias for a given estimator 4(-)

L
Bias (3()) = 7 3 14 (20) 7 ()

and the mean squared error

L
MSE (5(-)) = %Z (5 (2¢) =7 (20))?

(=1

in each simulation, with the z,’s being L = 41 points equidistantly spaced in [0.1,0.9]. The
values for bias and MSE we report are averaged over the N = 500 simulations.

The benchmark estimators of Daouia, Gardes, & Girard (2013) are also examined using the
oracle approach as well as the data driven approach. For the oracle approach, we use «,, in-
stead of k in (9), while in the data driven approach, 7% (z) is computed for a;, = nﬁ where
k=2,...,n*—1and n* is the number of observations in the ball B (x, h;,). In the oracle method
we search for h, in the grid H = {0.05,0.075,...,0.3} for all estimators, while k is chosen in
k=2,...,100 for the local moment estimator, and c, is chosen in the grid {0.05,...,0.95} for
the benchmark estimators. For the data driven approach we also use H = {0.05,0.075,...,0.3}
for the cross validation for all estimators, and we choose kp.x = L%J for the local moment
estimator.

The results of the simulations can be seen in Table 1 to Table 10. In the tables the figures in
bold indicate the estimator with the smallest bias and MSE, and the numbers in parenthesis
are the standard errors of the estimates. Regarding the tables, we have the following general
remarks:

e As expected, the results for the data driven method are worse than those for the oracle
method.

e Among the estimators proposed by Daouia, Gardes, & Girard (2013) no estimator performs
uniformly best in terms of bias and MSE, though ’?fp’l(a;) seems to have an overall good
performance.

e In the cases where the conditions of our theorems are satisfied (reversed Burr and Burr),
our local moment estimator outperforms the benchmark estimators in terms of bias and
MSE, both with the oracle method and the data driven method.

e For the Burr distribution, where v(x) > 0, the local moment estimator is far superior to
the benchmark estimators, but this was also to be expected since the asymptotic variance
of the local moment estimator is much smaller than that of the benchmark estimators in
this case.

12



e For the strict Weibull distribution, which does not satisfy the assumptions of our theorems,
our estimator is still competitive with the Daouia, Gardes, & Girard (2013) estimators.
Our estimator thus seems to be robust with respect to a violation of the assumptions.

4 DATA ANALYSIS: LOCAL ESTIMATION OF THE SEIS-
MIC MOMENT DISTRIBUTION

In this section we illustrate the practical applicability of the method for estimating the tail of
the seismic energy distribution. Accurate modeling of the tail of the seismic moment distri-
bution is clearly of crucial importance, since large earthquakes cause heavy losses. We use the
Global Centroid Moment Tensor database, formerly known as the Harvard CMT catalog, that is
accessible at http://www.globalcmt.org/CMTsearch.html (Dziewonski, Chou, & Woodhouse,
1981; Ekstrom, Nettles, & Dziewonski, 2012). This database contains information about, among
others, longitude, latitude and seismic moment of earthquakes that have occurred between 1976
and present. The variable of main interest is the earthquake’s seismic moment (measured in
dyne-centimeters) and as covariate we use the location of the earthquake (given in latitude and
longitude). We want to study the tail behaviour at a specific, fixed, location, but for the esti-
mation of the conditional tail index we have to take into account that earthquakes happen at
a random location. Hence, this dataset is very well suited for our local moment estimator. As
the points in the covariate space where we want to estimate the tail index, we use locations
where an earthquake has already happened. In order to determine the neighborhood of these
locations, we compute the distance in km to every other earthquake position using the formula

d = Rcos ! (cos(1)1) cos(1hg) cos(d1 — ¢o) + sin(epy ) sin(1)s))

which gives the spherical distance between two points with longitude and latitude (¢1,1) and
(¢2,12), respectively, (see e.g. Weisstein, 2003). Here it is assumed that the earth is a perfect
sphere, with radius R = 6371km (mean radius of the earth). In the analysis we ignored isolated
earthquakes, i.e. earthquakes for which there is no neighboring earthquake within a radius of
200km. The bandwidth h,, is chosen by applying the cross validation criterion (11) on a grid
of H = {200,300, ...,2000} (measured in km). Here we use in all cases the biquadratic kernel
function

_ Tz (1-2?)*1{z € [-1,1]}.

This leads us to use a bandwidth of h,, = 400km. Next, the threshold is selected locally in
the same fashion as for the simulations. A plot of the local estimates of the tail index of the
seismic energy distribution can be seen in Figure 2. For the mid-ocean ridges, the tail of the
seismic moment distribution tends to be lighter than for the other areas. Here, we typically
observe y(z) < 1, while y(z) > 1 seems to be more common at other places. This was also
observed by Pisarenko & Sornette (2003), Okal & Romanowich (1994) and Kagan (1997, 1999).
From the analysis, the tail heaviness of the seismic moment distribution seems to be largest at
the northern part of Japan, Indonesia, southern part of Mexico, and various places along the
western coast of South America.
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Previously, Pisarenko & Sornette (2003) have estimated the tail index of the seismic moment
distribution with the generalized Pareto distribution, fitted to exceedances over a high threshold
by means of the maximum likelihood method. To take the spatial differences of the seismic
parameters into account they used the Flinn-Engdahl regionalization, which allowed them to
identify 14 zones (out of 50 in the original Flinn-Engdahl regionalization), and all data within
a zone were considered to be coming from the same distribution. Our approach is clearly more
flexible since it is based on local estimation: for a given location we consider the data of all
earthquakes that have occurred in a given radius to estimate the tail index, and these areas are
much smaller than the zones considered in Pisarenko & Sornette (2003). Also, we do not need
predefined zones, and the size of the neighborhood is selected in an automatic data driven way.
Overall we could though say that the estimates are in line with those reported in Pisarenko &
Sornette (2003).

5 PROOFS

Proof of Lemma 1

Case (i) is trivial, so we only have to consider cases (ii) and (¢i7). Throughout the proof we
make use of the notation p,, := F' (wy; ) and we assume that V' is uniformly distributed on (0, 1).

With this notation, we can write

1 1 t
1 . —1 .
<nU<1_V,a:> nU<1_pn,x)>+]
1 1 1 t
:/ (an( ;:c> —an( ,1:)) dv
. 1—v 1—p,
o 1 1 b1
=(1—pp, 1 ; —1 ; —dz.
(1-p )/1 <DU<1—pnz :J:) nU(l—pn x>> Zde

From here we have to consider all the cases separately. We start with v(x) > 0, where we make
use of the notation

m (wp,t;2) =E

InU (%})nz;a:) —InU (ﬁ;x) —y(z)Inz
R, (z;x) := . = D) (2),
B (1—pn ’ x)
where Dj,)(2) was defined in (2). Inspired by Lemma 4.4 from Fraga Alves et al. (2009) we
rewrite m (wp, t; ) for t =1 as

1 > 1
1_pn;x>/1 D;,(x)(z);dz

1 & 1
B ; n{%;
+ <1—pn’$>/1 R, (z ZL‘)z2dZ]

=:(1—pu)[T1h + T2+ T3].

m (wn 132) = (1 pp) [fy(x) /100 1nzzi2dz +B (
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We easily find that 77 = v(z), while 7o = B (ﬁ; :c) #733)' Regarding T3 we use Lemma 4.4
from Fraga Alves et al. (2009), according to which, for all 0 < e < 1 there exists wy, ¢ such that
for all wy, > wp

<e /00 2PE@)Te=24,
1

*° 1
/1 R, (z;x) ;dz

Hence, we conclude that T5 = o (B <ﬁ; x)) Combining the terms concludes the proof for
v(x) > 0 with ¢t = 1.

Continuing with the case y(z) > 0 for t = 2, it follows that
m (wn, 2;2) = (1 — pn) |72 (2) /oo In? zidz +2v(x)B ;x /OO D51 (2) In zidz
ny 4 = Pn) |7 ) 22 B 1_ pn’ ) p(x) 22
oo —— T2 Lazyom? (1 "D Ro(z0) 5 d
+ 1_pn,x . ﬁ(w)(z)? z+ 1_pn,az : () (2) n(z,az)? z

1 o0 1 1 o0 1
B2 . 2 . . 2 B . n . 1 -
+ <1_pn,x>/1 Rn(z,x)Zde—i- v(x) (1_pn,$>/1 R, (z;x) nzz2dz]

=:(1—pp) [T1+T2+T3+T4+T5+T6}.

Here, we find Ty = 27%(x), while Tp = 2v(z) 2-p(x) B( L :r:) Concerning the term T it

(1—p()? "7 \T=pn
follows that )
Tvg =0 (B < ,$>>
1- Pn

since [} D%(x)(z)z%dz < 00. All the terms Ty, T5 and Tg are also found to be o (B (ﬁ; a:))

using arguments similar to the one used for the term T5. Combining all the terms establishes
the result for y(z) > 0 with ¢t = 2.

For the cases where y(z) < 0 we let

2@ n(z), ~(z) < px) =0
37(93)+p(z)_1
Dy (2) = 4 @@ Y(x) < p(x) <0
e L pla) <o) <0
In? z, plz) <~(z) =0
BB, @) < pla) =0
Aty ) = 1?0((1?63)5)7 y(r) < pz) <0
( ax) — 2B(t'x) ,
—=w o Ple) <) <0

and



From the way the function B(.;z) is defined, we note that A*(.;x) is regularly varying with
index p*(z) (see Fraga Alves et al., 2007).

Furthermore, we define the three error terms

Ron(z;2):=—In |1 — 1_U(1_1p”;w> 1_U(1_1p";x) ; 1_U<1_1p";$> 2

U (ﬁz;x) U (1,1%2743) U <1Jpnz’ :E)
#;m U _1 I
M%Tﬂ$<1—UCf;$>—Dde
Rip(zi7) = —— - ~ D3@).pta) (2)
A*<1—%ﬂx>
and

2

U %;x U 71 3
(S (-t o
Ron(z;2) := i : 1pn. — 2Dy (2)(2) j/(w),p(w)(z)'

A (550)

For all the cases where y(z) < 0, we note that we can write

o0 e
m (wn, ;) = (1 —py) [/1 1IM %dz
1—pp,

P
Ut :
1 [ <_p@ 1 0 1
+ / R A —dz +/ Rg}n(z;x)zdz]
2/ U (—lfpnz;m> < 1 z

=:(1=pn) 1 + Ir + I3]

2 3
m(wn,Q;x)(lpn)[/loo(lU(llm;x) 1dz+/1<>o 1_U(1_1p";x) idz

2
U 1 . 4
<1_pn Z, x)

4
00 U( 1 a:) o U(Lx>
1 —pn’ 1 “pn’ 1
+/ 1—1—p 2dz—|—2/ 1—1—p Ropn(z;2)—dz
4/ U( 1 z 1 z

2
1_pnz;x> u (1_1P7LZ; x)
1 2
00 U <1_pn;$> 1 o) 5 1
{1 ML Ry(za)mdet [ ORE(za) s ds

::u—mﬂE+B+E+E+E+E]
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If we consider the term I; first, we rewrite this as

1 p » & % * 1

_p n

(1 o0 1
+A (1_pn;x>/1 len(z;x)zzdz]
* 1
@ (i)
217]0[[114-[124-[13]-

U (i)

It is easily seen that I1; = #(x), while

A (Pie) . @) < pl@) =0
Iy ) T ﬂ/l(z% p(x)A*l — x), v(z) < p(z) <0 .

A (r), p(e) < (@) <0

24" (=52 ) p(z) <~(x) =0

\

Concerning the remainder term I3, we use Lemma 4.4 from Fraga Alves et al. (2009), which
states that for all € > 0 there exists wy, o such that for all w,, > wy o,

|Ry (2 )| < e27@F0 (@)4e,

By choosing € such that e <1 —v(z) — p*(x), we find that

113:0(A*( L ,J})) .
1_pn

So, by changing from the function A* to the function B, it follows that

* 1 .
@ (5:)
I

A (o]

1-pn
where .
y(z)u_yl(z))z’? y(z) < p(z) =0
Cgl())p( = { P (@) <plz) <0
o —swamay P <v(@) <0
—2, p(z) <~v(z)=0
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The term Iy can also be written as

CL* —pn [/ D2
U 1 p . x) 2’2
+24 1_—; z Dv(w)(z)Dv(m),P(x)(z)?dz TANTTe) ), Renlze) 5z

= ( <1 hn l‘)) [I21 + Iog + I23].
(1 ~pn’ x)

Here, we have that I21 = W, while

1
12 :i

e
oA (Bic). A (x) < pla) = 0

Ly = (1v(x))él(;%:)Z)%@))pé@%vﬁp(xf)A* (=miz) . 2(@) < pla) <0 .
(=) (12 () (=7 (2) 53 %) p(a) <~(z) <0
12A* ( 1:) p(x) <v(x)=0

The remainder term I3 is dealt with using Lemma 4.4 from Fraga Alves et al. (2009), which
ensures that for all € > 0 there exists w;, o such that for all w,, > wy,

|Ron(2;7)| < e2?/@H0" @)te,

From this it follows by choosing ¢ < 1 — 2v(z) — p*(z), that

123—0<A*( L ,J})) .
1_pn

If we combine the terms and replace the function A* by the function B, then we get

(1 —Pn x) 1 (2) 1
I B ) (14 0(1
. ( x)> { (A= 2@) T @ (1o, (ol
_p 7
where r )
@@ >>72<1 e v(z) < p(z) =0
—2v
7( ole) p(@) (T (x ))(21( (@ )( ))( D@ @) V(@) <plz) <0
X X _ 'Y x
Y@ @) =2 @) (1=57() p(z) <~(z) <O
=6, p(z) < y(z) =0
For the case t = 1 we can simplify the expression for I as
a* %
U<11pn$)> ( (1 1p ’x))’ y(z) < p(z) <0
1—pn’

a

= )) i B (5w) (14 0(1), ple) < 4(x) <0

lp’

3

o] T
(=

c

;3
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The remainder term I3 can be handled with the inequality

2 3

O<—ln(1—y)—y—%<3(1y_y), 0<y<l,

which allows us to write

et (L) e (1) (o) vl
B U(ﬁ;x) 1 U<zﬁ;x) a*(ﬁ;x) 22

o)) )

where the last step is obtained by an application of Drees’ inequality (Drees, 1998); see also
Theorem B.2.18 in de Haan & Ferreira (2006).

Combining the results for I;, I5 and I3 establishes the result for m (wy, 1; z).
Concerning m (wp, 2; ), we notice that I = 215, so

2
* 1 .
= a (17pn’x>
I =

U (i) T s () o]

while

3
(1 1
+A (1 _pn;x> le(z;x)) ;dz

*
o (5

1 3 * 1 3
—pn;x> o0 3 1 a <l_pn;x)
ol Gryarny B AR 1Ll N A
U<lfpn;x) ! U<1fpn;x)
3
* 1 .
_ 0 @ (i)

(I=3@)1-2@)0—6) \ v (2-0)

1-pn

(14 o0(1)).
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Using the relationship between (H and B (%ﬂ x), we obtain
==

i 1=pn’
*< 1 ) 2
; (M> o(B(2:2)), A(x) < pla) <0
2= a (1. 2 '
(y((ll_lpnx))> s B (ie) (1 0(1), ple) < (@) <0

2
w( 1.
All the terms I3, Iy, I5 and Ig are easily seen to be o (M) B( L :L') , which
when combined with fl and fg establishes the result.

5.1 Proof of Lemma 2
Use of the rule of repeated expectation allows us to write
mn (K, t;x) = E[Kp, (x — X)m (wn, t; X)]

Ky, (x —v)m (wp, t;v) g(v)dv

RP
= / K(z)m (wn, t;x — hpz) g(x — hypz)dz.
Q
Now, we easily obtain
| (Kt 2) — m (wn, t;x) g(2)| <m (wn,t;x)/ K(2)|g(x — hpz) — g(x)| dz
Q

+g(x) /Q K(2) [m (@, 2 — hoz) — m (wns £ 2)]| d2

+ / K(z)|g(x — hpz) — g(@)| Im (wp, t;x — hpz) — m (wp, t; )| dz
Q
=T +T+Ts
From Assumptions (G) and (K) we obtain that
Ty < m(ontio)e, | K()lne|dz
Q

=0 (m (Wn, t;x) hzg) ,
while assumptions (K) and (F) give us that

Ty < g(z)m (wp, t;x) @ (wn,hn;x)/ K(z)dz
Q
=0 (m (wp,t;x) P (wn, hy; ).
Similar arguments lead to
Ty =0 (m (Wn, t; ) @ (wn, by ) hzg) ,

so collecting all the terms establishes Lemma 2.
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5.2 Proof of Theorem 1

Let ry, := \/nhh F (wp; ) and
&n =10 (T, — E[T,)),

where § € R3. In order to prove the theorem we use the Cramér-Wold device (see e.g. van der
Vaart, 1998, p. 16), according to which it is sufficient to verify that

&0 B N3(0,6'56)
for all 6 € R3. We let the components of § be denoted by &g, §1 and 6.

In the case y(x) > 0 we write

n

Z <Z5Kyhn Xi) (nY; = Inwy )} 1{Y; > wn}

nF (B

2
—-E Z 0;iKn, (x —X;) (InY; — lnwn)i_ 1{Y; > w,} )

n

=: ZI/V,
i=1

Observe that the W;, ¢ = 1,...,n, are independent and identically distributed random variables.
We can hence find the variance of £, as

Var (§,) = nVar (W)

hp
= Tl ) 8;64C ks
Flonie) (@) 2 R

where
Ci = [Kjn, (2 = X1) Kin, (2= X1) (Y1 = InwF1{Y1 > wn)
_E [Kj,hn (@ — X1) (InYi — Inw,), 1{¥; > wn}}
X E [Kkm (¢ — X)) (InY; —Inw,)® 1{v; > wn}} .
Using an approach similar to the one used in the proof of Lemmas 1 and 2, we find

E [T (x, K)| = F (@) g(@)7' (2)(1 + 0(1)), ¢ =3,4,5,6,
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and hence

|| K K| 1 x— Xy z— Xy ik
C:r = Ll g K, K InY; — Inw,)’ "1 {Y; n
PR AT A G Rl G S R A S

—-E [Kj,hn (x —X1)(InY; — lnwn)i 1{Y; > wn}}

x E [Kk,hn (@ — X1) (InY; — lnw,)* 1{¥; > wn}}
|’Kij7H1,yj+k

=(j+k)! P

(@) F (wn3 @) g(2)(1 + o(1)).
It then follows that the variance of &, is
Var (&,) = §'S6(1 + o(1)).

The asymptotic normality is established by verifying Lyapounov’s criterion for triangular arrays,
see e.g. Billingsley (1995, p. 362), which in our case corresponds to verifying

zn:IE [|Wi]3] = nE [ywﬂ =0
i=1
as n — oo. We have
3

hp § 2 .
3 n | K. _ _ J

2

+3E | | D165 Kjn, (2 — X1) (In Yy — Inw, )}, 1{¥1 > wp}
j=0

2
< E D 165 Kjn, (z = X1) (In Yy — Inw, ), 1{¥1 > wy}
j=0
3

2
+4 | E D 16 Kjn, (x— X1) (InY] — Inw,)’, 1{¥7 > w,} }
j=0

1
ny/nhh F (wn; )

Under the conditions of the theorem it follows that nE []Wlﬂ — 0 as n — oo. This concludes
the proof for v(x) > 0.

=0
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Concerning v(z) < 0, we write

1 J
v (F(w xfx)
Z Z(s Kjp, (r—X;) (InY; — Inw,)? 1{Y; > w,} n
nF (Wn; a* _ )
F (wn;x)
—E | 6Kin, (= X)) (InY; —Inw,)], 1{Y; > w,} [ ———L
J=0 a* F(wn,:p
i=1
Again the W;, i = 1,...,n, are independent and identically distributed random variables, so the
variance of £, can be obtained as
Var (&,) = nVar (W)
BP 2 2
= - 0;6,Ci .,
F ) g0 2 2 0t

where

U ( 1 ) J+k
—_ 'x

i F(wn;x)’

Cin =E | Kjp, (x — X1) Kpp, (x — X1) (In Y1 — Inw, i 1{Y) > w,} (H

=

1. J
—E |Kjp, (r—X1)(InY; —1 I 1Y w
ihn (@ — X1) (InY] —Inw,)’, 1{Y1 > w,}

(i)
(k)|
X E | Kpp, (- X1) (Y —Inw,)? 1{¥1 > w,} (F(“”) ]

* 1 .
L a F(Wnﬂ')’ll)
We find that
t
* 1 .
E T (@, K)| = F (wn;2) il Cresil) 9(o) (L o(1)), £=3.4,5.6,
U <m’m) Hi:o(l —iy(x))

using the same approach as was used in the proof of Lemmas 1 and 2. Hence, the term C}j, can
be written as Gt ) 1K 7l
J T R): klh 4
Cik = —3 7 & (wn; ) g(x)(1 + o(1))
W0 —in() M

and
Var (£,) = 6'S6(1 + o(1)).
The asymptotic normality is established analogously to the case y(z) > 0.
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Proof of Theorem 2

Concerning the case y(x) > 0, let
1
pi=1 @) |-
29*(x)

Tn (Tn - w) = Tn (Tn —E [TnD + Ty (E [Tn] - 1/})
=: L1+ Lo.

We have

From Theorem 1 we know that L; 3 N3(0,%), while
L2 — Cv

where

0
1 () ]
27(z) (2 = p(z))
according to the assumptions of the theorem. Hence

P (Tn — ) 3 N3(¢, %),

The result then follows by applying the delta method since we have
o (@) = (@) = 1o (£ (T (2 ko), T (2, K0) TP (w0, K) ) = fu (1,1(@), 292(a)) )
-1
where f1(u,v,w): =2 +1— % ( — ﬁ) .

In case y(z) <0, let

Then, for

Tn (Tn - 1/1) = Tn (Tn —E [Tn]) + 7 (E [Tn] - ¢)
=: M+ Ms,

we know that M; 3 N3(0,Y) according to Theorem 1, while
M2 — C’

where



according to the assumptions of the theorem. Using (5) we have

—1
«(_ 1 . ~ ~(1) 2
S (F(wn;xwx) T (2, K1) N [Tn (val)}
() = = +1 1—— _ 7
(0) 2 ©0) @
(ryie) T @ o) T (2, Ko) T (. K2)

so by Theorem 1 it follows that

o (Fn () — y(2)) =ry, a* (f(wln;x);$> E [TN}(LU (z, Kl)} + Op (%)
v (f(wlyl;x)m) E %

(T (2. Ko)| + 0p (£)

+ry f2 (fr(LO) (CC, KO) 7f'r§,1) (1"> Kl) 7T75,2) (I‘, KZ))
1 2
- fQ <1) ; > ) 12
T3 T @)1 - 2@) 12
o\ —1
where fo(u,v,w) == —1 (1 - 5—1”) :
Then, combining Lemmas 1 and 2 with Theorem 1 and the delta method, we deduce that
~ D ~
rn (n(2) —v(z)) = N (A(2)i, V'SV),
for
N 1 1 2 1{p(x) <y(z) <0}
= (L= 29@) (1= 2@)* | =200 s+ 5 (1= 2Y@DOE | + =
where the term %W comes from the first term in the right-hand side of (12).

25



References

[10]

[11]

[12]

[13]

Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J., 2004. Statistics of Extremes — Theory
and Applications. Wiley.

Billingsley, P., 1995. Probability and Measure (Third edition). John Wiley & Sons.

Bingham, N.H., Goldie, C.M., & Teugels, J.L. (1987). Regular Variation. Cambridge Uni-
versity Press, Cambridge.

Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values. Springer.

Daouia, A., Gardes, L., & Girard, S., 2013. On kernel smoothing for extremal quantile
regression. Bernoulli, to appear.

Daouia, A., Gardes, L., Girard, S., & Lekina, A., 2011. Kernel estimators of extreme level
curves. Test, 20, 311-333.

de Haan, L. & Ferreira, A., 2006. FExtreme Value Theory: An Introduction. Springer.

de Haan, L. & Stadtmiiller, U., 1996. Generalized regular variation of second order. Journal
of the Australian Mathematical Society (Series A), 61, 381-395.

Dekkers, A.L.M., Einmahl, J.H.J., & de Haan, L., 1989. A moment estimator for the index
of an extreme-value distribution. Annals of Statistics, 17, 1833-1855.

Drees, H., 1995. Refined Pickands estimators of the extreme value index. Annals of Statis-
tics, 23, 2059-2080.

Drees, H., 1998. On smooth statistical tail functionals. Scandinavian Journal of Statistics,
25, 187-210.

Dziewonski, A.M., Chou, T.A., & Woodhouse, J.H., 1981. Determination of earthquake
source parameters from waveform data for studies of global and regional seismicity. Journal
of Geophysical Research, 86, 2825-2852.

Ekstrom, G., Nettles, M., & Dziewonski, A.M., 2012. The global CMT project 2004-2010:
Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Inte-
riors, 200-201, 1-9.

Fraga Alves, M.I., Gomes, M.I., de Haan, L., & Neves, C., 2007. A note on second order
conditions in extreme value theory: linking general and heavy tail conditions. REVSTAT —
Statistical Journal, 5, 285-304.

Fraga Alves, M.I., Gomes, M.I., de Haan, L., & Neves, C., 2009. Mixed moment estimator
and location invariant alternatives. Fxtremes, 12, 149-185.

Gannoun, A., Girard, S., Guinot, C., & Saracco, J., 2002. Reference ranges based on
nonparametric quantile regression. Statistics in Medicine, 21, 3119-3135.

26



[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]
[28]

Gardes, L., Girard, S., & Lekina, A., 2010. Functional nonparametric estimation of condi-
tional extreme quantiles. Journal of Multivariate Analysis, 101, 419-433.

Goegebeur, Y., Guillou, A., & Schorgen, A., 2013. Nonparametric regression estimation of
conditional tails - the random covariate case. Statistics, to appear.

Hall, P., 1982. On some simple estimates of an exponent of regular variation. Journal of
the Royal Statistical Society Series B, 44, 37-42.

Hill, B.M., 1975. A simple general approach to inference about the tail of a distribution.
Annals of Statistics, 3, 1163-1174.

Hosking, J.R.M. & Wallis, J.R., 1987. Parameter and quantile estimation for the generalized
Pareto distribution. Technometrics, 29, 339-349.

Kagan, Y.Y., 1997. Seismic Moment-frequency relation for shallow earthquakes: regional
comparison. Journal of Geophysical Research, 102, 2835-2852.

Kagan, Y.Y., 1999. Universality of seismic moment-frequency relation. Pure and Applied
Geophysics, 155, 537-573.

Okal, E.A. & Romanowich, B.A., 1994. On the variation of b—values with earthquake size.
Physics of the Earth and Planetary Interiors, 87, 55-76.

Pickands, J., 1975. Statistical inference using extreme order statistics. Annals of Statistics,
3, 119-131.

Pisarenko, V.F. & Sornette, D., 2003. Characterization of the frequency of extreme earth-
quake events by the generalized Pareto distribution. Pure and Applied Geophysics, 160,
2343-2364.

van der Vaart, A.W., 1998. Asymptotic Statistics. Cambridge University Press, Cambridge.

Wang, H. & Tsai, C.L., 2009. Tail index regression. Journal of the American Statistical
Association, 104, 1233-1240.

Weisstein, E.W., 2003. CRC Concise Encyclopedia of Mathematics (Second edition). Chap-

man and Hall.

Yao, Q., 1999. Conditional predictive regions for stochastic processes. Technical report,
University of Kent at Canterbury.

27



20

Asymptotic Variance

Figure 1: Asymptotic variance of 4,(z) (solid), 'Nyézp’l(x) (dashed), ﬁfp’l(;r) (dotted) and
'Nyfp’z(x) (dashed-dotted).
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Figure 2: Local estimates of v(z) at locations where earthquakes have been observed.
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Reversed Burr(n(x), 7(x), AM(z))

. ~RP,1 ~RP,1 ~RP,2
o) AW AP AP) T
Bias MSE Bias MSE Bias MSE Bias MSE
0.5 | 0.0900 (0.0011) 0.0133 (0.0003) | 0.1189 (0.0017) 0.0239 (0.0007) | 0.1027 (0.0017) 0.0171 (0.0005) | 0.1128 (0.0018) 0.0211 (0.0006)
1 | 0.1242 (0.0015) 0.0253 (0.0006) | 0.1781 (0.0023) 0.0510 (0.0012) | 0.1668 (0.0025) 0.0415 (0.0010) | 0.1675 (0.0025) 0.0443 (0.0011)
1.5 | 0.1654 (0.0022) 0.0449 (0.0011) | 0.2357 (0.0032) 0.0866 (0.0020) | 0.2278 (0.0032) 0.0722 (0.0017) | 0.2201 (0.0032) 0.0725 (0.0018)
2 0.1472 (0.0023) 0.0353 (0.0010) | 0.2250 (0.0028) 0.0765 (0.0017) | 0.2362 (0.0034) 0.0746 (0.0018) | 0.2242 (0.0034) 0.0721 (0.0018)
Table 1: Oracle method: performance of 4, (x), ’yf P, *Nyfp’l(m) and &fP’Q(x). The results are averaged over N = 500
simulations with n = 1000 observations.
Reversed Burr(n(x), 7(x), A(x))
M) 1 C) (@) W @) )
Bias MSE Bias MSE Bias MSE Bias MSE
0.5 | 0.1531 (0.0017) 0.0398 (0.0009) | 0.3220 (0.0028) 0.1513 (0.0024) | 0.2168 (0.0026) 0.0831 (0.0022) | 0.2574 (0.0031) 0.1196 (0.0032)
1 0.2416 (0.0024) 0.0916 (0.0017) | 0.5458 (0.0038) 0.3872 (0.0048) | 0.3105 (0.0026) 0.1388 (0.0025) | 0.3248 (0.0033) 0.1666 (0.0041)
1.5 | 0.3582 (0.0029) 0.1843 (0.0027) | 0.7362 (0.0042) 0.6586 (0.0069) | 0.4130 (0.0029) 0.2154 (0.0031) | 0.4116 (0.0033) 0.2274 (0.0038)
2 | 0.4039 (0.0032) 0.2168 (0.0031) | 0.8213 (0.0045) 0.7942 (0.0080) | 0.4843 (0.0033) 0.2840 (0.0042) | 0.4775 (0.0037)  0.2901 (0.0048)

Table 2: Data driven method: performance of 4, (x)

simulations with n = 1000 observations.
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Reversed Burr(n(x), 7(x), \(z))

. ~RP]1 ~RP,1 ~RP,2
. AW 5P () AP AR
Bias MSE MSE Bias MSE Bias MSE
0.5 | 0.3725 (0.0055) 0.2156 (0.0051) | 0.4702 (0.0053) 0.3086 (0.0054) | 0.5146 (0.0050) 0.3156 (0.0051) | 0.4744 (0.0055) 0.2925 (0.0054)
1.5 | 0.1746 (0.0023) 0.0500 (0.0013) 0.0034)  0.0978 (0.0022) | 0.2410 (0.0036)  0.0838 (0.0021) | 0.2359 (0.0035) 0.0845 (0.0022)
2 | 0.1375 (0.0018) 0.0314 (0.0008) 0.0026)  0.0661 (0.0015) | 0.1921 (0.0030) 0.0552 (0.0015) | 0.1905 (0.0030) 0.0568 (0.0015)
2.5 | 0.1220 (0.0016) 0.0251 (0.0006) 0.0023) 0.0523 (0.0012) | 0.1612 (0.0026) 0.0404 (0.0011) | 0.1638 (0.0026) 0.0434 (0.0012)
Table 3: Oracle method: performance of 4, (z), 727 (z), *Nyfp’l(m) and &fP’Q(x). The results are averaged over N = 500
simulations with n = 1000 observations.
Reversed Burr(n(x), 7(x), A(x))
o) A 3P (2) AP AP
Bias MSE MSE Bias MSE Bias MSE
0.5 | 0.7655 (0.0047) 0.7454 (0.0083) | 1.3225 (0.0041) 1.8623 (0.0110) | 0.8997 (0.0028) 0.8653 (0.0054) | 0.8457 (0.0034) 0.7880 (0.0064)
1.5 | 0.4097 (0.0032) 0.2442 (0.0033) 0.0043)  0.8955 (0.0078) | 0.5017 (0.0031) 0.3148 (0.0040) | 0.4925 (0.0035) 0.3207 (0.0047)
2 | 0.3145 (0.0028) 0.1514 (0.0024) 0.0041)  0.6265 (0.0062) | 0.3972 (0.0030) 0.2133 (0.0034) | 0.4003 (0.0035) 0.2343 (0.0045)
2.5 | 0.2562 (0.0024) 0.1047 (0.0018) 0.0038)  0.4506 (0.0050) | 0.3393 (0.0027) 0.1655 (0.0027) | 0.3523 (0.0033) 0.1911 (0.0036)

Table 4: Data driven method: performance of 4, (x)
simulations with n = 1000 observations.

773

yEPL (1), ’yfp’l(x) and ’yfpg (). The results are averaged over N = 500
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Strict Weibull(A(x), T(x))

. ~RP,1 ~RP,1 ~RP,2
. AW AP  AP) AP)
Bias MSE Bias MSE Bias MSE Bias MSE
0.5 | 0.2044 (0.0030)  0.0653 (0.0018) | 0.2727 (0.0032) 0.1177 (0.0025) | 0.1743 (0.0024) 0.0492 (0.0012) | 0.1934 (0.0026) 0.0598 (0.0015)
1 0.0825 (0.0010)  0.0110 (0.0003) | 0.0901 (0.0012) 0.0135 (0.0003) | 0.0688 (0.0010) 0.0078 (0.0002) | 0.0889 (0.0014) 0.0132 (0.0004)
1.5 | 0.0830 (0.0014) 0.0118 (0.0004) | 0.1319 (0.0020) 0.0277 (0.0007) | 0.1475 (0.0024)  0.0313 (0.0009) | 0.1468 (0.0026) 0.0334 (0.0011)
2 0.1106 (0.0021) 0.0205 (0.0007) | 0.1762 (0.0025) 0.0477 (0.0012) | 0.2048 (0.0030)  0.0557 (0.0014) | 0.1948 (0.0031) 0.0549 (0.0012)
Table 5: Oracle method: performance of 4, (x), ’yf P, *Nyfp’l(m) and &fP’Q(x). The results are averaged over N = 500
simulations with n = 1000 observations.
Strict Weibull(A(z), 7(z))
o) IEAE AP AP AP)
Bias MSE Bias MSE Bias MSE Bias MSE
0.5 0.6783 (0.0032)  0.5012 (0.0042) | 0.7332 (0.0043) 0.6409 (0.0064) | 0.3681 (0.0027) 0.1819 (0.0024) | 0.3535 (0.0028) 0.1827 (0.0029)
1 0.1731 (0.0016) 0.0433 (0.0007) | 0.1909 (0.0021) 0.0594 (0.0013) | 0.1771 (0.0024)  0.0582 (0.0019) | 0.2362 (0.0030) 0.1016 (0.0031)
1.5 | 0.1480 (0.0017) 0.0376 (0.0009) | 0.3228 (0.0028) 0.1456 (0.0024) | 0.2893 (0.0030)  0.1231 (0.0028) | 0.3273 (0.0038) 0.1746 (0.0044)
2 | 0.1994 (0.0021) 0.0638 (0.0013) | 0.4481 (0.0031) 0.2533 (0.0032) | 0.3667 (0.0031)  0.1777 (0.0033) | 0.3896 (0.0039) 0.2264 (0.0050)

Table 6: Data driven method: performance of 4, (), ’y?}f P’l(x), ’yfp’l(x) and ’yfpg (). The results are averaged over N = 500

simulations with n = 1000 observations.
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Strict Weibull(\(x), 7(x))

R ~RP,1 ~RP,1 ~RP,2
o) @ AP ) AP | (x)
Bias MSE Bias MSE Bias MSE Bias MSE
0.5 | 0.0897 (0.0017) 0.0140 (0.0005) | 0.2727 (0.0032) 0.1177 (0.0025) | 0.1743 (0.0024)  0.0492 (0.0012) | 0.1934 (0.0026) 0.0598 (0.0015)
1 0.0919 (0.0018)  0.0144 (0.0005) | 0.0901 (0.0012) 0.0135 (0.0003) | 0.0688 (0.0010) 0.0078 (0.0002) | 0.0889 (0.0014) 0.0132 (0.0004)
1.5 | 0.0922 (0.0018) 0.0144 (0.0006) | 0.1319 (0.0020) 0.0277 (0.0007) | 0.1475 (0.0024)  0.0313 (0.0009) | 0.1468 (0.0026) 0.0334 (0.0011)
2 0.0922 (0.0019) 0.0147 (0.0006) | 0.1762 (0.0025) 0.0477 (0.0012) | 0.2048 (0.0030)  0.0557 (0.0014) | 0.1948 (0.0031) 0.0549 (0.0015)

simulations with n = 1000 observations.

Table 7: Oracle method: performance of 4, (x), ’yf Plig,

40 (x) and

~RP2
Yy ()

Strict Weibull(A(z), 7(x))

. The results are averaged over N = 500

M) 1 C) (@) W @) )
Bias MSE Bias MSE Bias MSE Bias MSE
0.5 | 0.1851 (0.0022) 0.0542 (0.0013) | 0.4650 (0.0034) 0.2705 (0.0036) | 0.3264 (0.0031) 0.1441 (0.0030) | 0.3371 (0.0036) 0.1699 (0.0041)
1 0.2095 (0.0022) 0.0677 (0.0013) | 0.5220 (0.0033) 0.3313 (0.0036) | 0.3684 (0.0031) 0.1756 (0.0031) | 0.3775 (0.0038) 0.2071 (0.0046)
1.5 | 0.2225 (0.0023) 0.0749 (0.0015) | 0.5474 (0.0035) 0.3607 (0.0041) | 0.3875 (0.0032) 0.1902 (0.0034) | 0.3931 (0.0038) 0.2189 (0.0046)
2 0.2372 (0.0024) 0.0858 (0.0016) | 0.5586 (0.0034) 0.3774 (0.0040) | 0.4172 (0.0032) 0.2197 (0.0035) | 0.4258 (0.0039) 0.2553 (0.0049)

simulations with n = 1000 observations.

Table 8: Data driven method: performance of 4, (), ’y?}f P’l(x),

~RP1

7, (x) and ’yfpg (). The results are averaged over N = 500
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Burr(n(z), 7(z), A(x))

. ~RP,1 ~RP,1 ~RP,2
A(z) ) Yn () ) 5 (2) . Yi (@) ' Va7 ()
Bias MSE Bias MSE Bias MSE Bias MSE
0.5 | 0.0853 (0.0013) 0.0119 (0.0003) | 0.1166 (0.0015) 0.0221 (0.0005) | 0.1177 (0.0018) 0.0223 (0.0007) | 0.1331 (0.0020) _0.0289 (0.0009)
1 | 0.0884 (0.0014) 0.0128 (0.0004) | 0.1282 (0.0017)  0.0264 (0.0006) | 0.1305 (0.0021) 0.0272 (0.0008) | 0.1420 (0.0023)  0.0327 (0.0010)
1.5 | 0.0884 (0.0014) 0.0129 (0.0004) | 0.1245 (0.0016) 0.0245 (0.0006) | 0.1273 (0.0021) 0.0257 (0.0008) | 0.1393 (0.0022) 0.0312 (0.0010)
2 0.0923 (0.0015) 0.0144 (0.0005) | 0.1186 (0.0017) 0.0224 (0.0006) | 0.1145 (0.0018) 0.0209 (0.0007) | 0.1314 (0.0020) 0.0277 (0.0008)
Table 9: Oracle method: performance of 4, (x), ’yf P, *Nyfp’l(m) and &fP’Q(x). The results are averaged over N = 500
simulations with n = 1000 observations.
Burr(n(z),7(z), A(z))
M) 1 C) (@) W @) )
Bias MSE Bias MSE Bias MSE Bias MSE
0.5 | 0.1106 (0.0015) 0.0200 (0.0006) | 0.2551 (0.0027) 0.0999 (0.0021) | 0.2262 (0.0031) 0.0849 (0.0026) | 0.2931 (0.0038) 0.1460 (0.0042)
1 0.1128 (0.0016) 0.0208 (0.0006) | 0.2948 (0.0031) 0.1251 (0.0024) | 0.2310 (0.0032) 0.0856 (0.0027) | 0.2830 (0.0039) 0.1344 (0.0041)
1.5 | 0.1206 (0.0016) 0.0234 (0.0006) | 0.2913 (0.0030) 0.1234 (0.0023) | 0.2397 (0.0033) 0.0905 (0.0025) | 0.2950 (0.0040) 0.1440 (0.0041)
2 | 0.1413 (0.0017) 0.0315 (0.0007) | 0.2641 (0.0027) 0.1098 (0.0021) | 0.2513 (0.0032) 0.1026 (0.0027) | 0.3110 (0.0040) 0.1637 (0.0045)

Table 10: Data driven method: performance of 4, (z)

simulations with n = 1000 observations.

1’73

-RP1 ~RP]1
(z),

A, (x) and ’yfpg(x). The results are averaged over N = 500



