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Abstract. The fusion zone of an electron beam welded Ti-6Al-4V alloy presents a α' martensitic 

structure which leads to a change of mechanical properties. Starting from two manufacturing 

processing routes for the alloy (1) a β processing followed by the weld (which will be considered as 

the reference microstructures), (2) an α+β processing followed by welding and a post weld heat 

treatment (PWHT), the microstructure can be adjusted to avoid local difference of strength, fatigue 

properties and impact toughness. This results from the optimisation of the process and of the 

PWHT. The present work investigates the mechanical behaviour and the damage mechanism of 

both base metal and fusion zone in regards to the microstructure and to the heat treatment 

parameters.  

Introduction 

Electron beam welding offers new assembling solutions for the development of aeronautics 

structure parts. One of its inherent challenge is to enhance the mechanical properties of the weld.   

Previous results [1-2] pointed out that a supertransus PWHT on the welded α+β Ti-6Al-4V alloy 

allows to homogenise the entire microstructure, and then to enhance the impact toughness 

simultaneously in the fusion zone and the base metal. Impact toughness and tensile tests have been 

conducted to explore the dynamic and static behaviour of the different microstructures found in 

these welded plates, and to describe the fracture path. Progress in understanding of damage 

mechanisms requires a particular attention to the specimen’s orientation and crack propagation in 

relation to the possible anisotropy of the alloy. 

Experimental procedure 

Two rolled plates of Ti-6Al-4V alloy (12 mm thick), respectively β and α+β annealed, were used. 

They will be denoted (β) and (α+β). The chemical composition of the plate is given in Table 1.  

Table 1 : Chemical composition [% wt] of the Ti-6Al-4V alloy. 

Element Al V Fe C N2 O2 H2 Ti 

[%wt] 6.41 3.93 0.16 0.004 0.008 0.18 0.0039 matrix

Electron beam welding is carried out on each plate with a beam voltage of 65kV, a beam current of 

170mA and a welding speed of 1m/min. Then, a stress relieving heat treatment of 5h at 650°C is 

carried out. The base metals and the welds microstructures are shown in Fig.1a & d. The base metal 

(BM) of the β and of the α+β annealed alloys consist respectively in a Widmanstätten α with a 

prior β grains and in a fine equiaxed α of an average grain size of 20 µm microstructures (Fig.1b & 

e). Both fusion zones (FZ) are constituted of α’ martensite in prior β �grains (Fig.1c). These last are 

elongated, with a length of 1mm for a width of 300 µm  in the (α+β)FZ while they are bigger and 

more compact in the (β) FZ with a length of 1,5 mm and a width of 1mm. This could be explained 



by the heredity of the initial microstructure. A heat affected zone (HAZ) is also visible, but only in 

the (α+β) weld and it is noticed that even micro hardness measures carried out on a cross section of 

(β) weld plate do not reveal HAZ (Fig.1a and Table 2).  

Table 2 : Microhardness values obtained with a mass of 200mg on different microstructures of Ti-6Al-4V alloy. 

Microhardness β MB β ZF α+β MB α+β ZF α+β HAZ

HV 0,2 330+/-40 370+/-10 310+/-10 370+/-10 350+/-20

Two supertransus PWHT, denoted TTh1 and TTh2, have been achieved on (α+β) samples of 

approximatively 800 mm
3
, differing essentially by the soaking time spent above the β transus : 48 

min at 1030°C for TTh1 against 10 min for TTh2.  Fig.1f shows the microstructure resulting from 

the TTh1 . i.e. an homogeneous Widmanstätten microstructure in the entire plate with a prior β grain 

size of 500 µm. Similar microstructure is obtained after TTh2, but with a prior β grain size of 200 

µm.  Fig.2a summaries the type, the orientation and the localization of the tested specimens. In a 

Rolling direction/Width/Thickness plate referential, the first letter of a specimen indicates the plane 

to which the notch is normal to, and the second letter indicates the direction of crack propagation. 

Samples will be referenced as followed : material (β, α+β, α+β +TTh1, α+β +TTh2) / localization 

(MB, ZF) / orientation (WT, WR, RT, RW). Fig.2b & c presents the geometry of each specimen. 

The choice of non standard Charpy specimens has been previously discussed [1]. 

Results and discussion 

First of all, the results comparing the FZ and BM of both processing routes (leading to (β) or to 

(α+β)) will be discussed. For both plates, the α' martensitic microstructure present in the FZ 
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explains why the tensile specimens machined in this zone exhibit significantly higher strength level 

than the BM ones, whereas their ductility is quite low (Fig. 3a) [3]. (α+β)BM presents a high 

ductility correlated to the well known equiaxed α microstructure resistance nucleation of voids. 

These results fit with the value of microhardness presented in Table 2. 

(β)BM demonstrates the lowest tensile properties whereas (β)BMWT presents the highest absorbed 

impact energy of 21,7 J (Fig. 4), which is confirmed by the fracture surface observation.  Indeed, 

Fig. 6e points out that the βBMWT has the most tortuous appearance with a long fracture path 

profile when compared to (β)FZWT, (α+β)BMWT and (α+β)FZWT.  This could be explained by 

the presence of the Widmanstätten microstructure where the thick α platelets and the prior β grain 

boundaries are deviating the fracture path [4]. These two microstructural parameters are also among 

those implied in the difference of propagation velocity between (β)FZ and (β)BM as observed on 

experimental kinetic crack growth diagrams da/dN = f(�K), especially in the low stress intensity 

range (Fig. 5). These tests on CTW75B10 specimens underline that the propagation rate in 

(β)CTFZWR is almost twice of the one in (β)CTBMWR. 

In this specimen as in all specimens where the notch is weld centred, it is noticeable that the crack 

follows the weld solidification front underlined by the αGB grain boundary phase. Shifting slightly 

the notch from the weld centre could allow to describe the behaviour of the material in less 

favourable propagation conditions. To complete these results and observations, two others impact 

tests were performed on (β)FZWR and (β)BMWR, to obtain the propagation of the fracture in the 

same plane and same direction than for kinetic crack growth tests. Both weld centred impact tests, 

(β)FZWT and  (β)FZWR, present the same low absorbed energy Et of around 9 J. and the same 

Figure 5 :Kinetic crack growth diagrams da/dN=f(∆K) 

on (β) CTFZWR and (β) CTBMWR specimens 

Figure 3 :  a) tensile curves for (β) and (α+β) weld plates b) effect of PWHT on tensile tests 
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Figure 4 :  Results of Charpy impact tests. The total 

absorbed energy Et = Ei (the apparent crack 

initiation energy) +  Ep (the apparent crack 

propagation energy). 



smooth fracture surface, probably due again to a preferential αGB crack path. However, (β)BMWT 

and (β)BMWR specimens which give a Et respectively of 21,7 J and of 14,2 J reveal anisotropic 

damage behaviour through their fracture surface as it is evidenced on Fig 6e & j : (β)BMWT has a 

ductile intergranular fracture mode whereas (β)BMWR presents cleavage features. This could be 

due to an anisotropy of the material and/or to a microstructural heterogeneity in the plate 

thickness.Crystallographic texture analysis of the (β) plate will help to clarify this result. 

Secondly, we focus on the influence of the supertransus PWHT on mechanical responses of (α+β)
weld plate, correlated to the homogenised Widmanstätten microstructure issue from this treatment. 

In terms of impact toughness in WT orientation, both PWHT gives a quite elevated absorbed energy 

of around 15 J. One more time, as it is visible on Fig. 6c, d, g, h, n & m, this energy is associated to 

a more irregular and rougher fracture surface and crack profile. In the FZ it is noticeable that the 

Figure 6 : Fracture surfaces and crack paths view in a median cross section perpendicular to the fracture surface 

of impact toughness specimens.
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solidification front, distinguished as a preferential fracture way, has disappeared. The fracture mode 

still mainly ductile but presents also some faceted intergranular appearance associated to a αGB. 

This Et is lower than the one obtained on the reference material (β)MBWT but higher than in the 

(β)FZWT. Another interest of the supertransus PWHT is its propensity to improve the tensile 

properties (Fig. 3b). The ductility obtained on (α+β)TSBM TTh1 and (α+β)TSBM TTh2 is 

enhanced as is, to a lesser extent, the one of  (α+β)TSFZ TTh1. Other tests, as the one on 

(α+β)TSBM TTh2 which lets believe that its smallest prior β grains size will benefit to the ductility, 

but also other PWHT conditions, are on the route. Indeed, these first results are very encouraging 

for finding, with the control of the microstructure, the optimized supertransus PWHT in order to 

reach the best compromise between static and dynamic mechanical properties on the (α+β) welded 

plate. 

Conclusions 

A solution to avoid microstructure heterogeneity due to the weld operation on β annealed Ti-6Al-

4V, and its corresponding variation in mechanical properties, seems to be to start from a α + β
annealed state and then to realized a supertransus PWHT. The soaking time spent above the transus 

is one of the most important parameters to adjust the final microstructure in terms of prior β grains  

size and α platelets thickness, together with the cooling rate and the initial equiaxed microstructure 

of the plate. Instrumented impact toughness tests are of first interest to improve the PWHT and to 

understand the associated damage mechanisms. They also point out the anisotropy of the material. 
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