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Abstract

Global sensitivity analysis is used to quantify the influence of input variables
on a numerical model output. Sobol’ indices are now classical sensitivity
measures. However their estimation requires a large number of model eval-
uations, especially when interaction effects are of interest. Derivative-based
global sensitivity measures (DGSM) have recently shown their efficiency for
the identification of non-influential inputs. In this paper, we define crossed
DGSM, based on second-order derivatives of model output. By using a L2-
Poincaré inequality, we provide a crossed-DGSM based maximal bound for
the superset importance (i.e. total Sobol’ indices of an interaction between
two inputs). In order to apply this result, we discuss how to estimate the
Poincaré constant for various probability distributions. Several analytical
and numerical tests show the performance of the bound and allow to develop
a generic strategy for interaction screening.
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1. Introduction

In engineering studies, computer models simulating physical phenomena
and industrial systems often take as inputs a high number of numerical and
physical variables. For the development, the analysis and the uses of such
computer models, the global sensitivity analysis methodology is an invalu-
able tool [22]. Among quantitative methods, variance-based methods are
used most often [23]. The main idea of these methods is to evaluate, by
the way of so-called Sobol indices [24], how the variation of an input or a
group of inputs contributes to the model output variability. Sobol indices of
first order measure the effect of individual inputs, while second-order Sobol
indices correspond to the influence of the interaction between two inputs
(by excluding their individual effects). Moreover, the powerful total Sobol
sensitivity index has been introduced to express the overall contribution of
one specified input, including the effects of its interactions (second order,
third order, . . . ) with all the other inputs [11]. More generally, the so-called
superset importance of an input set I has been defined in [17] and [12] as
the sum of all Sobol’ indices relative to the supersets of I. In the particular
case of two inputs, the superset importance has been referred to as the total
interaction index ([8]). When its value is zero, it means that there is no
interaction term containing simultaneously the two inputs. By analogy with
screening, this can be viewed as interaction screening.

However, obtaining all these Sobol sensitivity indices is rather costly in
terms of the number of necessary model evaluations [23]. This seriously lim-
its their use because industrial computer codes often require several minutes
or hours to perform one run. Moreover, for large dimension (number of in-
puts larger than several tens), high-order Sobol’ indices cannot be obtained
by non-costly alternative methods based on metamodels or smoothing tech-
niques [29, 18]. Introduced by [26], an alternative global sensitivity estimator
consists, for each input, in integrating the square derivative of the model out-
put over the domain of the inputs. Called later the Derivative-based Global
Sensitivity Measures (DGSM), they have been proved to be computationally
more tractable than variance-based measures [15], allowing to manage the
problem of large numbers of inputs. DGSM have only been finely studied
and applied recently [27, 21, 13]. Moreover, these indices need the computa-
tion of the gradient of the model output with respect to the model inputs,
which can be at least estimated by a finite-differences technique. However, if
the computer model proposes the adjoint code to compute output derivatives
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[5], DGSM computations will be independent of the number of input param-
eters and sensitivity analysis can then be performed for models including
several hundreds of inputs. Automatic differentiation tools [9] can be helpful
to that purpose.

Recently, some authors have discovered links between DGSM and variance-
based sensitivity indices. For an input following a uniform or normal proba-
bility distribution, [27] has proved that the total Sobol’ index is bounded by a
term involving a constant and the DGSM. [16] has developed a generalization
of this inequality for a large class of continuous probability measures. Thus,
it has been proved that the DGSM can be used for robust variable screen-
ing. In engineering applications, this inequality allows to develop a generic
strategy to obtain global sensitivity information from DGSM and first-order
Sobol indices [13].

In this paper we extend this approach to interactions, by proving a gener-
alization of the inequality in the same large class of probability measures. We
also obtain results for the class of log-concave measures. Thus, the second-
order derivatives contained in the Hessian of the model output are useful to
investigate interactions. Such a link was investigated for instance by [7] in the
context of statistical learning, but the connection to superset indices gives
an original interpretation of it. While it is rare in practice that second-order
derivatives of the model output are directly available, they can be computed
by second-order finite differences or by automatic differentiation tools. In
the same vein of [16], we also investigate by numerical tests the utility of the
inequality in ranking the most influential interactions. While this ranking
may be useful at first sight for superset importances more than for second-
order interactions, we can argue that in practice it is very often the case that
second-order interactions are the only active ones.

In [28], a similar problem has been considered by using groups of inputs.
The same kind of inequality links the total Sobol index of a group with the
corresponding DGSM (equal to the integral of the square sum of the partial
derivatives of each group input). If this latter measure is zero, it means that
there is no interaction between the inputs inside the group. However, if the
DGSM of a group is non zero, the total interaction index between two inputs
can be zero, which is detected by the crossed DGSM.

The paper is organized as follows: Section 2 recalls some useful defini-
tions of sensitivity indices (Sobol indices, superset importances, DGSM) and
introduces the crossed DGSM. Section 3 establishes an inequality between
superset importance and crossed DGSM. Section 4 focuses on the determi-
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nation of the Poincaré constant, which is used in the previous inequality.
Section 5 develops the link between superset importance and crossed DGSM
on classical analytical functions, while section 6 applies the inequality on
numerical simulations on two test models. It illustrates how crossed DGSM
can be used in practice. We conclude in Section 7.

2. Global sensitivity measures

2.1. Variance-based sensitivity measures

We consider a model output Y = g(X) where X = (X1, . . . , Xd) is a
vector of independent random variables with distribution µ = µ1 ⊗ · · · ⊗ µd,
and g is a d-dimensional function ∆ ⊆ R

d → R such that g(X) ∈ L2(µ).
Then, we have the Sobol-Hoeffding decomposition [24, 6, 10]:

g(X) = g0 +
d∑

i=1

gi(Xi) +
∑

1≤i<j≤d

gi,j(Xi, Xj) + · · · + g1,...,d(X1, . . . , Xd)

=
∑

I⊆{1,...,d}

gI(XI) (1)

where the summands are centered and orthogonal. The gi’s are called main
effects, and describe the parts of g that are influenced by only one variable.
The terms of higher order gi,j’s, gi,j,k’s, etc., are called interactions and in-
volve several variables at a time. The gi,j’s are the second-order interactions,
gi,j,k’s the third-order interactions and so on.

From orthogonality in Equation (1), the variance is decomposed:

var(g(X)) =
∑

I⊆{1,...,d}

var(gI(XI)). (2)

The overall variance is often denoted by D = var(g(X)), and the variance
terms DI = var(gI(XI)) are called partial variances. The Sobol sensitivity
indices SI are then defined as variance ratios [24]:

SI =
DI

D

Another global sensitivity measure of interest is the total partial vari-
ance, and its normalized version, the total sensitivity index [11] defined by
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considering the supersets of sets of size 1:

DT
i =

∑

J⊇{i}

DJ , ST
i =

DT
i

D
. (3)

The total indices allow to detect unessential variables: If DT
i = 0 then g(x)

does not depend on xi. An extension to general supersets was proposed by
[12, 17], who defined the superset importance:

Dsuper
I =

∑

J⊇I

DJ , Ssuper
I =

Dsuper
I

D
, (4)

where I ⊆ {1, . . . , d}. In the case of a pair of variables {Xi, Xj}, we have:
Dsuper

i,j =
∑

I⊇{i,j} DI .

2.2. DGSM and crossed DGSM

Motivated by the reduction of computational cost, [15] proposed to use
the derivative-based global sensitivity measures (DGSM):

νi =

∫ (
∂g(x)

∂xi

)2

dµ(x). (5)

In the equation above it is assumed that g admits a weak directional deriva-
tive (i.e. in the sense of distributions) with respect to xi such that ∂g(X)

∂xi
∈

L2(µ). The DGSM play a similar role to total indices in detecting unessential
variables: If νi = 0 then g(x) does not depend on xi.

Investigating interactions, [7] used the integral of squared crossed deriva-
tives. For second-order interactions, they introduced (assuming similar con-
ditions on the higher-order derivatives of g):

νi,j =

∫ (
∂2g(x)

∂xi∂xj

)2

dµ(x), (6)

and more generally, for I ⊆ {1, . . . , d}:

νI =

∫ (
∂|I|g(x)

∂xI

)2

dµ(x),

with ∂xI =
∏

i∈I ∂xi, and |I| is the size of I. By analogy to DGSM, when
|I| ≥ 2 we propose to call the quantities νI crossed DGSM.
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2.3. Utilization of superset importance and crossed DGSM

Superset importance and crossed DGSM are both useful in order to in-
vestigate interactions, and discover additive structures in g. In practice, the
most useful case is for a pair of indices {i, j}. If either νi,j = 0 or Dsuper

i,j = 0,
then g can be written as a sum of two functions, one that does not depend
on xi and the other that does not depend on xj [12, 7]:

g(x) = g−i(x−i) + g−j(x−j)

Equivalently, this means that Xi and Xj do not interact together, nor to-
gether with other variables: ∀I ⊇ {i, j} : DI = 0. In particular – and this is
weaker in general – it implies that Di,j = 0.

2.4. First-order analysis, second-order analysis. FANOVA graph.

In applications it is reasonable to perform sequentially so-called first-
order and second-order analysis. The first-order analysis considers single
inputs and aims at detecting the non-influential ones, i.e. the Xi’s for which
ST

i = 0. First-order sensitivity indices are computed, as well as total sensitiv-
ity indices or DGSMs. The second-order analysis considers pairs of inputs,
and aims at detecting the non-influential interactions, i.e. the pairs {i, j}
for which Ssuper

i,j = 0. This can be used to detect additive structures (see the
previous section). Superset importance or crossed DGSMs are computed.
The second-order analysis may generate a large amount of information cor-
responding to the number of input pairs p(p − 1)/2, where p is the problem
dimension. Actually p can be lowered to the number of influential variables.
Indeed, if Xi is non-influential, it does not contribute to the output, neither
individually nor in interaction with another input, and thus Ssuper

i,j = νi,j = 0
for all j. Such information is conveniently visualized by the way of the
so-called FANOVA graph [19], where vertices represent inputs, and edges in-
dicate the presence of interactions involving two inputs simultaneously. The
edges widths can then be chosen proportionally to the quantity of interest.

3. A link between superset importance and crossed DGSM

In what follows, we consider a class of distributions that satisfy a Poincaré
inequality: ∫

g(x)2dµ(x) ≤ C(µ)

∫
‖∇g(x)‖2dµ(x) (7)
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for all functions g in L2(µ) such that
∫

g(x)dµ(x) = 0, and ‖∇g‖ ∈ L2(µ).
In this paper, a constant C(µ) satisfying (7) is referred to as a Poincaré
constant of µ, and the best possible constant for a given µ will be called
the optimal Poincaré constant, and denoted Copt(µ). In that case, i.e. when
C(µ) = Copt(µ), it may (but not always) happen that there exists some
function gopt for which Inequality (7) is an equality: Then we say that gopt

is saturating the Poincaré inequality. This is the case for instance for the
uniform, exponential and Gaussian distributions (see e.g. [1]). Poincaré
inequalities (7) are linked to isoperimetric inequalities in measure theory,
and the Poincaré constants are expressed as a function of so-called Cheeger
constants [3].

A connection between total indices and DGSM has been established by
[27] for the uniform and normal distributions and [16] for general continuous
distributions. It states that, under mild conditions:

DT
i ≤ C(µi)νi (8)

Our main result is that such an inequality can be extended to superset im-
portance and crossed DGSM. For the sake of simplicity, we present it for a
pair of variables, but it is true in general (see Remark 1).

Theorem 1. Let us consider n distributions µ1, . . . , µn on the real line R,
and µ = µ1 ⊗· · ·⊗µn. Assume that all µi (i = 1, . . . , n) satisfy the Poincaré
inequality (7). Let g : R

n → R be a function in L2(µ), such that all first-
order and crossed second-order partial derivatives are in L2(µ). Then for all
pairs {i, j} (1 ≤ i, j ≤ n),

Di,j ≤ Dsuper

i,j ≤ C(µi)C(µj)νi,j. (9)

Furthermore, Copt(µi)Copt(µj) is the best constant: If equalities can be achieved
in the Poincaré inequalities satisfied by each µi, then we can have equality in
(9).

Proof. The first inequality is straightforward and true for all g in L2(µ).
For the second one, consider the Sobol-Hoeffding decomposition (1) of g
and denote gsuper

i,j (x) :=
∑

J⊇{i,j} gJ(xJ). Since the gJ ’s are centered and
orthogonal, we have:

Dsuper
i,j = var(gsuper

i,j (x)) =

∫ (
gsuper

i,j (x)
)2

dµ(x). (10)
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Furthermore we have: ∂2g(x)
∂xi∂xj

=
∂2gsuper

i,j
(x)

∂xi∂xj
, since all terms in (1) that do not

contain simultaneously xi and xj vanish by cross derivation. This leads to:

νi,j =

∫ (
∂2gsuper

i,j (x)

∂xi∂xj

)2

dµ(x). (11)

The result then follows from a sequential application of 1-dimensional Poincaré
inequalities. Indeed, let us first fix all variables except xi. Then:

∫ (
gsuper

i,j (x)
)2

dµi(xi) ≤ C(µi)

∫ (
∂gsuper

i,j (x)

∂xi

)2

dµi(xi).

Similarly, fixing all variables except xj and considering
∂gsuper

i,j
(x)

∂xi
, we have:

∫ (
∂gsuper

i,j (x)

∂xi

)2

dµj(xj) ≤ C(µj)

∫ (
∂

∂xj

∂gsuper
i,j (x)

∂xi

)2

dµj(xj).

Then, integrating and combining the two inequalities above gives, together
with (10) and (11), the announced inequality.
Finally, to see that Copt(µi)Copt(µj) is the best constant, suppose that for
each µk, (7) is saturated with a centered function gk

opt:

∫
gk
opt(t)

2dµk(t) = Copt(µk)

∫
[(gk

opt)
′(t)]2dµk(t).

Then a direct computation shows that we have equality in (9) with g(xi, xj) =
gi
opt(xi)g

j
opt(xj):

Di,j = Dsuper
i,j = Copt(µi)Copt(µj)νi,j.

Remark also that g(x) =
∑

k,ℓ gk
opt(xk)g

ℓ
opt(xℓ) achieves equality in (9) simul-

taneously for all pairs {i, j}.

Remark 1. A similar proof can be used to show that for a general subset I,
we have: Dsuper

I ≤ ∏
i∈I C(µi)νI .

4. Computation of Poincaré constants on the real line

In Theorem 1, we can see that Inequality (9) involves only Poincaré con-
stants on the real line (namely the C(µi)’s). There exists an abundant liter-
ature on that topic, and some pointers are given in [1]. Here, following [16],
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we assume that µ is continuous (absolutely continuous with respect to the
Lebesgue measure) and focus on some practical results to compute Poincaré
constants. We denote by f the probability density function, F its cumula-
tive density function, and q the quantile function. Finally m̃ = q(0.5) is the
median.

First of all, there are at least two cases where optimal constants are
known: The uniform and normal distributions (see e.g. [27] or [1]). The
constants are given in Table 1.

Distribution Optimal Poincaré constant A case of equality

Uniform U [a, b] (b − a)2/π2 g(x) = cos
(

π(x−a)
b−a

)

Normal N (µ, σ2) σ2 g(x) = x − µ

Table 1: Optimal Poincaré constants for the uniform and normal distributions.

In general, however, optimal constants are not available. Fortunately
useful Poincaré constants can be derived for some classes of distributions,
including in particular log-concave distributions [20].

Definition 1. (log-concave distribution) A continuous distribution µ is called
log-concave if log(f) is concave.

Three main results are summarized in Table 2. The first one is common
to all continuous distributions, and can be found in [4, 3]. It gives a Poincaré
constant that can be computed numerically by maximizing a 1-dimensional
function. For log-concave distributions, this maximum has an analytical
expression [3], Section 4, and several examples are given in [16] including
exponential, Gumbel and Weibull distributions. The last result – useful in
applications – is derived for truncated distributions (for a proof see Appendix
A).

Remark 2. (Isoperimetric, Cheeger and Poincaré constants). Due to the
interpretation of Poincaré inequalities as isoperimetric inequalities [3], there
are several constants that are closely linked to each other. The quantity
Is(µ) := inf

x∈R

f(x)
min(F (x),1−F (x))

is called isoperimetric constant [4]. Its inverse

1/Is(µ) is often called Cheeger constant [16]. Then C(µ) = 4/Is(µ)2 is a
Poincaré constant for the distribution µ (see [3]), as reported in Table 2.
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Properties of µ A Poincaré constant C(µ)

Continuous 4

[
sup
x∈R

min(F (x),1−F (x))
f(x)

]2

log-concave 1/f(m̃)2

log-concave, truncated on [a, b] (F (b) − F (a))2 /f
(
q
(

F (a)+F (b)
2

))2

Table 2: Example of (non-optimal) Poincaré constants for some classes of continuous
distributions.

Remark 3. (Boltzmann distributions and erratum in [16]). Continuous dis-
tributions dµ(x) = f(x)dx are sometimes expressed as Boltzmann distri-
butions: f(x) = c exp[−v(x)]1∆(x), where c is a (non-unique) normalizing
constant and ∆ = {x ∈ R, f(x) 6= 0}. If f is log-concave, then the Poincaré
constant of Table 2 is equal to 1/f(m̃)2 = exp[2v(m̃)]/c2, and the corre-
sponding Cheeger constant (as defined in Remark 2) to exp[v(m̃)]/(2c). The
normalizing constant c is sometimes missing in the text of [16]: In Theo-
rem 3.2. (c was omitted in the denominator) and in Table 2, first line: One
should read σ/2 ×

√
2π.

5. Examples for usual analytical functions

5.1. Second order polynomials

Consider a second-order polynomial given by its ANOVA decomposition:

g(X) = β0 +
d∑

i=1

βi(Xi − mi) +
∑

1≤i<j≤d

βi,j(Xi − mi)(Xj − mj),

where mi = E(Xi), 1 ≤ i ≤ d. Then we have immediately:

Dsuper
i,j = Di,j = (βi,j)

2var(Xi)var(Xj), νi,j = (βi,j)
2.

Thus, contrarily to superset importance, the crossed DGSM do not depend
on the distribution of the Xk’s but only on the coefficients of the second-order
terms. Consequently, they can give only a rough indication of the interactions
importance, but that indication is sufficient to detect the unessential ones:
νi,j = 0 ⇔ Di,j = 0 (assuming that var(Xi) > 0, var(Xj) > 0).
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5.2. Functions with separated variables

Following [27], let us consider

g(X) =
d∏

i=1

ϕi(Xi),

where ϕi(Xi) and ϕ′
i(Xi) are in L2(µi). By denoting Ai =

∫
ϕi(t)dµi(t) and

introducing the centered function ϕi,0(.) = ϕi(.) − Ai, this is rewritten as:

g(X) =
d∏

i=1

(Ai + ϕi,0(Xi)),

and the ANOVA decomposition of g is obtained by expanding the product
(see [25]) and gI(XI) =

∏
j /∈I Aj

∏
i∈I ϕi,0(Xi). Then a direct computation

shows that:

Dsuper
i,j =

∏

k/∈{i,j}

(A2
k + Bk) BiBj νi,j =

∏

k/∈{i,j}

(A2
k + Bk) B′

iB
′
j

with Bi :=
∫

ϕ2
i,0(t)dµi(t) and B′

i :=
∫

[ϕ′
i,0(t)]

2dµi(t). In particular for a
non-zero interaction, we have:

νi,j

Dsuper
i,j

=
B′

i

Bi

B′
j

Bj

. (12)

This generalizes the formula given in [27] for first-order indices:

νi

DT
i

=
B′

i

Bi

.

Their examples with uniform distributions on [0, 1] are also immediately ex-
tended:

• For the g-function g(x) =
∏d

i=1(|4xi − 2| + ai)/(1 + ai), the ratio is
constant:

νi,j

Dsuper

i,j

= 482, and much larger than π2, the bound given by

the optimal Poincaré constant.

• Choosing ϕi(t) = tm, ϕj(t) = tn leads to
νi,j

Dsuper

i,j

≈ (m + 1)2(n + 1)2 for

large m and n, and the ratio can be arbitrary large.
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6. Numerical examples and applications

The aim of this section is to illustrate how DGSM and crossed DGSM
can be used in practice. More precisely, the analysis should be based on their
upper bounds, denoted by Ui and Ui,j, obtained with Inequalities (8) and (9):

Ui := C(µi)
νi

D
≥ ST

i (13)

Ui,j := C(µi)C(µj)
νi,j

D
≥ Ssuper

i,j (14)

In the following, we consider analytical examples and a case study. We per-
form sequentially first-order analysis in order to detect influential inputs, and
a second-order analysis in order to study interactions and discover additive
structures, as detailed in Section 2.4. These two analyses imply the estima-
tion of various sensitivity indices. The estimation of variance-based sensitiv-
ity indices has been intensively studied since Sobol’ formula for closed indices
[24]. For total indices and superset importance, two useful formulas can be
used, due to [14] and [17]:

DT
i =

1

2

∫
[f(x) − f(zi,x−i)]

2 dµ(x)dµi(zi) (15)

Dsuper
i,j =

1

4

∫
[f(x) − f(xi, zj,x−i,j)

−f(zi, xj,x−i,j) + f(zi, zj,x−i,j)]
2 dµ(x)dµi(zi)dµj(zj) (16)

Accurate estimators are derived by using Monte Carlo estimates of the inte-
grals above. They share good properties, studied in [8]: They are positive,
unbiased and asymptotically efficient. Furthermore, they are identically zero
if the “true” index is zero.
For DGSM and crossed DGSM, estimations are obtained by using also Monte
Carlo estimates of the integrals in Equations (5) and (6). In addition, the
derivatives should be replaced by finite differences when the gradient and/or
Hessian are not supplied. In this section, we use finite differences. In both
cases, it is easy to see that the estimators share the same property as above:
They are identically zero if the true index is zero.
Finally, notice that all the integrals could be replaced by Quasi-Monte Carlo
estimates rather than Monte Carlo ones, but this is beyond the scope of the
present paper.
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Remark 4. Formula (16) contains a crossed finite difference inside the
square. It is thus very similar to the crossed DGSM definition (6). This
can be used to prove Inequality (9) from (16), as detailed in Appendix B.

6.1. Analytical examples

6.1.1. Ishigami function

The Ishigami function is a popular toy example in sensitivity analysis,
due to the presence of non-linearities and a strong (non-linear) interaction.
It is defined on ∆ = [−π, π]3 by:

f(x1, x2, x3) = sin(x1) + 7 sin(x2)
2 + 0.1x4

3 sin(x1).

We consider f(X1, X2, X3), assuming that X1, X2, X3 are independent ran-
dom variables from the uniform distribution on [−π, π]. Each index is es-
timated a 100 times on different Monte Carlo samples of size 1000. The
resulting mean and standard deviation values of the sensitivity analysis are
reported in Tables 3 and 4. The theoretical values, here calculable, are also
indicated. We observe that the upper bounds are quite large, though the
optimal Poincaré constant was used. No major conclusion is obtained from
Table 3, since all inputs are influential. We see, however, that the ranking
of inputs is different whether it is based on ŜT

i or Ûi. The second-order
analysis (Table 4) shows that the non-influential interactions {2, 1}, {2, 3}
are correctly detected by the Ûi,j’s. Notice that the estimation is exactly
zero when the index is zero, a property of the Liu and Owen’s estimator (see
above). This implies that there are no interactions (at any order) involving
both X2 and X1, and no interactions (at any order) involving both X3 and
X1, revealing an additive structure for f :

f(x1, x2, x3) = f1,3(x1, x3) + f2(x2)

Input Si ST
i m̂(ŜT

i ) ŝd(ŜT
i ) Ui m̂(Ûi) ŝd(Ûi)

X1 0.314 0.558 0.558 (0.047) 2.230 2.234 (0.146)
X2 0.442 0.442 0.442 (0.015) 7.079 7.048 (0.163)
X3 0 0.244 0.243 (0.016) 3.174 3.213 (0.221)

Table 3: First-order analysis for the Ishigami function (uniform inputs). Upper bounds
are computed with Copt(µ) = 4. Standard deviations are obtained with 100 replicates.
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Input pair Si,j Ssuper
i,j m̂(Ŝsuper

i,j ) ŝd(Ŝsuper
i,j ) Ui,j m̂(Ûi,j) ŝd(Ûi,j)

X1 : X2 0 0 0 (0) 0 0 (0)
X1 : X3 0.244 0.244 0.241 (0.020) 12.698 12.686 (0.828)
X2 : X3 0 0 0 (0) 0 0 (0)

Table 4: Second-order analysis for the Ishigami function (uniform inputs). Upper bounds
are computed with Copt(µ) = 4. Standard deviations are obtained with 100 replicates.

6.1.2. A 6-dimensional block-additive function

Following [19], we consider the 6-dimensional function in L2:

a(X1, . . . , X6) = cos([1, X1, X5, X3]φ) + sin([1, X4, X2, X6]γ)

with φ = [−0.8,−1.1, 1.1, 1]T , γ = [0.5, 0.9, 1,−1.1]T , and where X1, . . . , X6

are assumed independent and uniformly distributed on ∆ = [−1, 1]6. The
results for sensitivity analysis are reported in Tables 5 and 6. Again each
estimation is performed with a Monte Carlo sample of size 1000 and repeated
100 times. Table 5 shows that all variables are influential, either by looking
at ST

i or Ui. Looking at interactions between pairs of inputs, Table 6 clearly
detects inactive interactions, either by looking at Ŝsuper

i,j or Ûi,j. Again, the es-
timation is exactly zero when the index is zero. The corresponding FANOVA
graphs (see 2.4) are represented in Figure 1, which are very similar here. Two
groups are visible: {1, 3, 5} and {2, 4, 6}, meaning that there are no interac-
tions (at any order) between Xi and Xj when i belongs to the first group,
and j to the second one. Thus the Sobol-Hoeffding decomposition (1) implies
that the ‘a’ function has the block-additive form:

a(X1, . . . , X6) = a1,3,5(X1, X3, X5) + a2,4,6(X2, X4, X6)

which is the correct structure of the ‘a’ function.

6.2. A case study

We consider the flood model presented in [16]. The output is the maximal
annual overflow (in meters), denoted by S:

S = Zv + H − Hd − Cb with H =


 Q

BKs

√
Zm−Zv

L




0.6

,
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Input Si ST
i m̂(ŜT

i ) ŝd(ŜT
i ) Ui m̂(Ûi) ŝd(Ûi)

X1 0.110 0.231 0.231 (0.012) 0.329 0.329 (0.007)
X2 0.143 0.214 0.215 (0.009) 0.285 0.285 (0.005)
X3 0.086 0.196 0.197 (0.010) 0.272 0.272 (0.006)
X4 0.112 0.176 0.176 (0.008) 0.231 0.231 (0.004)
X5 0.110 0.231 0.232 (0.011) 0.329 0.329 (0.007)
X6 0.180 0.256 0.256 (0.011) 0.345 0.345 (0.007)

Table 5: First-order analysis for the ‘a’ function (uniform inputs). Upper bounds are
computed with Copt(µ) = 4/π2. Standard deviations are obtained with 100 replicates.

Input pair Si,j Ssuper
i,j m̂(Ŝsuper

i,j ) ŝd(Ŝsuper
i,j ) Ui,j m̂(Ûi,j) ŝd(Ûi,j)

X1 : X2 0 0 0 (0) 0 0 (0)
X1 : X3 0.043 0.067 0.067 (0.005) 0.133 0.132 (0.003)
X1 : X4 0 0 0 (0) 0 0 (0)
X1 : X5 0.055 0.078 0.080 (0.006) 0.161 0.160 (0.004)
X1 : X6 0 0 0 (0) 0 0 (0)
X2 : X3 0 0 0 (0) 0 0 (0)
X2 : X4 0.018 0.040 0.039 (0.004) 0.085 0.085 (0.002)
X2 : X5 0 0 0 (0) 0 0 (0)
X2 : X6 0.031 0.053 0.052 (0.005) 0.127 0.127 (0.003)
X3 : X4 0 0 0 (0) 0 0 (0)
X3 : X5 0.043 0.067 0.067 (0.005) 0.133 0.132 (0.003)
X3 : X6 0 0 0 (0) 0 0 (0)
X4 : X5 0 0 0 (0) 0 0 (0)
X4 : X6 0.024 0.046 0.045 (0.004) 0.103 0.103 (0.002)
X5 : X6 0 0 0 (0) 0 0 (0)

Table 6: Second-order analysis for the ‘a’ function (uniform inputs). Upper bounds are
computed with Copt(µ) = 4/π2. Standard deviations are obtained with 100 replicates.

where H is the maximal annual height of the river (in meters). The 8 inputs
are assumed to be independent random variables, with distributions recalled
in Table 7.

The first-order analysis was performed in [16], and 3 nonessential inputs
were detected. We base the second-order analysis on the 5 remaining ones:
X1 = Q, X2 = Ks, X3 = Zv, X5 = Hd, X6 = Cb. We fix the non-influential
inputs at their mean value and estimate the Ŝsuper

i,j and Ûi,j using a Monte
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Figure 1: FANOVA graphs of Ŝsuper

i,j (left) and Ûi,j (right) for the ‘a’ function.

Input Description Unit Probability distribution
X1 = Q Maximal annual flowrate m3/s Gumbel G(1013, 558),

truncated on [500, 3000]
X2 = Ks Strickler coefficient - Normal N (30, 8),

truncated on [15, +∞[
X3 = Zv River downstream level m Triangular T (49, 50, 51)
X4 = Zm River upstream level m Triangular T (54, 55, 56)
X5 = Hd Dyke height m Uniform U [7, 9]
X6 = Cb Bank level m Triangular T (55, 55.5, 56)
X7 = L River stretch m Triangular

T (4990, 5000, 5010)
X8 = B River width m Triangular T (295, 300, 305)

Table 7: Input variables of the flood model and their probability distributions.

Carlo sample size of 20,000. The true amount of variance explained by in-
teractions is here very small, around 1%. The results are reported in Table
8 and visualized on Figure 2. Departures are visible between the results
obtained with variance-based sensitivity indices and derivative-based ones.
One reason is that the Poincaré constants used are not optimal, and do not
have the same order of magnitude. In particular one of them is very large
due to the fat tail of the Gumbel distribution. Consequently we see that the
upper bounds are rather rough. The second-order analysis based on crossed
DGSMs succeeds in detecting the nonessential interactions, after inspecting
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Table 8. However this result must be considered with much care here, since
it also corresponds to low values of Poincaré constants products. Similarly
we are very lucky here to rank at first place the most influential interaction,
corresponding to the highest product C(µi)C(µj).

Finally, we consider the second output, a cost estimation, proposed in
[16]. The same 5 inputs are influential and again the interaction indices
are estimated on a Monte Carlo size of 20,000.. The true amount of variance
explained by the interactions is about 10%. The second-order analysis clearly
shows a difference in ranking, as shown in Figure 3. This may be due either
to the form of the function considered, or to the heterogeneity of distributions
as explained above. Notice however that crossed DGSM conclude correctly
to the absence of non-influential interactions.

Ŝsuper
i,j Ûi,j C(µi)C(µj)

X1 : X2 0.008235 1.837809 819887392.342
X1 : X3 0.000178 0.011691 2165585.265
X1 : X5 0.000000 0.001947 877678.649
X1 : X6 0.000000 0.000000 541396.316
X2 : X3 0.000070 0.003758 378.599
X2 : X5 0.000000 0.000000 153.440
X2 : X6 0.000000 0.000000 94.650
X3 : X5 0.000000 0.000000 0.405
X3 : X6 0.000000 0.000000 0.250
X5 : X6 0.000000 0.000000 0.101

Table 8: Second-order analysis for the overflow output of the flood model, limited to the
influential inputs.

7. Conclusion

This paper focuses on the quantification of interactions in global sensi-
tivity analysis. We considered the integral of squared crossed derivatives
introduced in statistical learning [7], that we call crossed DGSM by analogy
to DGSM [26]. We show that there is a Poincaré-type inequality between
superset importance [17] and the crossed DGSM. This extends to interaction
the link between total effects and DGSM [27, 16].
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Figure 2: FANOVA graphs of Ŝsuper

i,j (left) and Ûi,j (right) for the overflow output of the
flood model, limited to the influential inputs.
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Figure 3: FANOVA graphs of Ŝsuper

i,j (left) and Ûi,j (right) for the cost output of the flood
model, limited to the influential inputs.

This new inequality can be used to detect additive structures in black-box
functions by detecting pairs of inputs that do not interact together (see
[12, 19, 8]). We investigated their practical utilization with two analytical
examples involving uniform inputs and one case study with several hetero-
geneous input distributions. For that purpose, we recalled some facts about
Poincaré inequalities, and gave a new expression of a Poincaré constant for
truncated log-concave distributions. The crossed DGSM performed well in
the examples, for which the optimal Poincaré constant is known. In particu-
lar, the additive structure of a 6-dimensional function was recovered. On the
other hand, the case study showed some limitations of the crossed DGSM,
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also shared by the usual DGSM (see [27] for a discussion). In particular,
some Poincaré constants used are not optimal and sometimes very large, and
the inequality was not informative for several pairs of inputs. In such cases,
an idea for future research could be to investigate the use of transformations
of the inputs into uniformly or normally distributed ones, which simplifies
the input distributions but may introduce undesirable non-linearities in the
new function obtained by composition.
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Appendix A. Poincaré constants for truncated log-concave distri-
butions.

Proposition 1. Let µ be a log-concave distribution. Let a, b be two real
numbers such that −∞ ≤ a < b ≤ +∞, and consider the truncated distri-
bution µa,b defined on [a, b] by its cdf Fa,b(x) = F (x)−F (a)

F (b)−F (a)
1[a,b](x), where 1[a,b]

denotes the indicator function. Then µa,b satisfies a Poincaré inequality with

C(µa,b) = (F (b) − F (a))2 /f
(
q
(

F (a)+F (b)
2

))2

.

Proof. As a truncation of a log-concave distribution, µa,b is log-concave (see
e.g. [2]), and thus satisfies a Poincaré inequality with C(µa,b) = 1/fa,b(m̃a,b)

2,
where fa,b and m̃a,b are respectively the pdf and the median of µa,b. Now,
a direct computation shows that fa,b(x) = f(x)/(F (b) − F (a))1[a,b](x) and

m̃a,b = q
(

F (a)+F (b)
2

)
.
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Appendix B. A second proof of Inequality (9).

As mentioned in Remark 4, it is possible to derive Inequality (9) from (16).
Without loss of generality, we consider the case i = 1, j = 2. The superset
importance is expressed as the integral of a squared difference ([17]):

Dsuperset
1,2 =

1

4

∫ (
h(x1, x2, z1, z2, z−{1,2})

)2
dµ(x1)dµ(x2)dµ(z)

with:

h(x1, x2, z) = g(z1, z2, z−{1,2})−g(x1, z2, z−{1,2})−g(z1, x2, z−{1,2})+g(x1, x2, z−{1,2})

Notice that h is a crossed finite difference:

h(x1, x2, z) = g2(z2; x1, z) − g2(x2; x1, z)

with g2(•; x1, z) = g(z1, •, z−{1,2}) − g(x1, •, z−{1,2}). Let us first temporarily
fix all variables except x2 and z2. Remark that k : (x2, z2) → h(x1, x2, z) is
a zero mean function with respect to µ2 ⊗ µ2. Now, if µi satisfies a Poincaré
inequality, then so does µi ⊗µi and the same Poincaré constant can be used:
C(µi⊗µi) = C(µi), (i = 1, 2), see e.g. [1]. Therefore, applying (7) to k gives:

∫

R2

h(x1, x2, z)
2dµ2(x2)dµ2(z2) ≤ C(µ2)

∫

R2

‖∇h(x1, x2, z)‖2dµ2(x2)dµ2(z2)

= 2C(µ2)

∫

R

(
∂g2(x2; x1, z)

∂x2

)2

dµ2(x2)

Similarly, remark that ∂g2(x2;x1,z)
∂x2

= g1(z1; x2, z)−g1(x1; x2, z) with g1(•; x2, z) =
∂g(•,x2,z−{1,2})

∂x2
. Thus, by considering that all variables are fixed but x1 and z1,

and applying (7) to the zero-mean function (x1, z1) → ∂g2(x2;x1,z)
∂x2

, we get:

∫

R2

(
∂g2(x2; x1, z)

∂x2

)2

dµ1(x1)dµ1(z1) ≤ 2C(µ1)

∫

R

(
∂g1(x1; x2, z)

∂x1

)2

dµ1(x1)

Then, by combining the two inequalities above and integrating over all vari-
ables, we obtain the desired inequality:

Dsuperset
1,2 ≤ C(µ1)C(µ2)

∫ (
∂2g(x)

∂x1∂x2

)2

dµ(x)
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