N
N

N

HAL

open science

Solutions of linear and nonlinear Partial Differential

Equations with initial conditions and multivariate Faa di
Bruno formula

Feyed Ben Zitoun

» To cite this version:

Feyed Ben Zitoun. Solutions of linear and nonlinear Partial Differential Equations with initial condi-

tions and multivariate Faa di Bruno formula. 2014. hal-00845788

HAL Id: hal-00845788
https://hal.science/hal-00845788

Preprint submitted on 10 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00845788
https://hal.archives-ouvertes.fr

Solutions of linear and nonlinear
Partial Differential Equations
with initial conditions and
multivariate Faa di Bruno formula

FEYED BEN ZITOUN*
Ph.D. in Engineering Sciences
feyed.ben_zitoun@yahoo. fr

January 6, 2014

ABSTRACT

This paper presents a method for solving a wide class of linear and nonlinear Partial Differential Equations
subject to certain initial conditions. The proposed method reduces the Partial Differential Equation and the given
initial conditions into a set of equations which allows us to obtain directly and easily the solution of the initial-
value problem. The particularity of the method is that it uses the multivariate Faa di Bruno formula due to Savits
and Constantine [T.H. Savits, Some statistical applications of Faa di Bruno, Journal of Multivariate Analysis, 97
(10), 2131-2140, 2006; G.M. Constantine and T.H. Savits, A multivariate Faa di Bruno formula with applications,
Transactions of the American Mathematical Society, 348 (2), 503-520, 1996].

Keywords: Partial Differential Equations, Linear and Nonlinear Problems, Initial Conditions, Multivariate Faa
di Bruno Formula, Series and Polynomial Solutions.

1. Introduction

The purpose of this paper is to present a method for solving a large variety of linear and nonlinear Partial
Differential Equations (PDEs) subject to certain initial conditions. The proposed method reduces the PDE and
the given initial conditions into a set of equations which allows us to obtain directly and easily the solution of the
initial-value problem. The particularity of the method presented in this paper is that it uses the multivariate Faa di
Bruno (FdB) formula due to Savits and Constantine [41} 25]].

In the 90’s, Rach, Adomian and Meyers proposed a Modified Decomposition Method (MDM) ([[7, Chapters 5
and 6], [37], [11], [13]) based on nonlinear transformation of series [9,|10]]. The method presented in this work is
inspired and based on the MDM.

The rest of the paper is organized as follows. The next section is devoted to preliminaries. In section 3, we
recall the multivariate FdB formula due to Savits and Constantine. In section 4, the proposed method is presented.
An example is solved in section 5 to illustrate the efficiency of the method. Finally, section 6 concludes this paper.

*Dedicated to the memory of Yves Cherruault, Emeritus Professor at the University Pierre and Marie Curie, Paris, France.
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2. Preliminaries

We recall some notation that will be used in this paper (see [25} 41]]).

Let Ny denotes the set of nonnegative integers, v = (vq,...,vq) € Ng and z = (21,...,24) € R<. Then
define
d d d
w=> v, v=[Jw), =]
i=1 i=1 i=1
o . ] y vl
Dy = identity operator, DY = ————- forjv|>0

oA oxl?
and for £ = (¢1,...,0g) e N, £ <vifl; <yyfori=1,...,d.
A function h is said to belong to C,, (x°) if D£h exists and is continuous in a neighborhood of x° for all £ < v
and h € C™(x) if h € Co(x°) for all |£] < n.
3. Multivariate Faa di Bruno formula

We now recall the multivariate Faa di Bruno formula given by Savits in [41].

Theorem 1 (T.H. Savits). (Multivariate Faa di Bruno Formula)
Let f(yy,--sy,,) and g (xy, ... xq), ..., 8" (x1,...,xq) be real-valued functions and set

h(xi, ... xq) = flg™ (e, oxa)s o 8™ (. xa)). (3.1)

Letv = (vy,...,vq) withn = |v| > 0 and x° be given. Assume gV, ... g™ € C,(x°) and f € C"(y°), where
y? = (gM(x%),...,g™(x%)). Let also set: h,(x) = DYh(x), fa(y) = D;‘f(y), gﬁ) (x) = DFg()(x) and
gu(x) = (gf}) (x),..., ng) (x)). Under the above conditions DY h(x) exists in a neighborhood of x° and can be
explicitly expressed as below:

x)|k
= Y Hll Y (u!)411(53[(&)&,%_| (32)

ISNEYNIY p(v,A) j=1
where
a q
p(v,A) = {(kl,...,kq; G, ly) ki[>0, ) ki=X and > [ki[ £ = u}.
i=1 i=1
d
In the above, £1, ..., £, is a complete listing of all vectors £ < v with || > 0, ¢ = q(v) = lH(VS +1)| -1,
s=1

the vectors k € N and the vectors £ € Ng.

Remark 1. The form of Theorem 1 is stated somewhat different from that in Constantine and Savits [25]], but it is
equivalent.

Remark 2. It is to be noted that other approaches can be used for computing the multivariate Faa di Bruno Formula
(see the references).
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4. Presentation of the method

4.1. Description and analysis of the method

To show the basic principles and the main steps of the proposed method, we first treat the following problem:

08 wt)~ T (wt) + fle(ot) = E(r.) w10
(P) { g(z,0) = ¢(x) (4.1b)

g B

5t (@ 0) =(2) (4.1¢)

where E(z,t), ¢(x) and ¢)(x) are known functions and f[g(z, )] is a nonlinear function of g(z, t). In the above
problem (P), we have: m = 1,d = 2,x; = z and x5 = ¢.

4.1.1. Method of solution

Let us assume that the function g(z, t) can be expanded in the form

oo o0

g, t) = ) Y Ay 2 4.2)

vy =0 125 =0
where
1 oL +v2

Uviva) = vy lo! Oxvr Otz g(z.1)

z=0,t=0

In order to find the solution of the problem (P) in the form (4.2), the unknown values of the coefficients
(1, 1) have to be found.

4.1.1.1. Treatment of the PDE

It follows from (4.2) that

32 o0 o0

8—%(%75) =3 Y+ D+ 2) a0, (4.3)
x v1=012=0

32g > > |22

(o t) = SN (w112 +2) A, g 2 (4.4)

v1=0v2=0

We assume that h(z,t) = f[g(x,t)] can be expanded in the form

oo 0

Fla@ Ol = >0 > Apy g 2t (4.5)

V1:O l/2:0
where
A(o,o) = h(0,0) = f[g(0,0)] = f[a(o,o)]

and for (11, 12) # (0,0)

1
A vi,ve) — . h V1,V Qj,t
(v1.v2) v luy! ) )x:O,tZO
1 aV1+V2
vyl Qxv1 Otv2 (=:1) 2=0,t=0
1 6V1+V2
- 9 t
vrivgl aemiges B
6V1+V2
In the above, A, ,,) (2, 1) = ~——— flg(, )] is given by (3:2).

T Qxotve
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We assume that the function E(z,t) can be expanded in the form
=D eyt (4.6)
1% =0 1/2:0
where
1 8V1+V2
Vi,v2) T T 11 A D E 7t
Clvr) v1lvg! Oxv1 Otv2 (2:?) £=0,t=0
Then, by substituting (£-3), (£-4), (£.5) and (4.6) in ({.1d), we get
Z (v2 + 1) (V2 4+ 2) aguy ppt2y 12 — Z Z v+ 1)1+ 2) @y 42,0,) 2717
v1=0v2=0 v1=0v2=0
F 0D Ay a2 = Z Z e(v1va) T
v1=0v2=0 v1=0v9=0
and by equating like powers, we obtain
(VQ + 1)(V2 + 2) A(vy,v94+2) — (Vl + 1)(”1 + 2) A(vy+2,00) + A(Vl,llg) = €(vy,10), V1,V2 = 0; 1, 27 e (47)
4.1.1.2. Treatment of the initial conditions
It follows from (Z:2) that
o0
0) =Y 02" (4.8)
IJ1:0
0)= > aw1z" (4.9)
v1=0
We assume that the functions ¢(z) and 1 (x) can be expanded as
oo
=) ¢z (4.10)
IJ1:0
= Z Py, 2 (4.11)
1/1:0
Substituting (4.8) and (4.10) into leads to
(o) oo
> 0 =Y bua”
l/1:0 IJ1:0
consequently
A(1,0) = Gvyy V1 =0,1,2,... (4.12)
Substituting (4.9) and (4.11) into (-1 leads to
D T = Y b
IJ1:0 V1:0
consequently
A1) =Yy, 1=0,1,2,... (4.13)
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4.1.1.3. The problem solution

By grouping together (4.7), (.12) and (4.13), we get
a’(Vl»O):QSVlv V1:071,2,...

(A) | a@y) =%, 1 =0,1,2,...
(2 + D)(v2 +2) Ay wmr2) — (11 + 1)1+ 2) @y 42,00) T A vn) = €y im)s V1,72 =10,1,2,...

(A) allows us to obtain the values of the coefficients a(,, ,,). Then, by substituting these values in (4.2), we
obtain the exact solution of the problem (P). However, in practice, we use an approximation of the solution of the
problem (P) in the form

—1N-
g(w,t) = gy n(T,1) Z Z (v1,0) T2 (4.14)

Remark 3. The accuracy of the approximation (4.14) can be improved by increasing the values of M and N.
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5. Application

For a better understanding of the proposed method and to illustrate the solution procedure described in the

preceding section, we have selected the following example which shows the simplicity and the efficiency of the
proposed technique.

5.1. Example

In what follows, the method presented in section 4 will be used to solve the following problem taken from [44, 45]].

Solve the following nonlinear Klein-Gordon equation:

9?2 0?
S (1) — 55w 1) + [ala ) = 27 (5.10)
(P1) qg(z,0)=0 (5.1b)
)
af (,0) =2 (5.1¢)
5.1.1. Method of solution
Let o .
8@ ) = D )y ) 2 (5.2)

171 =0 Vo =0

5.1.1.1. Treatment of the PDE

It follows from (5.2) that

2 o o
a—%(w, t) = Z Z (1 + 1)(v1 4 2) @y 42,0,) (5.3)
x I/1:0 1/2:0
an > = |22
w(.ﬁ, t) = Z Z (o +1)(v2 4 2) a(yy 1y 42) ' (5.4)
V1:0 1/2:()
o0 o0
B, ) = Y ) Ay 2t (5.5)
V1:0 V2:O
where
A _ 2
(0,00 = [a(o,o)]
and for (11, 112) # (0,0)
1 aV1+V2
A ) = [g(x, 1)]?

V1!1/2! Oxv10tv2 2=0,4=0

vi+v2

In the above, Eyows [g(z,1))? is given by (3.2). Consequently, by using (3.2)), we obtain
x

Afo,1) = 2a(0,0)a(0,1)
Af0,2) = 20(0,0)a(0,2) + lago,)]?

Aq,0) = 200,0)0(1,0)
A(1,1) = 2a(o,o)a(l,l) + 2@(0,1)@(1,0)

A(2,0) = 2a(0,0)a(2,0) + [a(1,0)]"

and so on.
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Then, by substituting (5.3), (5-4) and (5.5) in (5.1d), we get

oo 0

Z Z vo + 1)(v2 +2) @y pyroy 772 — Z Z v+ 1) (11 +2) a, 42,0,) 277

z/1:0 12 v1=01v2=0

2,2
£ A e =
v1=0v2=0

and by equating like powers, we obtain

1 for V1:V2:27
vo + 1)(ve +2)a,, . — (1 +1)(v1 +2)ag, v) T A, ) = 5.6
(2 + 1) (12 +2) Ay v +2) = (11 + 1) (1 4 2) Ay 12,00) (v1,v2) { 0 otherwise. 60

5.1.1.2. Treatment of the initial conditions

It follows from (5.2) that
oo
8(#,0) = > ag, 02" (5.7)
IJl_O
Z A1) 2 (5.8)
vyi= 0
Substituting (5.7) into (5.18) leads to
Z Cl(l,l’()) l‘yl = O
V1:O
consequently
a0 =0, 11 =0,1,2,... (5.9
Substituting (5.8) into (5.1d) leads to
Z Cl(l,l’l) 't =z
V1:0
consequently
1 for vy =1,
Q(vy,1) = . 5.10
(1) { 0 otherwise. (-10)

5.1.1.3. The problem solution

By grouping together (5.6), (5.9) and (5.10), we get
[ a@,0=0, 11 =0,1,2,...
1 for vy =1
Ay = .
(vi,1) 0 otherwise.
1 for vy =1y =2,
+ 1 + 2 Ve,V - + 1 + 2 v v + A V1,V =
(2 +1)(12 +2) Ay ot2) = 1+ 1)1 +2) 4y 42,0) + A { 0 otherwise.

(B) allows us to obtain directly and easily the values of all the coefficients a,, ., as

B 1 for(v1,19) = (1,1),
(v1,v2) 0 otherwise.

Finally, by substituting the above values in (5.2), we obtain

g(z,t) = at (5.11)

which is the exact solution of the problem (P} ).
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6. Conclusion

In this paper, we have presented a method using the multivariate FdB formula due to Savits and Constantine
for solving a large variety of linear and nonlinear PDEs subject to certain initial conditions. It has been shown that
the proposed technique is simple, efficient and produces accurate results. Moreover, the method can also be used
to solve PDEs with variable coefficients.

The author welcomes comments, suggestions and corrections.
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