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Abstract

This paper shows consistency of a two step estimation of the factors in a dy-

namic approximate factor model when the panel of time series is large (n large).

In the first step, the parameters of the model are estimated from an OLS on prin-

cipal components. In the second step, the factors are estimated via the Kalman

smoother. The analysis develops the theory for the estimator considered in Gian-

none, Reichlin, and Sala (2004) and Giannone, Reichlin, and Small (2008) and for

the many empirical papers using this framework for nowcasting.
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1 Introduction

A very recent development of the forecasting literature has been the design of statistical

models for “nowcasting”. Nowcasting is the forecast of GDP for the recent past, the

present and the near future. Since GDP is published with a long delay and it is only

available at quarterly frequency, many institutions are concerned with the problem of

exploiting monthly information in order to obtain an early estimate of last quarter and

current quarter GDP as well as a forecast for one quarter ahead. When one exploits

information from many monthly variables in real time, a key issue is that at the end of

the sample information is incomplete since data are released at non synchronized dates

and, as a consequence, the panel of monthly data has a jagged/ragged edge.

A seminal paper in the nowcasting literature is Giannone et al. (2008). The au-

thors develop a model for nowcasting quarterly GDP using a large number of monthly

releases. The proposed framework consists in bridging quarterly GDP with common

factors extracted from the large set of monthly variables. In order to deal with jagged

edges, the factor model is estimated in a two step estimation procedure based on prin-

cipal components and the Kalman filter.

The model was first implemented at the Board of Governors of the Federal Re-

serve and then at the European Central Bank (Angelini et al., 2008; Banbura and

Rünstler, 2007; Rünstler et al., 2008; ECB, 2008). The method has also used for other

economies, including France (Barhoumi et al., 2010), Ireland (D’Agostino et al., 2008),

New Zealand (Matheson, 2010), Norway (Aastveit and Trovik, 2008) and Switzerland

(Siliverstovs and Kholodilin, 2010). Although the good empirical performance of the

model has been extensively documented, the theoretical characteristics of the estimator

have never been studied. The goal of this paper is to fill this gap.

We consider a ”large” panel of time series and assume that it can be represented

by an approximate factor structure whereby the dynamics of each series is split in two

orthogonal components – one capturing the bulk of cross-sectional comovements and
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driven by few common factors and the other being composed of poorly cross-correlated

elements. This model has been introduced by Chamberlain and Rothschild (1983) and

generalized to a dynamic framework by Forni, Hallin, Lippi, and Reichlin (2000); Forni

and Lippi (2001) and Stock and Watson (2002a,b).

As in many other papers in the literature, this paper studies the estimation of the

common factors and consistency and rates for the size of the cross-section n and the

sample size T going to infinity.

The literature has extensively studied the particular case in which the factors are

estimated by principal components (Bai, 2003; Bai and Ng, 2002; Forni, Hallin, Lippi,

and Reichlin, 2005; Forni, Giannone, Lippi, and Reichlin, 2009; Stock and Watson,

2002a,b).

In this paper, we study consistency properties of the two step estimator considered

by Giannone et al. (2004) and Giannone et al. (2008). We parameterize the dynamic of

the factors as in Forni et al. (2009). In the first step we estimate the parameters of the

model by simple least squares by treating the principal components as if they were the

true common factors. In the second step the estimated parameters are used to project

onto the observations.

We consider three cases, each corresponding to an estimator under different forms

of misspecification: factor dynamics, idiosyncratic heteroscedacticity and idiosyncratic

dynamics (principal components); factor and idiosyncratic dynamics (reweighted prin-

cipal components); idiosyncratic dynamics only (Kalman smoother). Each projection

corresponds to a different two-step estimator whereby the first step involves the esti-

mation of the parameters and the second step the application of the Kalman smoother.

We prove consistency for such estimators and design a Monte-Carlo exercise that allows

to study the behavior of our estimators in small samples.

Beside allowing the treatment of unbalanced panels, the Kalman smoother may

help achieving possible efficiency improvements. Moreover, “cleaning”, through the

second step, the estimate of the factors, allows a better reconstruction of the common
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shocks considered in the structural factor model by Giannone, Reichlin, and Sala (2004).

Finally, such parametric approach allows to easily evaluate uncertainty in the estimates

of the factors as shown in both the papers just cited.

Let us finally note that similar reasoning to that applied to this paper can be

applied to use principal components to initialize the algorithm for maximum likelihood

estimation. We study consistency of maximum likelihood estimator in a separate paper

Doz, Giannone, and Reichlin (2006a).

The paper is organized as follows. Section two introduces models and assumptions.

Section three analyzes the projections, for known parameters, and for the different mis-

specified model assumptions : we show that the extracted factors are root n consistent

in each case. Section four contains the main propositions which show consistency and

(n, T ) rates for the two step estimators. Section five presents the Monte-Carlo exercise

and report results for an empirical application on nowcasting. Section six concludes.

Proofs are gathered in the appendix.

2 The Models

We consider the following model:

Xt = Λ∗
0Ft + ξt

where:

Xt = (x1t, ..., xnt)′ is a (n × 1) stationary process

Λ∗
0 = (λ∗

0,ij) is the n × r matrix of factor loadings

Ft = (f1t, ..., frt)′ is a (r × 1) stationary process (common factors)

ξt = (ξ1t, ..., ξnt)′ is a (n × 1) stationary process (idiosyncratic component)

(Ft) and (ξt) are two independent processes

5



Note that Xt,Λ∗
0, ξt depend on n but, in this paper, we drop the subscript for sake

of simplicity.

The general idea of the model is that the observable variables can be decomposed

in two orthogonal unobserved processes: the common component driven by few com-

mon shocks which captures the bulk of the covariation between the time series, and

the idiosyncratic component which is driven by n shocks generating dynamics which is

series specific or local.

We have the following decomposition of the covariance matrix of the observables:

Σ0 = Λ∗
0Φ

∗
0Λ

∗ ′
0 + Ψ0

where Ψ0 = E[ξtξ′
t] and Φ∗

0 = E[FtF
′
t ]. It is well-known that the factors are defined up

to a pre-multiplication by an invertible matrix, so that it is possible to choose Φ∗
0 = Ir:

we will maintain this assumption throughout the paper. Even in this case, the factors

are defined up to a pre-multiplication by an orthogonal matrix, a point that we make

more precise below.

We also have the following decomposition of the auto-covariance matrix of order h

of the observables:

Σ0(h) = Λ∗
0Φ

∗
0(h)Λ

∗ ′
0 + Ψ0(h)

where Σ0(h) = E[XtX
′
t−h], Φ∗

0(h) = E[FtF
′
t−h], and Ψ0(h) = E[ξtξ′

t−h].

This decomposition extends the previous one, if we adopt the following notations:

Σ0(0) = Σ0, Φ∗
0(0) = Ir, and Ψ0(0) = Ψ0.
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Remark 1: Bai (2003); Bai and Ng (2002) and Stock and Watson (2002a) consider

also some form of non-stationarity. Here we do not do it for simplicity. The main ar-

guments used in what follows still hold under the assumption of weak time dependence

of the common and the idiosyncratic component.

More precisely, we make the following set of assumptions:

(A1) For any n, (Xt) is a stationary process with zero mean and finite second order

moments.

(A2) The xit’s have uniformly bounded variance : ∃M/∀(i, t)V xit = σ0,ii ≤ M

(A3) - (Ft) and (ξt) are independent processes.

- (Ft) admits a Wold representation: Ft = C0(L)εt =
∑+∞

k=0Ckεt−k such that:
∑+∞

k=0 ∥Ck ∥ < +∞, and εt is stationary at order four.

- For any n, (ξt) admits a Wold representation: ξt = D0(L)vt =
∑+∞

k=0Dkvt−k

where
∑+∞

k=0 ∥Dk ∥ < +∞ and vt is a strong white noise such that:

∃M/∀(n, i, t)Ev4
it ≤ M

Note that (vt) and D0(L) are not nested matrices: when n increases because a new

observation is added to Xt, a new observation is also added to ξt but the innovation

process and the filter D0(L) entirely change.

A convenient way to parameterize the dynamics is to further assume that the com-

mon factors following a VAR process so that the following assumption is added to (A3)

(see Forni et al., 2009, for a discussion):

(A3’) The factors admit a VAR representation: A∗
0(L)Ft = ut where A∗

0(z) ̸= 0 for

|z| ≤ 1 and A∗
0(0) = Ir.

For any n, we denote by ψ̄0 = 1
n

∑n
j=1 Eξ2it, and in the whole paper, A∗

0(L), Ψ0,
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D0(L), ψ̄0 denote the true values of the parameters.

Given the size of the cross-section n, the model is identified provided that the num-

ber of common factors (r) is small with respect to the size of the cross-section (n), and

the idiosyncratic component is orthogonal at all leads and lags, i.e. D0(L) is a diagonal

matrix (exact factor model). This version of the model was proposed by Engle and

Watson, 1981 and they estimated it by Maximum Likelihood 1. In what follows, we

will not impose such restriction and work under the assumption of some form of weak

correlation among idiosyncratic components (approximate factor model) as in the n

large, new generation factor literature. There are different ways to impose identifying

assumptions that restrict the cross-correlation of the idiosyncratic elements and pre-

serve the commonality of the common component as n increases. We will assume that

the Chamberlain and Rothschild (1983)’s conditions are satisfied and we will extend

some of these conditions in order to fit the dynamic case. More precisely, denoting by

λmin(A) and λmax(A) the smallest and the greatest eigenvalues of a matrix A, and by

∥A∥ = (λmax(A′A))1/2, we make the following assumptions.

We suppose that the common component is pervasive, in the following sense:

(CR1) lim infn→∞ 1
nλmin(Λ∗ ′

0 Λ∗
0) > 0

We also suppose, as in Forni et al. (2004), that all the eigenvalues of Λ∗ ′
0 Λ∗

0 diverge at

the same rate, which is equivalent to the following further assumption:

(CR2) lim supn→∞
1
nλmax(Λ∗ ′

0 Λ∗
0) is finite

We suppose that the cross-sectional time autocorrelation of the idiosyncratic component

can only have a limited amount:

(CR3) lim supn→∞
∑

h∈ZZ ∥Ψ0(h)∥ is finite

1Identification conditions for the model for a fixed cross-sectional dimensions (n) are studied in
Geweke and Singleton (1980).
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We also make the two following technical assumptions:

(CR4) infn λmin (Ψ0) = λ > 0

(A4) Λ∗ ′
0 Λ∗

0 has distinct eigenvalues 2.

It must be emphasized that:

- assumption (CR3) extends the Chamberlain and Rothschild (1983)’s following

condition: ∃λ̄/ supn ∥Ψ0∥ < λ̄ and is achieved as soon as the two following

assumptions are made: ∃M/∀n ∥E[vtv
′
t]∥ ≤ M and

∑+∞
k=0 ∥Dk ∥ ≤ M

- assumption (CR4) was made by Chamberlain and Rothschild (1983): it ensures

that the idiosyncratic component does not tend to a degenerate random variable

when n goes to infinity.

Remark 2: These assumptions are slightly different than those introduced by Stock

and Watson (2002a) and Bai and Ng (2002) but have a similar role. They have been

generalized for the dynamic case by Forni et al. (2000) and Forni and Lippi (2001)

As we said before, the common factors, and the factor loadings, are identified up to

a normalization. In order to give a precise statement of the consistency results in our

framework, we will use here a particular normalization. Let us define:

- D0 as the diagonal matrix whose diagonal entries are the eigenvalues of Λ∗ ′
0 Λ∗

0 in

decreasing order,

- Q0 as the matrix of a set of unitary eigenvectors associated with D0,

- Λ0 = Λ∗
0Q0, so that Λ′

0Λ0 = D0 and Λ0Λ′
0 = Λ∗

0Λ
∗ ′
0 ,

- P0 = Λ0D
−1/2
0 so that P ′

0P0 = Ir,

2This assumption is usual in this framework, and is made to avoid useless mathematical complica-
tions. However, in case of multiple eigenvalues, the results would remained unchanged.
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- Gt = Q′
0Ft.

With these new notations, the model can also be written as:

Xt = Λ0Gt + ξt (2.1)

We then have : E[GtG
′
t] = Ir, and E[GtG

′
t−h] = Φ0(h) = Q′

0Φ
∗
0(h)Q0 for any h . It

then follows that:

Σ0 = Λ∗
0Λ

∗ ′
0 + Ψ0 = Λ0Λ′

0 + Ψ0

and that, for any h: Σ0(h) = Λ∗
0Φ

∗
0(h)Λ

∗ ′
0 + Ψ0(h) = Λ0Φ0(h)Λ′

0 + Ψ0(h).

Note that, in the initial representation of the model, the matrices Λ∗
0 are supposed

to be nested (when an observation is added to Xt, a line is added to the matrix Λ∗
0),

and that it is not the case for the Λ0 matrices. However, as Q0 is a rotation matrix,

Gt and Ft have the same range, likewise Λ0 and Λ∗
0 have the same range3. In addition,

assumptions (A1) to (A4) and (CR1) to (CR4) are satisfied if we replace Λ∗
0 with Λ0,

and Ft with Gt. If also assumption (A3’) holds then Gt also has a VAR representation.

Indeed, as Q0Gt = Ft, we have: A∗
0(L)Gt = ut, and Q′

0A
∗
0(L)Gt = Q′

0ut. We then can

write:

A0(L)Gt = wt,

with A0(L) = Q′
0A

∗
0(L)Q0, wt = Q′

0ut, A0(z) ̸= 0 for |z| ≤ 1, and A0(0) = Ir.

Throughout the paper, we concentrate on consistent estimation of Gt rather than

Ft, which means that we make explicit which rotation of the factors we are estimating.
3It is worth noticing that Q0 is uniquely defined up to a sign change of its columns and that Gt is

uniquely defined up to a sign change of its components (this will be used below). Indeed, as Λ∗ ′
0 Λ∗

0 is
supposed to have distinct eigenvalues, Q0 is uniquely defined up to a sign change of its columns. Then,
if ∆ is a diagonal matrix whose diagonal terms are ±1, and if Q0 is replaced by Q0∆, Λ0 is replaced
by Λ0∆ and Gt is replaced by ∆Gt.
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3 Approximating projections and population results

The true model underlying the data can be defined as Ω = {Λ∗, A∗(L), D(L)} or equiv-

alently as Ω = {Λ, A(L), D(L)}. If this true model were known, the best approximation

of Gt as a linear function of the observables X1, ..., XT would be:

Gt|T = ProjΩ[Gt|Xs, s ≤ T ]

If the model is Gaussian, i.e. if ut and vt are normally distributed, then

ProjΩ[Gt|Xs, s ≤ T ] = EΩ[Gt|Xs, s ≤ T ]

Moreover, if the projection is taken under the true parameter values, Ω0 = {Λ0, A0(L), D0(L)},

then we have optimality in mean square sense.

In what follows, we propose to compute other projections of Gt, which are associ-

ated to models which are misspecified as well, but which are likely to be closer to the

real model underlying the data. We show that, although not optimal, these projections

also give consistent approximations of Gt, under our set of assumptions.

The simplest projection is obtained under the triple ΩR1
0 =

{
Λ0, Ir,

√
ψ̄0In

}
, that is

under an approximating model according to which the common factors are white noise

with covariance Ir and the idiosyncratic components are cross-sectionally independent

homoscedastic white noises with variance ψ̄0. We have:

ProjΩR1
0

[Gt|Xs, s ≤ T ] = EΩR1
0

[GtX
′
t]
[
EΩR1

0
[XtX

′
t]
]−1

Xt = Λ′
0

(
Λ0Λ′

0 + ψ̄0In
)−1

Xt.

Simple calculations show that, when Ψ0R is an invertible matrix of order n:

(
Λ0Λ′

0 + Ψ0R

)−1 = Ψ−1
0R − Ψ−1

0RΛ0

(
Λ′

0Ψ
−1
0RΛ0 + Ir

)−1 Λ′
0Ψ

−1
0R.
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Applying this formula with Ψ0R = ψ̄0In, the previous expression can then be written

as:

ProjΩR1
0

[Gt|Xs, s ≤ T ] =
(
Λ′

0ψ̄
−1
0 Λ0 + Ir

)−1 Λ′
0ψ̄

−1
0 Xt =

(
Λ′

0Λ0 + ψ̄0Ir
)−1 Λ′

0Xt

which is, by assumption (CR1), asymptotically equivalent to the OLS regression of Xt

on the factor loadings Λ0.

It is clear that, under conditions (CR1) and (CR3), such simple OLS regression

provides a consistent estimate of the unobserved common factors as the cross-section

becomes large4. In particular,

ProjΩR1
0

[Gt|Xs, s ≤ T ] m.s.−→ Gt as n → ∞

Indeed, given the factor model representation, and the definition of Λ0, we have:

(
Λ′

0Λ0 + ψ̄0Ir
)−1 Λ′

0Xt =
(
Λ′

0Λ0 + ψ̄0Ir
)−1 Λ′

0Λ0Gt +
(
Λ′

0Λ0 + ψ̄0Ir
)−1 Λ′

0ξt

Under (CR1), the first term converges to the unobserved common factors Gt, since
(
Λ′

0Λ0 + ψ̄0Ir
)−1 Λ′

0Λ0 → Ir, as n → ∞. The last term converges to zero in mean

square since, by assumptions (CR1) to (CR3):

EΩ0

[(
Λ′

0Λ0 + ψ̄0Ir
)−1 Λ′

0ξtξ
′
tΛ0

(
Λ′

0Λ0 + ψ̄0Ir
)−1
]

≤ λmax(Ψ0)
(
Λ′

0Λ0 + ψ̄0Ir
)−1 Λ′

0Λ0

(
Λ′

0Λ0 + ψ̄0Ir
)−1 → 0 as n → ∞

If we denote Gt/T,R1 = ProjΩR1
0

[Gt|Xs, s ≤ T ], we then have:

Gt/T,R1 − Gt = OP

(
1√
n

)
as n → ∞

4Notice that here the term consistency could be misleading since we are supposing that the param-
eters of the model are known. We will consider the case of joint estimation of parameters and factors
in the next section.
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This simple estimator is the most efficient one if the true model is Ω0 = ΩR1
0 : this

is the model which is implicitly assumed in the Probabilistic Principal Components

framework, i.e. a static model with i.i.d. idiosyncratic terms. However, if there are

dynamics in the common factors (A0(L) ̸= Ir) and if the idiosyncratic components have

dynamics or are not spherical (D0(L) ̸=
√
ψ̄0In), this approach still gives a consistent

estimate of the unobserved common factors, as n → ∞.

If the size of the idiosyncratic component is not the same across series, another

estimator can be obtained by exploiting such heterogeneity and giving less weight to

series with larger idiosyncratic component. Denoting Ψ0d = diag(ψ0,11, ..., ψ0,nn), this

can be done by running the projection under the triple

ΩR2
0 =

{
Λ0, Ir,Ψ

1/2
0d

}

Using the same formula as we used in the previous case, with Ψ0R = Ψ0d instead of

Ψ0 = ψ̄0In, the following estimated factors are:

ProjΩR2
0

[Gt|Xs, s ≤ T ] = Λ′
0

(
Λ0Λ′

0 + Ψ0d

)−1
Xt =

(
Λ′

0Ψ
−1
0d Λ0 + Ir

)−1 Λ′
0Ψ

−1
0d Xt

This estimator is used in the traditional (exact) Factor Analysis framework for static

data, where it is assumed that ΩR2
0 is the true model underlying the data. It is obtained

as the previous one, up to the fact that Xt and, of course, Λ0 have been weighted, with

weight given by
√
ψ0,11, ...,

√
ψ0,nn. If the true model is ΩR2

0 , this estimator will be

more efficient than the previous one, for a given n. On the other hand, if ΩR2
0 is not the

true model, it is straightforward to obtain the same consistency result as in the previous

case, under assumptions (CR1), to (CR4). If Gt/t,R2 := ProjΩR2
0

[Gt|Xs, s ≤ T ], then:

Gt/T,R2
m.s.−→ Gt and Gt/T,R2 − Gt = OP

(
1√
n

)
as n → ∞
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Notice that in traditional factor models, where n is considered fixed, the factors are

indeterminate and can only be approximated with an approximation error that depends

inversely on the signal to noise variance ratio. The n large analysis shows that under

suitable conditions, the approximation error goes to zero for n large.

For a given n, further efficiency improvements could be obtained by non diagonal

weighting scheme, i.e. by running the projection under the triple
{

Λ0, Ir,Ψ
1/2
0

}
. This

might be empirically relevant since, although limited asymptotically by assumption

(CR3), the idiosyncratic cross-sectional correlation may affect results in finite sample.

We will not consider such projections since non diagonal weighting schemes raise iden-

tifiability problems in finite samples, and would practically require the estimation of

too many parameters. Indeed, there is no satisfactory way to fully parameterize par-

simoniously the DGP of the idiosyncratic component since in most applications the

cross-sectional items have no natural order.

On the other hand, the estimators considered above do not take into considera-

tion the dynamics of the factors and the idiosyncratic component. For this reason the

factors are extracted by projecting only on contemporaneous observations. Since the

model can be written in a state space form, we propose to compute projections under

more general dynamic structures using Kalman smoothing techniques.

Two particular cases in which the Kalman smoother can be used to exploit the

dynamics of the common factors are:

ΩR3
0 =

{
Λ0, A0(L),

√
ψ̄0In

}

ΩR4
0 =

{
Λ0, A0(L),Ψ1/2

0d

}

14



In both cases, the state-space form of the model under assumption (A3’) is:

Xt =
(

Λ0 0 . . . 0

)




Gt

Gt−1

...

Gt−p+1




+ ξt




Gt

Gt−1

...

Gt−p+1




=




A01 A02 . . . A0p

Ir 0 . . . 0
...

...
...

0 0 . . . Ir







Gt−1

Gt−2

...

Gt−p




+




Ir

0
...

0



wt

In the measurement equation, the covariance matrix of ξt is supposed to be equal to
√
ψ̄0In in ΩR3

0 framework, whereas it is supposed to be equal to Ψ1/2
0d in ΩR4

0 framework.

Under such parameterizations, the computational complexity of the Kalman smooth-

ing techniques depends mainly on the dimension of the transition equation which, under

the parameterizations above, is independent of n and depends only on the number of

the common factors.

In both frameworks, the Kalman smoother computes Gt/T,R := ProjΩR
0
[Gt|Xs, s ≤

T ], with R = R3 or R4. We want to show that this gives a consistent estimate of Gt

even if ΩR
0 is misspecified, due to the fact that the true matrix Ψ0 is a non-diagonal

matrix and the idiosyncratic components are autocorrelated. In both cases, for given

values of the parameters, the smoother is computed iteratively, for each value of t.

However, in order to prove our consistency result, we will not use these recursive for-

mulas but directly use the general form of Gt/T,R.

In order to do this, we introduce the following notations:
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- XT = (X ′
1, ...X

′
T )′, GT = (G′

1, ...G
′
T )′, ZT = (ξ′

1, ...ξ
′
T )′,

- E denotes the expectation of a random variable, under the true model Ω0,

- EΩR
0

denotes the expectation of a random variable, when ΩR
0 is the model which is

considered,

- When (Yt) is a stationary process: ΓY (h) = E(YtY
′
t−h) and ΓY,R(h) = EΩR

0
(YtY

′
t−h),

- When (Yt) is a stationary process and YT = (Y ′
1 , ...Y

′
T )′, we denote:

ΣY = E(YTY′
T ) and ΣY,R = EΩR

0
(YTY′

T )

- U′
t is the (r × rT ) matrix defined by: U′

t = (0, ...Ir, 0...0)

With these notations:

XT = (IT ⊗ Λ0)GT + ZT ,

and : Gt/T,R = EΩR
0
(GtX′

T )(EΩR
0
(XTX′

T ))−1XT = EΩR
0
(GtX′

T )Σ−1
X,RXT .

Notice that, when R = R3 or R4 the DGP of (Gt) is supposed to be correctly

specified, so that ΣG = ΣG,R. On the contrary, ΣZ,R, is not equal to ΣZ , and we have:

ΣZ,R = IT ⊗ Ψ0,R

with Ψ0,R3 = ψ̄0In and Ψ0,R4 = Ψ0d = diag(ψ0,11, . . . , ψ0,nn)

Our consistency result is based on the following lemma:

Lemma 1 Under assumptions (A1) to (A4), (A3’), (CR1), to (CR4) the following

properties hold for R = R3, or R4:

i) Gt/T,R = U′
tΣG,R(IT ⊗ Λ′

0)Σ
−1
X,RXT
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ii) ΣG,R = ΣG, ∥ΣG∥ = O(1) and ∥Σ−1
G ∥ = O(1)

iii) ∥ΣZ ∥ = O(1), ΣZ,R = O(1) and ∥Σ−1
Z,R∥ = O(1)

Proof: see appendix A1.

It is worth noticing that the last result of this lemma comes from assumption (CR3),

which states the limitation of the cross-sectional autocorrelation. This assumption is

crucial to obtain the following consistency result:

Proposition 1 Under assumptions (A1) to (A4), (A3’), and (CR1) to (CR4), ifGt/T,R =

ProjΩR
0
[Gt|Xs, s ≤ T ] with R = R3, or R4, then:

Gt/T,R
m.s.−→ Gt and Gt/T,R − Gt = OP

(
1√
n

)
as n → ∞

Proof: see appendix A1.

In summary, the factors can be consistently estimated,as n become larger, by simple

static projection of the observable on the factor loadings. However, it is also possible to

exploit the cross-sectional heteroscedasticity of the idiosyncratic components through

weighted regressions (parametrization ΩR2
0 ), and the dynamics of the factors, through

the Kalman smoother (parametrizations ΩR3
0 and ΩR4

0 ). This property may be partic-

ularly useful in the case of unbalanced panel of data.

Individual idiosyncratic dynamics could also be taken into account when performing

the projections. This would require to specify an autoregressive model for the idiosyn-

cratic components or a reparameterization of the model as in Quah and Sargent (2004),

to capture idiosyncratic dynamics by including lagged observable variable.

17



4 A two-step estimation procedure

The discussion in the previous section assumed that the parameters were known and

focused on the extraction of the factors. In this section we propose a two-step procedure

in order to estimate the factors when the parameters of the model are unknown. In the

first step, preliminary estimators of the factors, and estimators of the parameters of the

model, are computed from a Principal Component Analysis (PCA). In the second step,

we take the heteroscedasticity of the idiosyncratic components and/or the dynamics of

the common factors into account, along the same lines as what we did in the previous

section. The true values of the parameters are now replaced by their PCA estimates,

and the dynamics of the factors are estimated from the associated preliminary estimates

of the factors.

As we said in the previous section, the estimation of the full model is not feasible

since it is not possible to fully parameterize parsimoniously the DGP of the idiosyn-

cratic component. However, we have seen that, if the factor loadings were known, the

factors could be consistently estimated by a Kalman smoother, even if the projections

were not computed under the correct specification. We show below that robustness

with respect to misspecification still holds if the parameters are estimated by PCA.

More precisely, our procedure can be defined as follows. For each of the approximat-

ing model ΩRi, i = 1 to 4, that we have defined in the previous section, we replace the

true parameters by estimated values in the following way. In the four cases, the factor

loadings matrix Λ0 is replaced by the matrix Λ̂ obtained by PCA, and the variance-

covariance matrix which is specified for the idiosyncratic component is also directly

obtained from the PCA estimates. For cases ΩRi, i = 3 and 4, where the factors are

supposed to follow a VAR model, we use the preliminary estimates Ĝt of the factors

obtained by PCA, and estimate the VAR coefficients by OLS regression of Ĝt on its
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own past, following Forni et al. (2009). We thus define, for each of the approximating

model ΩRi, i = 1 to 4, an associated setup, which we denote Ω̂Ri, i = 1 to 4. In each

case, we compute a new estimation of the factor Gt, which we denote Ĝt/T,Ri and which

is equal to P̂rojΩ̂Ri [Gt|Xs, s ≤ T ].

In order to prove that Ĝt/T,Ri is a consistent estimator of Gt, we proceed in three

steps. In the first step, we show that under our set of assumptions, principal compo-

nents give consistent estimators of the span of the common factors, and of associated

factors loadings, when both the cross-section and the sample size go to infinity. This

result has been shown by Forni et al. (2009). Similar results, under alternative as-

sumptions have been derived Bai (2003), Bai and Ng (2002) and Stock and Watson

(2002a). However, we give our own proof of these results in appendix A.2, because

we need intermediate results in order to prove the other propositions of this section.

The consistency of Ĝt/T,R1 and Ĝt/T,R2 directly follow from the consistency of PCA.

We then show that the estimates we propose for the dynamics of the factors are also

consistent estimates when both the cross-section and the sample size go to infinity.

Finally, we derive the consistency of Ĝt/T,Ri, i = 3 and 4.

Let us then first study PCA estimates and the consistency of Ĝt/T,R1 and Ĝt/T,R2.

If we denote by S = 1
T

∑T
t=1XtX

′
t the empirical variance-covariance matrix of the data,

by d̂j the j-th eigenvalue of S, in decreasing order of magnitude5, by p̂j the relative

unitary eigenvector, and if we denote by D̂ the (r × r) diagonal matrix with diagonal

elements d̂j , j = 1 . . . r, and P̂ := (p̂1, . . . , p̂r), the associated PCA estimates are given

5It is always assumed that those eigenvalues are all distinct, in order to avoid useless mathematical
complications. Under assumption (A6), this will be asymptotically true, due to the fact that S converges
to Σ0
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by:

Ĝt = D̂−1/2P̂ ′Xt

Λ̂ = P̂ D̂1/2

The consistency results are the following:

Proposition 2 If assumptions (CR1) to (CR4), (A1) to (A4) and (A3’) hold, then Λ0

can be defined6 so that the following properties hold:

i) Ĝt − Gt = OP

(
1√
n

)
+OP

(
1√
T

)
, as n, T → ∞

ii) For any i, j: λ̂ij − λ0,ij = OP

(
1√
n

)
+OP

(
1√
T

)

iii) If Ψ̂ = S − Λ̂Λ̂′ then, for any (i, j): ψ̂ij − ψ0,ij = OP

(
1√
n

)
+OP

(
1√
T

)

Proof: see appendix A2.

These consistency results can be interpreted as follows: ”the bias arising from this

misspecification of the data generating process of the idiosyncratic component and the

dynamic properties of the factors is negligible if the cross-sectional dimension is large

enough, under the usual set of assumptions”.

If we denote:

ˆ̄ψ =
1
n

trΨ̂ =
1
n

tr(S − Λ̂Λ̂′) =
1
n

(
trS − tr(Λ̂′Λ̂)

)
=

1
n

(
trS − trD̂

)

Ψ̂d = diagΨ̂ = diag(S − Λ̂Λ̂′) = diag(ψ̂11, . . . , ψ̂nn)

we can define Ω̂R1 =
{

Λ̂, Ir,
√

ˆ̄ψIn

}
and Ω̂R2 =

{
Λ̂, Ir, Ψ̂d

}
.

6As Λ0 is defined up to a sign change of its columns, and Gt is defined up to the sign of its
components, the consistency result holds up to a given value of these signs.
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We then obtain:

Ĝt/T,R1 = P̂rojΩ̂R1 [Gt|Xs, s ≤ T ] =
(
Λ̂′Λ̂ + ˆ̄ψIr

)−1
Λ̂′Xt =

(
D̂ + ˆ̄ψIr

)−1
D̂1/2P̂ ′Xt

Ĝt/T,R2 = P̂rojΩ̂R2 [Gt|Xs, s ≤ T ] =
(
Λ̂′Ψ̂−1

d Λ̂ + Ir

)−1
Λ̂′Ψ̂−1

d Xt

and the consistency of these two approximations of Gt directly follows from the consis-

tency of PCA. We get:

Corollary 1 Under the same assumptions as in proposition 2:

i) Ĝt/T,R1 − Gt = OP

(
1√
n

)
+OP

(
1√
T

)
, as n, T → ∞

ii) Ĝt/T,R2 − Gt = OP

(
1√
n

)
+OP

(
1√
T

)
, as n, T → ∞

Proof: see Appendix A2.

Two remarks are in order. First, we see that Ĝt/T,R1 = (D̂ + ˆ̄ψIr)−1D̂Ĝt so that

Ĝt/T,R1 and Ĝt are equal up to a scale coefficient on each component, and are asymp-

totically equal when n goes to infinity. This can be linked to a well known result since

principal components are known to be equal, up to a scale coefficient, to the Maxi-

mum Likelihood estimates of the parameters in the ΩR1 framework, under a gaussian

assumption 7. Hence, principal components can be seen as an asymptotic equivalent of

the Maximum Likelihood estimator in a situation in which the probability model is not

correctly specified: the true model satisfies conditions (CR1) to (CR4), is dynamic and

approximate, while the approximating model is restricted to be static and the idiosyn-

cratic component to be spherical. This is what White (1982) named as Quasi Maximum

Likelihood estimator. This remark opens the way to the study of QML estimators in

less restricted frameworks than ΩR1, like for instance ΩR4 : such an estimator is studied

in (Doz et al., 2006b).
7See e.g. Doz et al. (2006b) for the calculation of the ML estimator in the exact static factor model

framework.
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Second, Ĝt/T,R2 =
(
Λ̂′Ψ̂−1

d Λ̂ + Ir

)−1
Λ̂′Ψ̂−1

d Xt is asymptotically equivalent to prin-

cipal components on weighted observations, where the weights are the inverse of the

standard deviation of the estimated idiosyncratic components. This estimator has been

considered in Forni and Reichlin (2001), Boivin and Ng (2006), Forni et al. (2005).

Let us now turn to the ΩRi, i = 3 and 4 frameworks, where the dynamics of the

factors are taken into account in the second step of the procedure. As suggested by

Forni et al. 2005, the VAR coefficients A0(L) can be estimated by OLS regression of

Ĝt, on its own past. More precisely, the following OLS regression:

Ĝt = Â1Ĝt−1 + · · · + ÂpĜt−p + ŵt

gives consistent estimates of the A0,k matrices.

Proposition 3 Under the same assumptions as in proposition 2, the following prop-

erties hold:

i) If Γ̂Ĝ(h) denotes the sample autocovariance of order h of the estimated principal

components: Γ̂Ĝ(h) = 1
T −h

∑T
t=h+1 ĜtĜ

′
t−h, then for any h:

Γ̂Ĝ(h) − Φ0(h) = OP

(
1
n

)
+OP

(
1√
T

)

and the result is uniform in h, h ≤ p

ii) For any s = 0, ..., p: Âs − A0,s = OP

(
1
n

)
+OP

(
1√
T

)

Proof: see Appendix A3.
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If we denote by Â(L) the associate estimates of A0(L) we are then able to define:

Ω̂R3 =
{

Λ̂, Â(L),
√

ˆ̄ψIn

}

Ω̂R4 =
{

Λ̂, Â(L), (diag(ψ̂11, ..., ψ̂nn))1/2
}

and to compute two new estimates of the factors:

Ĝt/T,Ri = P̂rojΩ̂Ri [Gt|Xs, s ≤ T ], i = 3 and 4

These two estimates are obtained with one run of the Kalman smoother and they

take the estimated dynamics of the common factors into account:

- Ĝt/T,R3 is obtained without reweighting the data: it exploits the common factor

dynamics but does not take the non-sphericity of the idiosyncratic component

into account.

- Ĝt/T,R4 exploits the dynamics of the common factors and the non-sphericity of

the idiosyncratic component: it has been proposed by Giannone et al. (2008) and

applied by Giannone et al. (2004).

Consistency of these two new estimates of the common factors, follows from the

consistency of the associated population estimates (proposition 1), the consistency of

PCA (proposition 2), and the consistency of the autoregressive parameters estimates

(proposition 3). The proofs are identical in the Ω̂R3 and Ω̂R4 frameworks. We then

denote by ΩR
0 the model under consideration, and by Ω̂R the associated set of param-

eters, and we denote Ĝt/T,R = P̂rojΩ̂R [Gt|Xs, s ≤ T ] the associated estimation of the

common factor.

Note that, like in the previous section, our consistency proof will not rely on the

Kalman smoother iterative formulas, but on the direct computation of Ĝt/T,R. As we
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have seen before that Gt/T,R = U′
tΣG,R(IT ⊗ Λ′

0)Σ
−1
X,RXT , we now have:

Ĝt/T,R = U′
tΣ̂G,R(IT ⊗ Λ̂′)Σ̂−1

X,RXT

where Σ̂X,R = (IT ⊗ Λ̂)Σ̂G,R(IT ⊗ Λ̂) + (IT ⊗ Ψ̂R) and Σ̂G,R is obtained from the

estimated VAR coefficients. In particular, we have the following property:

Proposition 4 Under the same assumptions as in proposition 2, the following prop-

erties hold:

i) ∥Σ̂G,R − ΣG,R∥ = OP

(
1
n

)
+OP

(
1√
T

)

ii) ∥Σ̂G,R∥ = OP (1), ∥Σ̂−1
G,R∥ = OP (1) and ∥Σ̂−1

G,R − Σ−1
G,R∥ = OP

(
1
n

)
+OP

(
1√
T

)

Proof: see appendix A3.

We can then obtain our consistency result:

Proposition 5 Denote Ĝt/T,R = P̂rojΩ̂R [Gt|Xs, s ≤ T ] with R = R3, and R4.

If limsup T
n3 = O(1), the following result holds under assumptions (CR1) to (CR4),

(A1) to (A4) and (A3’):

Ĝt/T,R − Gt = OP

(
1√
n

)
+OP

(
1√
T

)
as n, T → ∞

Proof: see appendix A3.

The procedure outlined above can be summarized in the following way: first, we

estimate the parameters and the factors through principal components ; second we

estimate the dynamics of the factors from these preliminary estimates of the factors

; finally, we reestimate the common factors according to the selected approximating

model. What if we iterate such procedure ? From the new estimated factors, we can
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estimate a new set of parameters which in turn can then be used to reestimate the

common factors and so on. If, at each iteration the least squares estimates of the

parameters are computed using expected sufficient statistics, then such iterative pro-

cedure is nothing that the EM algorithm by Dempster et al. (1977) and introduced in

small scale dynamic factor models by Engle and Watson (1981). Quah and Sargent

(2004) used such algorithm for large cross-sections, but their approach was disregarded

in subsequent literature. The algorithm is very powerful since at each step the likeli-

hood increases, and hence, under regularity conditions, it converges to the Maximum

Likelihood solution. For details about the estimation with state space models see Engle

and Watson (1981) and Quah and Sargent (2004). The algorithm is feasible for large

cross-sections for two reasons. First, as stressed above, its complexity is mainly due

to the number of factors, which in our framework is independent of the size of the

cross-section and typically very small. Second, since the algorithm is initialized with

consistent estimates (Principal Component), the number of iterations required for con-

vergence is expected to be limited, in particular when the cross-section is large. The

asymptotic properties of quasi maximum likelihood estimates for large cross-section

and under an approximate factor structure is developed in Doz et al. (2006a).

5 Empirics

We now propose two exercises aimed at assessing the performances of our estimator. In

the first subsection we present results from a simulation study under different hypothesis

on the data generating process and under the assumption of unbalanced panel which is

the typical realistic situation faced by the nowcaster. In the second, we report results

on euro area data, from a study conducted in the context of a project of the Euro

system of central banks (Rünstler et al., 2008).
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5.1 Monte Carlo

The model from which we simulate is standard in the literature. A similar model has

been used, for example, in Stock and Watson (2002a).

Let us define it below (in what follows, in order to have simpler notations, we drop

the zero subscript for the true value of the parameters which we had previously used

to study the consistency of the estimates).

- xit =
∑r

j=1 λ
∗
ijfjt + ξit, i = 1, .., n, in vector notation Xt = Λ∗Ft + ξt

- λ∗
ij i.i.d. N (0, 1), i = 1, ..., n; j = 1, .., r

- A(L)Ft = ut, with ut i.i.d. N (0, (1 − ρ2)Ir); i, j = 1, ..., r

aij(L) =





1 − ρL if i = j

0 if i ̸= j

- D(L)ξt = vt with vt i.i.d. N (0, T )

dij(L) =





(1 − dL) if i = j

0 if i ̸= j
; i, j = 1, ..., n

αi = βi
1−βi

∑r
j=1 λ

2
ij with βi i.i.d. U ([u, 1 − u])

Tij = √
αiαj τ

|i−j|(1 − d2), i, j = 1, ..., n

Notice that we allow for instantaneous cross-correlation between the idiosyncratic

elements. Since T is a Toeplitz matrix, the cross-correlation among idiosyncratic ele-

ments is limited and it is easily seen that Assumption A (ii) is satisfied. The coefficient

τ controls for the amount of cross-correlation. The exact factor model corresponds to

τ = 0.

The coefficient βi is the ratio between the variance of the idiosyncratic component,

ξit, and the variance of the common component,
∑r

j=1 λ
∗
ijfjt. The is also known as

the noise to signal ratio. In our simulation this ratio is uniformly distributed with an
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average of 50%. If u = .5 then the standardized observations have cross-sectionally

homoscedastic idiosyncratic components.

Notice that if τ = 0, d = 0, our approximating model is well specified (with the usual

notational convention that 00 = 1)and hence the approximating model R4 is well spec-

ified. If τ = 0, d = 0, ρ = 0, we have a static exact factor model with heteroscedastic

idiosyncratic component and model R2 is correctly specified while principal compo-

nents are not the most efficient estimator for finite n. Finally, if τ = 0, d = 0, u = 1/2,

we have a spherical, static factor model on standardized variables, situation in which

the approximating model R1 is correctly specified and principal components on stan-

dardized variables provide the most efficient, maximum likelihood, estimates.

We generate the model for different sizes of the cross-section, n = 10, 25, 50, 100,

and for sample size T = 50, 100. We perform 2500 Monte-Carlo repetitions. We draw

50 times the parameters βi, i = 1, ..., n, and λ∗
ij , i = 1, ..., n; j = 1, .., r. Then, for each

draw of the parameters, we generate 50 times the shocks ut and ξt.

As stressed in the introduction, an advantage of having a parameterized model is

that it is possible to extract the common factors from panel at the end of the sample due

to the unsynchronous data releases (see Giannone et al., 2004, 2008, for an application

to real time nowcasting and forecasting output and inflation). To study the performance

of our models, for each sample size T and cross-sectional dimension n, we generate the

data under the following pattern of data availability,

xit available for t = 1, ..., T − j if i ≤ (j + 1)
n

5

that is all the variables are observed for t = 1, ..., T − 4, we name this a balanced panel;

80% of the data are available at time T − 3; 60% are available at time T − 2; 40% are

available at time T − 1; 20% are available at time T .

At each repetition, the parameters Λ̂, Â(L) and ψ̂ii, i = 1, ..., n are estimated on the
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balanced part of the panel, xit, i = 1, ..., n, t = 1, ..., T − 4. Data are standardized so as

to have mean zero and variance equal to one. Such standardization is typically applied

in empirical analysis since principal components are not scale invariant.

We consider the factor extraction under the approximating models studied in the

previous section and summarized below.

Ω̂R1 =
{

Λ̂, Ir,
√

ˆ̄ψIn

}

Ω̂R2 =
{

Λ̂, Ir, (diag(ψ̂11, ..., ψ̂nn))1/2
}

Ω̂R3 =
{

Λ̂, Â(L),
√

ˆ̄ψIn

}

Ω̂R4 =
{

Λ̂, Â(L), (diag(ψ̂11, ..., ψ̂nn))1/2
}

.

We compute the estimates by applying the Kalman smoother using the estimated

parameters: Ĝt/T,R = P̂rojΩ̂R [Gt|Xs, s ≤ T ], for R = R1 to R4. The pattern of data

availability can be taken into account when estimating the common factors, by modi-

fying the idiosyncratic variance when performing the projections:

• if xit is available, then Eξ2it is set equal to ˆ̄ψ for the projections R1, R3 and to ψ̂ii

for the projections R2, and R4

• if xit is not available, then Eξ2it is set equal to +∞

The estimates of the common factor can hence be computed running the Kalman

smoother with time varying parameters (see Giannone et al., 2004, 2008).

We measure the performance of the different estimators as:

∆t,R = Trace
(
Ft − Q̂′

RĜt/T,R

)(
Ft − Q̂′

RĜt/T,R

)′

where Q̂R is the OLS coefficient from the regression of Ft on Ĝt/T,R estimated using

observations up to time T − 4, that is: Q̂R =
∑T −4

t=1 FtĜ
′
t/T,R

(∑T −4
t=1 Ĝt/T,RĜ

′
t/T,R

)−1
.
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This OLS regression is performed since the common factors are identified only up to

a rotation. Indeed, we know from the previous sections that Ĝt/T,R is a consistent

estimator of Gt = Q′Ft, where Q is a rotation matrix such that Q′Λ∗′ΛQ is diago-

nal, with diagonal terms in decreasing order. Thus, it can be easily checked that, as

E (FtF
′
t) = Ir, Q̂R is a consistent estimator of:

plim
(

1
T

∑T −4
t=1 FtĜ

′
t/T,R

)(
1
T

∑T −4
t=1 Ĝt/T,RĜ

′
t/T,R

)−1

= plim
(

1
T

∑T −4
t=1 FtG

′
t

)(
1
T

∑T −4
t=1 GtG

′
t

)−1

= plim
(

1
T

∑T −4
t=1 FtF

′
t

)
QQ′

(
1
T

∑T −4
t=1 GtG

′
t

)−1
Q

= Q

so that Q̂′
RĜt/T,R is a consistent estimator of Ft.

We compute the distance for each repetition and then compute the averages (∆̄t,R).

Table 1 summarizes the results of the Montecarlo experiment for one common fac-

tors r = 1 and the following specification: ρ = .9, d = .5, τ = .5, u = .1.

INSERT TABLE 1 OVER HERE

We report the following measures of performance for the last 5 observations to

analyze how data availability affects the estimates. The Kalman filter with cross-

sectional heteroscedasticity R4 is used as a benchmark and we report ∆̄T −j,R4. The

smaller the measure, the more accurate are the estimates of the common factors. In

addition, we report ∆̄T −j,R4/∆̄T −j,R1, ∆̄T −j,R4/∆̄T −j,R2,∆̄T −j,R4/∆̄T −j,R3. A number

smaller then 1 indicates that the projection under R4 is more accurate.

Results show five main features:

1. For any j fixed, ∆̄T −j,R4 decreases as n and T increase, that is the precision of

the estimated common factors increases with the size of the cross-section n and

the sample size T .
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2. For any combination of n and T , ∆̄T −j,R4 increases as j decreases, reflecting the

fact that the more numerous are the available data, the higher the precision of

the common factor estimates.

3. ∆̄T −j,R4 < ∆̄T −j,R3 < ∆̄T −j,R2 < ∆̄T −j,R1, for all n, T, j. This result indicates

that the less miss-specified is the model used for the projection, the more accurate

are the estimated factors. This suggests that taking into account cross-sectional

heteroscedasticity and the dynamic of the common factors helps extracting the

common factor.

4. For any combination of n and T , ∆̄T −j,R4/∆̄T −j,R ( for R = R1 to R3) decreases

as j decreases. That is, the efficiency improvement is more relevant when it is

harder to extract the factors (i.e. the less numerous are the available data).

5. As n, T increase ∆̄T −j,R4/∆̄T −j,R tends to one, for all j and for R = R1 to R3;

that is the performance of the different estimators tends to become very similar.

This reflects the fact that all the estimates are consistent for large cross-sections.

Summarizing, the two steps estimator of approximate factor models works well in

finite sample. Because it models explicitly dynamics and cross-sectional heteroscedas-

ticity, it dominates principal components. It is particularly relevant when the factor

extraction is difficult, that is, when the available data are less numerous.

5.2 Empirics

Here we report the results from an out-of-sample evaluation of the model for the euro

area from the study by Rünstler et al. (2008). Several studies have been evaluating

our methodology empirically (Angelini et al., 2008; Barhoumi et al., 2010; D’Agostino

et al., 2008; Matheson, 2010; Aastveit and Trovik, 2008; Siliverstovs and Kholodilin,

2010). We have chosen this particular study for two reasons. First, it reports results

from a project involving many institutions, all users of short term forecasting tools.
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Second, the study considers several models and, for each of them, several specifications

and reports results, for each of the models, for the preferred specification. Below we

report the subset of results for the euro area as a whole. More results and details on

the implementation can be found in the paper.

The exercise by Rünstler et al. (2008) aims at forecasting economic activity in the

euro area by bridging quarterly GDP growth with common factors extracted from 85

monthly series. The evaluation sample is from 2000 Q1 to 2005 Q4. The exercise is a

so-called pseudo real time evaluation where the model is estimated recursively and the

publication lags in the individual monthly series are taken into account by considering

a sequence of forecasts which replicate the flow of monthly information that arrives

within a quarter. Precisely, the authors consider a sequence of eight forecasts for GDP

growth in a given quarter and, for each forecast, they replicate the real time data

release pattern found in the dataset at the time in which the forecasts are made (see

also Giannone et al., 2008). The exercise is pseudo real time since, because of the lack

of real time vintages, they use revised data and hence data revision are not taken into

account.

The Table below presents the results for the evaluation of the accuracy of predic-

tions at different horizons. Results are expressed in terms of root mean squared errors

(RMSE) relative to a naive benchmark of constant GDP growth. The predictions are

produced for previous quarter (backcast), current quarter (nowcast) and one quarter

ahead (forecasts). The average RMSE across horizons is also reported. Beside our

model (KF), we describe performance of a univariate autoregressive model (AR), the

average of bivariate quarterly Vector Auto Regression (VAR) models, Principal Com-

ponent forecasts (PC) where the EM algorithm developed by Stock and Watson (2002a)

is used to deal with missing observations at the end of the sample (jagged edge). A

number below one indicates an improvement with respect to the naive forecast.

As mentioned, for all these models, the authors consider different criteria for the

specifications of the number of lags and factors. The Table report results for their
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preferred specifications.

INSERT TABLE 2 OVER HERE

Results are self explanatory and point to some advantage of KF with respect to

other models.

6 Conclusions

We have shown (n, T ) consistency and rates of common factors estimated via a two step

procedure whereby, in the first step, the parameters of a dynamic approximate factor

model are first estimated by a OLS regression of the variables on principal components

and, in the second step, given the estimated parameters, the factors are estimated by

the Kalman smoother.

This procedure allows to take into account, in the estimation of the factors, both

factor dynamics and idiosyncratic heteroscedasticity, features that are likely to be rel-

evant in the panels of data typically used in empirical applications in macroeconomics.

We show that it is consistent, even if the models which is used in the Kalman smoother

is misspecified. This consistency result is confirmed in a Monte-Carlo exercise, which

also shows that our approach improves the estimation of the factors when n is small.

The parametric approach studied in this paper provides the theory for two appli-

cations of factor models in large cross-sections: treatment of unbalanced panels (Gian-

none, Reichlin, and Sala, 2004; Giannone, Reichlin, and Small, 2008) and estimation

of shocks in structural factor models (Giannone, Reichlin, and Sala, 2004). The first

application, emphasized in this paper, is a key element for nowcasting economic activity.
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A Appendix

A.1 Consistency of Kalman Smoothing: population results

Proof of lemma 1

i) As Xt = Λ0Gt + ξt, we get: XT = (IT ⊗ Λ0)GT + ZT .

It then immediately follows from assumptions (A3) that:

EΩR
0
(GtX′

T ) = EΩR
0
(GtG′

T )(IT ⊗ Λ′
0) = U′

tΣG,R(IT ⊗ Λ′
0)

and : Gt/T,R = EΩR
0
(GtX′

T )(EΩR
0
(XTX′

T ))−1XT = U′
tΣG,R(IT ⊗ Λ′

0)Σ
−1
X,RXT

ii) We have already noticed that, when R = R3 or R = R4, the model is correctly

specified for (Gt), so that ΣGR = ΣG.

For any ω ∈ [−π,+π], let us now denote by SG(ω) the spectral density matrix of

(Gt) calculated in ω. In order to show the two announced properties, we first show

that if:

m = Minω∈[−π,+π]λmin(SG(ω)) and M = Maxω∈[−π,+π]λmax(SG(ω))

then: 2πm ≤ λmin(ΣG) and 2πM ≥ λmax(ΣG).

In order to show this property, we generalize to the r-dimensionnal process (Gt) the

proof which is given by Brockwell and Davis, 1987 (proposition 4.5.3) in the univariate

case.

If x = (x′
1, ...x

′
T )′ is a non-random vector of IRrT such that: ∥x∥2 =

∑T
t=1 ∥xt∥2 = 1,
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we can write:

x′ΣGx =
∑T

t=1

∑T
τ=1 x

′
tΓG(t − τ)xτ =

∑T
t=1

∑T
τ=1 x

′
tΦ0(t − τ)xτ

We thus get:

x′ΣGx =
∑

1≤t,τ ≤T

x′
t

(∫ +π

−π
SG(ω)e−iω(t−τ)dω

)
xτ

=
∫ +π

−π


 ∑

1≤t,τ ≤T

x′
tSG(ω)xτe

−iω(t−τ)


 dω

=
∫ +π

−π


 ∑

1≤t≤T

x′
te

−iωt


SG(ω)


 ∑

1≤τ ≤T

xτe
iωτ


 dω

∈


m

∫ +π

−π
∥
∑

1≤t≤T

x′
te

−iωt∥2dω,M

∫ +π

−π
∥
∑

1≤t≤T

x′
te

−iωt∥2dω




Now:

∫ +π

−π
∥
∑

1≤t≤T

x′
te

−iωt∥2dω =
∫ +π

−π


 ∑

1≤t,τ ≤T

x′
te

−iωtxτe
−iωτ


 dω

=
∑

1≤t,τ ≤T

∫ +π

−π
x′

txτe
−iω(t−τ)dω = 2π

∑

1≤t≤T

x′
txt = 2π

∑

1≤t≤T

∥xt∥2 = 2π

We thus obtain that any eigenvalue of ΣG belongs to [2πm, 2πM ], which gives the an-

nounced result.

Let us now show that m > 0 and M < ∞, which will prove that:

∥ΣG∥ = λmax(ΣG) ≤ 2πM < ∞ and ∥Σ−1
G ∥ =

1
λmin(ΣG)

≤ 1
2πm

< ∞.

First, it is clear, from assumption (A3), that for any ω ∈ [−π,+π]:

∥SG(ω)∥ =
1
2π

∥
+∞∑

h=−∞
Φ0(h)eiωh∥ ≤ 1

2π

+∞∑

h=−∞
∥Φ0(h)∥ < +∞
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so that: M < +∞.

Second, we know that: A0(L)Gt = wt. As (Gt) is a stationary process, if we denote:

W0 = E[wtw
′
t] we have, for any ω ∈ [−π,+π]:

SG(ω) =
1
2π
(
A0(eiω)

)−1
W0

(
A′

0(e
−iω)

)−1

For any x ∈ Cn such that ∥x∥2 = 1, we then have:

x′SG(ω)x̄ =
1
2π
x′ (A0(eiω)

)−1
W0

(
A′

0(e
−iω)

)−1
x̄

≥ 1
2π
λmin(W0)∥x′ (A0(eiω)

)−1 (
A′

0(e
−iω)

)−1
x̄

≥ 1
2π
λmin(W0)λmin

([
A′

0(e
−iω)A0(eiω)

]−1
)

=
1
2π

λmin(W0)
λmax (A′

0(e−iω)A0(eiω))

=
1
2π

λmin(W0)
∥A0(eiω)∥2

If we denote α0 = Maxω∈[−π,+π]∥A0(eiω)∥2, we know that α0 is finite and we get:

x′SG(ω)x̄ ≥ 1
2π

λmin(W0)
α0

so that

λmin(SG(ω)) ≥ 1
2π

λmin(W0)
α0

iii) For any ω ∈ [−π,+π], let us now denote by Sξ(ω) the spectral density matrix

of (ξt) calculated in ω. If x = (x1, ...xn)′ is a non-random vector of Cn such that:

∥x∥2 = x′x̄ = 1, we have:

x′Sξ(ω)x̄ =
1
2π

∑

h∈ZZ

x′Γξ(h)eiωhx̄ =
1
2π

∑

h∈ZZ

x′Ψ0(h)eiωhx̄
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so that:

|x′Sξ(ω)x̄| ≤ 1
2π

∑

h∈ZZ

|x′Ψ0(h)x̄| ≤ 1
2π

∑

h∈ZZ

∥Ψ0(h)∥

From assumption (CR3), we can define λ̄ such that, for any n:
∑

h∈ZZ ∥Ψ0(h)∥ < λ̄.

We thus have, for any ω ∈ [−π,+π] : λmaxSξ(ω) ≤ 1
2π λ̄, so that we finally get:

Maxω∈[−π,+π]λmax(Sξ(ω)) ≤ 1
2π
λ̄

Applying the same result as in (ii), we then obtain: ∥ΣZ ∥ ≤ λ̄.

Further: ∥ΣZ,R∥ = ∥IT ⊗ Ψ0,R∥ = ∥Ψ0,R∥, so that: ∥ΣZ,R∥ ≤ λ̄.

Finally: ∥Σ−1
Z,R∥ = ∥IT ⊗ Ψ−1

0,R∥ = ∥Ψ−1
0,R∥. As ∥Ψ−1

0,R∥ = λmax(Ψ−1
0,R) = 1

λmin(Ψ0,R) , it

follows from assumption (CR4) that ∥Σ−1
Z,R∥ = O(1).

Proof of Proposition 1

It follows from assumptions (A3) that:

ΣX,R = EΩR
0
(XTX′

T ) = (IT ⊗ Λ0)EΩR
0
(GTG′

T )(IT ⊗ Λ′
0) + EΩR

0
(ZTZ′

T )

= (IT ⊗ Λ0)ΣG,R(IT ⊗ Λ′
0) + ΣZ,R

Further, as (ξt) is supposed to be a white noise in both ΩR3 and ΩR4 specifications, we

also have: ΣZ,R = IT ⊗ Ψ0R

Using the same kind of formula as the formula we have used to calculate Σ−1
0 , it

can be easily checked that:

Σ−1
X,R = Σ−1

Z,R − Σ−1
Z,R(IT ⊗ Λ0)

(
Σ−1

G,R + (IT ⊗ Λ′
0)Σ

−1
Z,R(IT ⊗ Λ0)

)−1
(IT ⊗ Λ′

0)Σ
−1
Z,R
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Using the fact that Σ−1
Z,R = IT ⊗ Ψ−1

0,R, we then get:

(IT ⊗ Λ′
0)Σ

−1
X,R = IT ⊗ Λ′

0Ψ
−1
0,R − IT ⊗ Λ′

0Ψ
−1
0,RΛ0(Σ−1

G,R + IT ⊗ Λ′
0Ψ

−1
0,RΛ0)−1IT ⊗ Λ′

0Ψ
−1
0,R

=
(
Σ−1

G,R + IT ⊗ Λ′
0Ψ

−1
0,RΛ0 − IT ⊗ Λ′

0Ψ
−1
0,RΛ0

)
(Σ−1

G,R + IT ⊗ Λ′
0Ψ

−1
0,RΛ0)−1IT ⊗ Λ′

0Ψ
−1
0,R

= Σ−1
G,R(Σ−1

G,R + IT ⊗ Λ′
0Ψ

−1
0,RΛ0)−1IT ⊗ Λ′

0Ψ
−1
0R

Using lemma 1 (i), we thus obtain:

Gt/T,R = U′
t(Σ

−1
G,R + IT ⊗ Λ′

0Ψ
−1
0RΛ0)−1(IT ⊗ Λ′

0Ψ
−1
0R)XT

Before proving the proposition, let us first recall a relation, which we use in that proof

as well as in others. If A and B are two square invertible matrices, it is possible to

write write: B−1 − A−1 = B−1(A − B)A−1, so that the relation:

(A+H)−1 = A−1 − (A+H)−1HA−1 (R)

also gives a Taylor expansion of the inversion operator at order zero when H is small

with respect to A.

Using relation (R), and denoting M0 = Λ′
0Ψ

−1
0RΛ0, we then get:

Gt/T,R = U′
t

(
IT ⊗ M−1

0 − (Σ−1
G,R + IT ⊗ M0)−1Σ−1

G,R(IT ⊗ M−1
0 )
)

(IT ⊗ Λ′
0Ψ

−1
0R)XT

= U′
t(IT ⊗ M−1

0 Λ′
0Ψ

−1
0R)XT − U′

t(Σ
−1
G,R + IT ⊗ M0)−1Σ−1

G,R(IT ⊗ M−1
0 Λ′

0Ψ
−1
0R)XT

= M−1
0 Λ′

0Ψ
−1
0RXt − U′

t(Σ
−1
G,R + IT ⊗ M0)−1Σ−1

G,R(IT ⊗ M−1
0 Λ′

0Ψ
−1
0R)XT
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Let us denote G1
t/T,R the first term of the previous summation. We can write:

G1
t/T,R = (Λ′

0Ψ
−1
0RΛ0)−1Λ′

0Ψ
−1
0RXt

= (Λ′
0Ψ

−1
0RΛ0)−1Λ′

0Ψ
−1
0R(Λ0Gt + ξt)

= Gt + (Λ′
0Ψ

−1
0RΛ0)−1Λ′

0Ψ
−1
0Rξt

with:

E[∥(Λ′
0Ψ

−1
0RΛ0)−1Λ′

0Ψ
−1
0Rξt∥2] = E

[
tr(Λ′

0Ψ
−1
0RΛ0)−1Λ′

0Ψ
−1
0Rξtξ

′
tΨ

−1
0RΛ0(Λ′

0Ψ
−1
0RΛ0)−1

]

= tr
(
(Λ′

0Ψ
−1
0RΛ0)−1Λ′

0Ψ
−1
0RΨ0Ψ−1

0RΛ0(Λ′
0Ψ

−1
0RΛ0)−1

)

As Ψ−1/2
0R Ψ0Ψ

−1/2
0R ≤ λmax(Ψ0)

λmin(Ψ0R)In, we get:

(Λ′
0Ψ

−1
0RΛ0)−1Λ′

0Ψ
−1
0RΨ0Ψ−1

0RΛ0(Λ′
0Ψ

−1
0RΛ0)−1 ≤ λmax(Ψ0)

λmin(Ψ0R)
(Λ′

0Ψ
−1
0RΛ0)−1

so that: E
[

∥(Λ′
0Ψ

−1
0RΛ0)−1Λ′

0Ψ
−1
0Rξt∥2

]
= OP

(
1
n

)
by assumptions (CR1) and (CR2).

We have thus obtained:

G1
t/T,R

m.s.−→ Gt and G1
t/T,R = Gt +OP

(
1√
n

)

Turning to the second term of the summation, it can in turn be decomposed in two

parts. Indeed, as XT = (IT ⊗ Λ0)GT + ZT , we can write:

U′
t(Σ

−1
G,R + IT ⊗ M0)−1Σ−1

G,R(IT ⊗ M−1
0 Λ′

0Ψ
−1
0R)XT = G2

t/T,R +G3
t/T,R

with:

G2
t/T,R = U′

t(Σ
−1
G,R + IT ⊗ M0)−1Σ−1

G,R(IT ⊗ M−1
0 Λ′

0Ψ
−1
0R)(IT ⊗ Λ0)GT

= U′
t

(
Σ−1

G,R + IT ⊗ M0

)−1
Σ−1

G,R(IT ⊗ (Λ′
0Ψ

−1
0RΛ0)−1Λ′

0Ψ
−1
0RΛ0)GT

= U′
t

(
Σ−1

G,R + IT ⊗ M0

)−1
Σ−1

G,RGT
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and:

G3
t/T,R = U′

t(Σ
−1
G,R + IT ⊗ M0)−1Σ−1

G,R(IT ⊗ M−1
0 Λ′

0Ψ
−1
0R)ZT

We can write:

E
[

∥G2
t/T,R∥2

]

= tr

[
U′

t

(
Σ−1

G,R + IT ⊗ M0

)−1
Σ−1

G,RE [GTG′
T ] Σ−1

G,R

(
Σ−1

G,R + IT ⊗ M0

)−1
Ut

]

As E [GTG′
T ] = ΣG = ΣG,R, we then get:

E
[

∥G2
t/T,R∥2

]
= tr

[
U′

t

(
Σ−1

G,R + IT ⊗ M0

)−1
Σ−1

G,R

(
Σ−1

G,R + IT ⊗ M0

)−1
Ut

]

As Σ−1
G,R ≤ λmax(Σ−1

G,R)IrT , with λmax(Σ−1
G,R) = ∥Σ−1

G,R∥, we have:

(
Σ−1

G,R + IT ⊗ M0

)−1
Σ−1

G,R

(
Σ−1

G,R + IT ⊗ M0

)−1
≤ ∥Σ−1

G,R∥
(
Σ−1

G,R + IT ⊗ M0

)−2

Now: Σ−1
G,R + IT ⊗ M0 ≥ IT ⊗ M0 so that:

(
Σ−1

G,R + IT ⊗ M0

)−1
≤ IT ⊗ M−1

0 .

We then get:

E
[

∥G2
t/T,R∥2

]
≤ ∥Σ−1

G,R∥tr
[
U′

t(IT ⊗ M−2
0 )Ut

]
= ∥Σ−1

G,R∥tr
[
M−2

0

]
= O

(
1
n2

)

It then follows from assumptions (CR1) and (CR2) and from lemma 1 (ii) that:

G2
t/T,R

m.s.−→ 0 and G2
t/T,R = OP

(
1
n

)

If we use the same type of properties that we have used for the study of G2
t/T,R, we can
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write:

E
[

∥G3
t/T,R∥2

]
= tr




U′
t(Σ

−1
G,R + IT ⊗ M0)−1Σ−1

G,R(IT ⊗ M−1
0 Λ′

0Ψ
−1
0R)ΣZ

×(IT ⊗ Ψ−1
0RΛ0M

−1
0 )Σ−1

G,R(Σ−1
G,R + IT ⊗ M0)−1Ut




We thus get:

E
[

∥G3
t/T,R∥2

]

≤ ∥Σ−1
G,R(IT ⊗ M−1

0 Λ′
0Ψ

−1
0R)ΣZ(IT ⊗ M−1

0 Λ′
0Ψ

−1
0R)Σ−1

G,R∥tr
[
U′

t(Σ
−1
G,R + IT ⊗ M0)−2Ut

]

≤ ∥Σ−1
G,R∥2∥(IT ⊗ M−1

0 Λ′
0Ψ

−1
0R)∥2∥ΣZ ∥tr

[
U′

t(Σ
−1
G,R + IT ⊗ M0)−2Ut

]

From lemma 1 (ii) and (iii) we know that ∥Σ−1
G,R∥ = O(1) and ∥ΣZ ∥ = O(1).

Further, using assumptions (CR1) and (CR2), we can write, as before:

tr
[
U′

t(Σ
−1
G,R + IT ⊗ M0)−2Ut

]
≤ tr

[
U′

t(IT ⊗ M0)−2Ut

]
= tr(M−2

0 ) = O

(
1
n2

)

and:

∥(IT ⊗ M−1
0 Λ′

0Ψ
−1
0R)∥ = ∥M−1

0 Λ′
0Ψ

−1
0R)∥ = O

(
1√
n

)

It then follows that: E
[

∥G3
t/T,R∥2

]
= O

(
1
n3

)
, so that:

G3
t/T,R

m.s.−→ 0 and G3
t/T,R = OP

(
1

n
√
n

)

which completes the proof of the proposition.
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A.2 Consistency of PCA

Before proving proposition 2, we need to establish some preliminary lemmas.

Lemma 2 Under assumptions (CR1) to (CR3), (A1) to (A5), the following properties

hold, as n, T → ∞:

i) 1
n ∥S − Λ0Λ′

0∥ = O
(

1
n

)
+OP

(
1√
T

)

ii) 1
n ∥D̂ − D0∥ = O

(
1
n

)
+OP

(
1√
T

)

iii) n∥D̂−1 − D−1
0 ∥ = OP

(
1
n

)
+OP

(
1√
T

)

iv) D0D̂
−1 = Ir +Op

(
1
n

)
+Op

(
1√
T

)

Proof

i) 1
n ∥S − Λ0Λ′

0∥ ≤ 1
n ∥S − Σ0∥ + 1

n ∥Σ0 − Λ0Λ′
0∥.

As Σ0 = Λ∗
0Λ

∗′
0 + Ψ0 = Λ0Λ′

0 + Ψ0, we have by assumption (CR2) :

1
n

∥Σ0 − Λ0Λ′
0∥ =

1
n

∥Ψ0∥ = O

(
1
n

)

We also have:

S =
1
T

T∑

t=1

XtX
′
t = Λ0

1
T

T∑

t=1

GtG
′
tΛ

′
0 + Λ0

1
T

T∑

t=1

Gtξ
′
t +

1
T

T∑

t=1

ξtG
′
tΛ

′
0 +

1
T

T∑

t=1

ξtξ
′
t

so that:

1
n(S − Σ0) = 1

nΛ0

(
1
T

∑T
t=1GtG

′
t − Ir

)
Λ′

0 + 1
n

(
Λ0

1
T

∑T
t=1Gtξ

′
t + 1

T

∑T
t=1 ξtG

′
tΛ

′
0

)

+ 1
n

(
1
T

∑T
t=1 ξtξ

′
t − Ψ0

)

Then, using assumptions (A3) and (CR3) and a multivariate extension of the proof

given in the univariate case by Brockwell and Davies (1991, pp226-227), it is possible
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to show that:

E

(
∥ 1
T

T∑

t=1

GtG
′
t − Ir ∥2

)
= O

(
1
T

)
and E

(
∥ 1
T

T∑

t=1

ξtξ
′
t − Ψ0∥2

)
= O

(
n2

T

)

so that:

∥ 1
T

T∑

t=1

GtG
′
t − Ir ∥ = OP

(
1√
T

)
and ∥ 1

T

T∑

t=1

ξtξ
′
t − Ψ0∥ = OP

(
n√
T

)

It also follows from these assumptions that: ∥ 1
T

∑T
t=1Gtξ

′
t∥ = OP

(√
n√
T

)
. Indeed, we

can write:

∥ 1
T

T∑

t=1

Gtξ
′
t∥2 = ∥ 1

T 2

∑

t,s

Gtξ
′
tξsG

′
s∥ ≤ tr

(
1
T 2

∑

t,s

Gtξ
′
tξsG

′
s

)

As (Gt) and (ξt) are two independent processes, we have:

E
[
tr
(

1
T 2

∑
t,sGtξ

′
tξsG

′
s

)]
= tr

(
1

T 2

∑
t,s E(ξ′

tξs)E(GtG
′
s)
)

= 1
T 2

∑
t,s tr (Ψ0(s − t)) tr (Φ0(t − s))

≤ 1
T 2

∑
t,s |tr (Ψ0(s − t)) ||tr (Φ0(t − s)) |

≤ nr
T 2

∑
t,s ∥Ψ0(s − t)∥∥Φ0(t − s)∥

= nr
T

∑T −1
h=−T+1(1 − |h|

T )∥Ψ0(h)∥∥Φ0(−h)∥

≤ nr
T

∑
h∈ZZ ∥Ψ0(h)∥∥Φ0(−h)∥

≤ nr
T Maxh∈ZZ∥Ψ0(h)∥∑h∈ZZ ∥Φ0(h)∥

We thus obtain: E
[

∥ 1
T

∑T
t=1Gtξ

′
t∥2
]

= OP

(
n
T

)
and the result follows.

ii) D̂ is the diagonal matrix of the r first eigenvalues of S, in decreasing order.

D0 is a diagonal matrix which is equal to Λ′
0Λ0. It is then also equal to the diagonal

matrix of the r first eigenvalues of Λ0Λ′
0 in decreasing order.
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Further, if we denote by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) the ordered eigenvalues of a

symmetric matrix A, we can write, from Weyl theorem, that for any j = 1, ...r :

|λj(S) − λj(Λ0Λ′
0)| ≤ ∥S − Λ0Λ′

0∥

(see for instance, Horn and Johnson (1990) p.181). The result then immediately follows

from (i).

iii) By assumptions (CR1) and (CR2), we know that 1
nD0 = O(1) and that

(
1
nD0

)−1 =

O(1). It then results from (ii) that the eigenvalues of 1
nD̂ and of

(
1
nD̂
)−1

are OP (1),

so that 1
nD̂ = OP (1) and

(
1
nD̂
)−1

= OP (1). The result the follows from (ii) and from

the decomposition:

n
(
D̂−1 − D−1

0

)
=
(

1
n
D̂

)−1 1
n

(
D̂ − D0

)( 1
n
D0

)−1

= OP

(
1
n

)
+OP

(
1√
T

)

iv) D0D̂
−1 = Ir + D0

n

[(
D̂
n

)−1
−
(

D0
n

)−1
]
.

The result then follows from (iii) and assumption (CR2).

Lemma 3 Let us denote Â = P̂ ′P0, with Â = (âij)1≤i,j≤r.

The following properties hold:

i) âij = OP

(
1
n

)
+OP

(
1√
T

)
for i ̸= j

ii) â2
ii = 1 +OP

(
1
n

)
+OP

(
1√
T

)
for i = 1, ...r

Proof
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i) As SP̂ = P̂ D̂ we have P̂ = SP̂ D̂−1 and:

P̂ ′P0 = D̂−1P̂ ′SP0 = D̂−1P̂ ′ (S − Λ0Λ′
0

)
P0 + D̂−1P̂ ′Λ0Λ′

0P0

As Λ0 = P0D
1/2
0 , and P ′

0P0 = Ir, we have: Λ0Λ′
0P0 = P0D0. We then get:

P̂ ′P0 =

(
D̂

n

)−1

P̂ ′
(
S − Λ0Λ′

0

n

)
P0 +

(
D̂

n

)−1

P̂ ′P0

(
D0

n

)

As we saw in lemma 2, assumptions (CR1) and (CR2) imply that D0
n and

(
D0
n

)−1
are

O(1) and that D̂
n and

(
D̂
n

)−1
are OP (1). As P̂ ′P̂ = Ir and P ′

0P0 = Ir, it follows that

P̂ ′P0 = OP (1). Thus, lemma 2 (i) and (iii) imply that:

P̂ ′P0 = OP

(
1
n

)
+OP

(
1√
T

)
+
(
D0

n

)−1

P̂ ′P0

(
D0

n

)
.

or equivalently that: Â = D−1
0 ÂD0 +OP

(
1
n

)
+OP

(
1√
T

)
.

For any i and j the previous relation states that: âij = d0,jj

d0,ii
âij +OP

(
1
n

)
+OP

(
1√
T

)

For i ̸= j, we assume, from assumption (A4), that d0,jj ̸= d0,ii. We then obtain:

âij = OP

(
1
n

)
+OP

(
1√
T

)
for i ̸= j.

ii) To study the asymptotic behavior of âii, let us now use the relation D̂ = P̂ ′SP̂

which implies, together with lemma 2 (i), that:

D̂

n
= P̂ ′S

n
P̂ = P̂ ′ Λ0Λ′

0

n
P̂ +OP

(
1
n

)
+OP

(
1√
T

)

or, equivalently, that: D̂
n = P̂ ′P0

D0
n P

′
0P̂ +OP

(
1
n

)
+OP

(
1√
T

)

It then follows from lemma 2 (ii) that: D0
n = P̂ ′P0

D0
n P

′
0P̂ +OP

(
1
n

)
+OP

(
1√
T

)

or equivalently that: D0
n = ÂD0

n Â
′ +OP

(
1
n

)
+OP

(
1√
T

)
.
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Thus, for i = 1, ...r: d0,ii

n =
∑r

k=1
d0,kk

n â2
ik +OP

(
1
n

)
+OP

(
1√
T

)

and: d0,ii

n

(
1 − â2

ii

)
=
∑

k ̸=i
d0,kk

n â2
ik +OP

(
1
n

)
+OP

(
1√
T

)

From result (i), we know that âik = OP

(
1
n

)
+OP

(
1√
T

)
for i ̸= k.

As D0
n = OP (1), it then follows that: â2

ii = 1 +OP

(
1
n

)
+OP

(
1√
T

)
for i = 1, ...r.

Lemma 4 Under assumptions (CR1) to (CR4), (A1) to (A4), P0 and P̂ can be defined

so as the following properties hold, as n, T → ∞:

(i) P̂ ′P0 = Ir +OP

(
1
n

)
+OP

(
1√
T

)

(ii) ∥P̂ − P0∥2 = OP

(
1
n

)
+OP

(
1√
T

)

(iii) τ ′
in(Λ̂ − Λ0) = OP

(
1√
n

)
+OP

(
1√
T

)
, i = 1, ..., n

where τin the ith denotes the ith vector of the canonical basis in IRn.

Proof

i) We have seen before that P0 is uniquely defined up to a sign change of each of its

columns, and that this implies that Gt is uniquely defined for any t up to a sign change

of each of its components. As P̂ is also defined up to a sign change of its columns, it

is thus possible to suppose that P0 and P̂ are chosen such that the diagonal terms of

Â = P̂ ′P0 are positive. In such a case, lemma 2 (ii) implies that:

âii = 1 +OP

(
1
n

)
+OP

(
1√
T

)
for i = 1, ...r

We then obtain from lemma 2 (i) that: P̂ ′P0 = Ir +OP

(
1
n

)
+OP

(
1√
T

)
.
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ii) Let x ∈ IRn a non-random vector such that ∥x∥ = 1. As P̂ ′P̂ = Ir and P ′
0P0 = Ir

we have:

x′(P̂ − P0)′(P̂ − P0)x = x′(2Ir − P̂ ′P0 − P ′
0P̂ )x

It then follows from (i) that x′(P̂ − P0)′(P̂ − P0)x = OP

(
1
n

)
+ OP

(
1√
T

)
. As this is

true for any x ∈ IRn, it then follows that

∥P̂ − P0∥2 = OP

(
1
n

)
+OP

(
1√
T

)

iii) We have P̂ = SP̂ D̂−1 and Σ0 = P0D0P
′
0 + Ψ0, so that

τ ′
in(Λ̂ − Λ0) = τ ′

in(P̂ D̂1/2 − P0D
1/2
0 )

= τ ′
in(SP̂ D̂−1/2 − P0D

1/2
0 )

= τ ′
in

(
(S − Σ0)P̂ D̂−1/2 + (P0D0P

′
0 + Ψ0)P̂ D̂−1/2 − P0D

1/2
0

)

= τ ′
in(S − Σ0)P̂ D̂−1/2 + τ ′

inΨ0P̂ D̂
−1/2 + τ ′

inP0D0

(
P ′

0P̂ − D
−1/2
0 D̂1/2

)
D̂−1/2

In order to study the first term, let us first notice that: ∥τ ′
in(S−Σ0)∥ =

(∑n
j=1(sij − σ0,ij)2

)1/2
.

Using the same arguments as in the proof of Lemma 2 (i), we have

E∥τ ′
in(S − Σ0)∥2 =

n∑

j=1

E(sij − σ0,ij)2 = O
(n
T

)

so that τ ′
in(S − Σ0) = OP

(√
n√
T

)
.

As P̂ ′P̂ = Ir, we know that P̂ = OP (1). Then, using D̂−1/2 = OP

(
1√
n

)
, it follows

that:

τ ′
in(S − Σ0)P̂ D̂−1/2 = OP

(
1√
T

)
.
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Turning to the second term, we have: ∥τ ′
inΨ0∥ ≤ ∥Ψ0∥ = O(1), by assumption

(CR2). As P̂ = OP (1) and D̂−1/2 = OP

(
1√
n

)
, we get:

τ ′
inΨ0P̂ D̂

−1/2 = OP

(
1√
n

)

Finally, τ ′
inP0D0

(
P ′

0P̂ − D
−1/2
0 D̂1/2

)
D̂−1/2 = τ ′

inΛ0D
1/2
0

(
P ′

0P̂ − D
−1/2
0 D̂1/2

)
D̂−1/2.

As V xit = ∥τ ′
inΛ0∥2 + ψ0,ii, it follows from assumption (A2) that τ ′

inΛ0 = O(1).

Further,
(
P ′

0P̂ − D
−1/2
0 D̂1/2

)
= OP

(
1
n

)
+OP

(
1√
T

)
by lemma 2 (iv) and lemma 4

(i). As D̂−1/2 = OP

(
1√
n

)
and D1/2

0 = O (
√
n), it then follows that:

τ ′
inP0D0

(
P ′

0P̂ − D
−1/2
0 D̂1/2

)
D̂−1/2 = OP

(
1
n

)
+OP

(
1√
T

)

which completes the proof.

Proof of proposition 2

We can write:

Ĝt − Gt = D̂−1/2P̂ ′Xt − Gt

= D̂−1/2P̂ ′ (Λ0Gt + ξt) − Gt

=
(
D̂−1/2P̂ ′P0D

1/2
0 − Ir

)
Gt + ξt

= D̂−1/2
(
P̂ ′P0 − D̂1/2D

−1/2
0

)
D

1/2
0 Gt + D̂−1/2P̂ ′ξt

Lemma 2 (iv) and lemma 4 (i) give: P̂ ′P0 − D̂1/2D
−1/2
0 = OP

(
1
n

)
+OP

(
1√
T

)
.
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Then, applying lemma 2 (iv) a second time, and using the fact that Gt = OP (1),

we get:

D̂−1/2
(
P̂ ′P0 − D̂1/2D

−1/2
0

)
D

1/2
0 Gt = OP

(
1
n

)
+OP

(
1√
T

)
.

In order to study D̂−1/2P̂ ′ξt, let us first decompose ξt as: ξt = P0P
′
0ξt + P0⊥P ′

0⊥ξt

where P0⊥ is a (n × (n − r)) matrix whose columns form an orthonormal basis of the

orthogonal space of P0. We then obtain:

D̂−1/2P̂ ′ξt = D̂−1/2P̂ ′P0P
′
0ξt + D̂−1/2P̂ ′P0⊥P

′
0⊥ξt.

First, let us notice that P ′
0ξt = OP (1) and that P ′

0⊥ξt = OP (
√
n) .

Indeed, we can write:

E
(

∥P ′
0ξt∥

)2 = E
(
ξ′
tP0P

′
0ξt
)

= E
(
tr
(
P ′

0ξtξ
′
tP0

))
= tr

(
P ′

0Ψ0P0

)
≤ rλ1 (Ψ0) = O(1)

and E
(

∥P ′
0⊥ξt∥

)2 = E
(
tr
(
P ′

0⊥ξtξ
′
tP0⊥

))
= tr

(
P ′

0⊥Ψ0P0⊥
)

≤ (n − r)λ1 (Ψ0) = O(n).

As lemma 2 (iii) implies that: D̂−1 = OP ( 1
n), we then get from lemma 4 (i) that:

D̂−1/2P̂ ′P0P
′
0ξt = OP

(
1√
n

)
.

In order to study the second term, let us first show that:

P̂ ′P0⊥ = OP

(
1
n

)
+OP

(
1√
T

)

Indeed, if we use: P̂ = SP̂ D̂−1, we can write: P̂ ′P0⊥ = D̂−1P̂ ′SP0⊥.

As P0 and Λ0 have the same range, P ′
0⊥Λ0 = 0, so that we also have:

P̂ ′P0⊥ = D̂−1P̂ ′(S − Λ0Λ′
0)P0⊥ =

(
D̂

n

)−1

P̂ ′S − Λ0Λ′
0

n
P0⊥.
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As P ′
0⊥P0⊥ = In−r, we have: P0⊥ = O(1). It then follows from lemma 2 (i) and (ii)

that:

P̂ ′P0⊥ = OP

(
1
n

)
+OP

(
1√
T

)

Then, as D̂−1/2 = OP

(
1√
n

)
, and P ′

0⊥ξt = OP (
√
n), it follows that:

D̂−1/2P̂ ′P0⊥P
′
0⊥ξt = OP

(
1
n

)
+OP

(
1√
T

)

which completes the proof of the proposition.
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Proof of Corollary 1

i) As ˆ̄ψ = 1
ntrΨ̂, it follows from proposition 2 (iii) and assumption (CR3) that:

ˆ̄ψ =
1
n

n∑

i=1

(
ψ0,ii +OP

(
1√
n

)
+OP

(
1√
T

))
= OP (1)

Since D̂ = OP (n), the result then immediately follows from proposition 2 (i) and

the fact that:

Ĝt/T,R1 =
(
D̂ + ˆ̄ψIr

)−1
D̂1/2P̂ ′Xt =

(
D̂ + ˆ̄ψIr

)−1
D̂−1Ĝt

In order to prove (ii), we first prove the following lemma, which we will also use in

the proof of property 5:

Lemma 5 Under assumptions (A1) to (A4), (Cr1) to (CR4), if we denote Ψ0R = ψ̄0In

or Ψ0R = ΨOd, and Ψ̂R = ˆ̄ψIn or Ψ̂R = Ψ̂d, the following properties hold:

i) (P̂ − P0)′Ψ−1
0RP0 = OP

(
1
n

)
+OP

(
1√
T

)

ii) P̂ ′Ψ̂−1
R P̂ − P ′

0Ψ
−1
0RP0 = OP

(
1
n

)
+OP

(
1√
T

)

iii) ∥P̂ ′Ψ̂−1
R − P ′

0Ψ
−1
0R ∥ = OP

(
1
n

)
+OP

(
1√
T

)

iv) ∥(P̂ ′Ψ̂−1
R P̂ )−1P̂ ′Ψ̂−1

R − (P ′
0Ψ

−1
0RP0)−1P ′

0Ψ
−1
0R ∥ = OP

(
1
n

)
+OP

(
1√
T

)

v) 1
n ∥Λ̂′Ψ̂−1

R Λ̂ − Λ′
0Ψ

−1
0RΛ0∥ = OP

(
1
n

)
+OP

(
1√
T

)

vi) ∥(Λ̂′Ψ̂−1
R Λ̂)−1Λ̂′Ψ̂−1

R − (Λ′
0Ψ

−1
0RΛ0)−1Λ′

0Ψ
−1
0R ∥ = OP

(
1

n
√

n

)
+OP

(
1√

n
√

T

)

Proof

i) Defining P0⊥ as we did in the proof of proposition 2, we can write:

(P̂ − P0)′Ψ−1
0RP0 = (P̂ − P0)′(P0P

′
0 + P0⊥P ′

0⊥)Ψ−1
0RP0

= P̂ ′P0P
′
0Ψ

−1
0RP0 − P ′

0Ψ
−1
0RP0 + P̂ ′P0⊥P ′

0⊥Ψ−1
0RP0
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We have seen before (see proof of proposition 2) that:

∥P̂ ′P0⊥ ∥ = OP

(
1
n

)
+OP

(
1√
T

)

As P ′
0Ψ

−1
0RP0 and P ′

0⊥Ψ−1
0RP0 are O(1), the result then follows from lemma 4 (i).

ii) P̂ ′Ψ̂−1
R P̂ − P ′

0Ψ
−1
0RP0 = P̂ ′(Ψ̂−1

R − Ψ−1
0R)P̂ + P̂ ′Ψ−1

0RP̂ − P ′
0Ψ

−1
0RP0.

As ∥P̂ ′(Ψ̂−1
R − Ψ−1

0R)P̂∥ ≤ ∥P̂∥2∥Ψ̂−1
R − Ψ−1

0R ∥ = ∥Ψ̂−1
R − Ψ−1

0R ∥,

and as ∥Ψ̂−1
R − Ψ−1

0R ∥ = Max1≤i≤n|ψ̂−1
ii − ψ−1

0ii |, it follows from proposition 2 (iii) that

∥P̂ ′(Ψ̂−1
R − Ψ−1

0R)P̂∥ = OP

(
1
n

)
+OP

(
1√
T

)

Further:

∥P̂ ′Ψ−1
0RP̂ − P ′

0Ψ
−1
0RP0∥ = ∥(P̂ − P0)′Ψ−1

0RP0 + P ′
0Ψ

−1
0R(P̂ − P0) + (P̂ − P0)′Ψ−1

0R(P̂ − P0)∥

≤ 2∥(P̂ − P0)′Ψ−1
0RP0∥ + ∥Ψ−1

0R ∥∥P̂ − P0∥2

It then follows from lemma 4 (ii), assumption (CR2), and lemma 5 (i) that

∥P̂ ′Ψ−1
0RP̂ − P ′

0Ψ
−1
0RP0∥ = OP

(
1
n

)
+OP

(
1√
T

)

so that (ii) follows.

iii) In the same way: ∥P̂ ′Ψ̂−1
R − P ′

0Ψ
−1
0R ∥ ≤ ∥P̂ ′(Ψ̂−1

R − Ψ−1
0R)∥ + ∥(P̂ − P0)′Ψ−1

0R ∥ with:

∥P̂ ′(Ψ̂−1
R − Ψ−1

0R)∥ ≤ ∥Ψ̂−1
R − Ψ−1

0R ∥ = OP

(
1
n

)
+OP

(
1√
T

)
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and:
∥(P̂ − P0)′Ψ−1

0R ∥ = ∥(P̂ − P0)′(P0P
′
0 + P0⊥P ′

0⊥)Ψ−1
0R ∥

≤ ∥(P̂ ′P0 − Ir)P ′
0Ψ

−1
0R ∥ + ∥P̂ ′P0⊥P ′

0⊥Ψ−1
0R ∥

≤ ∥P̂ ′P0 − Ir ∥∥P ′
0Ψ

−1
0R ∥ + ∥P̂ ′P0⊥ ∥∥P ′

0⊥Ψ−1
0R ∥

= OP

(
1
n

)
+OP

(
1√
T

)

iv)As ∥Ψ−1
0 ∥ = O(1) by asssumption (A4), we know from proposition 2 (iii) that

∥Ψ̂−1
R ∥ = OP (1) so that (P̂ ′Ψ̂−1

R P̂ )−1 = OP (1). We then can write:

∥(P̂ ′Ψ̂−1
R P̂ )−1P̂ ′Ψ̂−1

R − (P ′
0Ψ

−1
0RP0)−1P ′

0Ψ
−1
R ∥

= ∥(P̂ ′Ψ̂−1
R P̂ )−1(P̂ ′Ψ̂−1

R − P ′
0Ψ

−1
R )

+((P̂ ′Ψ̂−1
R P̂ )−1 − P ′

0Ψ
−1
R P0)−1)P ′

0Ψ
−1
R ∥

= ∥(P̂ ′Ψ̂−1
R P̂ )−1(P̂ ′Ψ̂−1

R − P ′
0Ψ

−1
R )

+(P̂ ′Ψ̂−1
R P̂ )−1[P ′

0Ψ
−1
R P0 − P̂ ′Ψ̂−1

R P̂ ](P ′
0Ψ

−1
R P0)−1P ′

0Ψ
−1
R ∥

≤ ∥(P̂ ′Ψ̂−1
R P̂ )−1∥∥(P̂ ′Ψ̂−1

R − P ′
0Ψ

−1
R )∥

+∥(P̂ ′Ψ̂−1
R P̂ )−1∥∥P ′

0Ψ
−1
R P0 − P̂ ′Ψ̂−1

R P̂∥∥(P ′
0Ψ

−1
R P0)−1∥∥P ′

0Ψ
−1
R ∥

The result then follows from (ii) and (iii).

v) 1
n Λ̂′Ψ̂−1

R Λ̂ = 1
nD̂

1/2P̂ ′Ψ̂−1
R P̂ D̂1/2 = 1

nD̂
1/2D

−1/2
0 D

1/2
0 P̂ ′Ψ̂−1

R P̂D
1/2
0 D

−1/2
0 D̂1/2.

The result then follows from lemma 2 (iv), lemma 5 (ii), and the fact that D0 = OP

(
1
n

)
.

vi) We can write:

(Λ̂′Ψ̂−1
R Λ̂)−1Λ̂′Ψ̂−1

R − (Λ′
0Ψ

−1
0RΛ0)−1Λ′

0Ψ
−1
0R

= D̂−1/2(P̂ ′Ψ̂−1
R P̂ )−1P̂ ′Ψ̂−1

R − D
−1/2
0 (P ′

0Ψ
−1
0RP0)−1P ′

0Ψ
−1
0R

= D̂−1/2
(
(P̂ ′Ψ̂−1

R P̂ )−1P̂ ′Ψ̂−1
R − D̂1/2D

−1/2
0 (P ′

0Ψ
−1
0RP0)−1P ′

0Ψ
−1
0R

)

Proof of Corollary 1 (ii)
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As Gt/T,R2 = (Λ̂′Ψ̂−1
d Λ̂+Ir)−1Λ̂′Ψ̂−1

d Xt = (Λ̂′Ψ̂−1
d Λ̂+Ir)−1Λ̂′Ψ̂−1

d (Λ0Gt + ξt), we have:

∥Gt/T,R2 − Gt∥ ≤ ∥(Λ̂′Ψ̂−1
d Λ̂ + Ir)−1Λ̂′Ψ̂−1

d − (Λ′
0Ψ

−1
0d Λ0 + Ir)−1Λ′

0Ψ
−1
0d ∥ (∥Λ0Gt + ξt∥)

+∥(Λ′
0Ψ

−1
0d Λ0 + Ir)−1Λ′

0Ψ
−1
0d Λ0 − Ir ∥∥Gt∥

+∥(Λ′
0Ψ

−1
0d Λ0 + Ir)−1Λ′

0Ψ
−1
0d |∥∥ξt∥

with:

. ∥(Λ̂′Ψ̂−1
d Λ̂ + Ir)−1Λ̂′Ψ̂−1

d − (Λ′
0Ψ

−1
0d Λ0 + Ir)−1Λ′

0Ψ
−1
0d ∥ = OP

(
1

n
√

n

)
+ OP

(
1√
nT

)

by lemma 5 (vi)

. ∥(Λ′
0Ψ

−1
0d Λ0 + Ir)−1Λ′

0Ψ
−1
0d Λ0 − Ir ∥ = O

(
1√
n

)
by assumptions (CR1) to (CR4)

. ∥(Λ′
0Ψ

−1
0d Λ0 + Ir)−1Λ′

0Ψ
−1
0d |∥ = O

(
1√
n

)
by assumptions (CR1) to (CR4)

. ∥Gt∥ = OP (1), ∥ξt∥ = OP (
√
n) and ∥Λ0Gt + ξt∥ ≤ ∥Λ0∥ + ∥Gt∥ + ∥ξt∥ = OP (

√
n)

The result immediately follows.
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A.3 Consistency of Kalman Filtering: (Ω̂R3 and Ω̂R4 framework)

Proof of Proposition 3

i) Consider the sample autocovariance of the estimated principal components

Γ̂Ĝ(h) =
1

T − h

T∑

t=h+1

ĜtĜ
′
t−h = D̂−1/2P̂ ′S(h)P̂ D̂−1/2

with S(h) = 1
T −h

∑T
t=h+1XtX

′
t−h.

For any h < T , we can decompose Γ̂Ĝ(h) as:

Γ̂Ĝ(h) = D̂−1/2P̂ ′Λ0Φ0(h)Λ′
0P̂ D̂

−1/2 + D̂−1/2P̂ ′ (S(h) − Λ0Φ0(h)Λ′
0

)
P̂ D̂−1/2

First, we can write:

D̂−1/2P̂ ′Λ0Φ0(h)Λ′
0P̂ D̂

−1/2 = D̂−1/2P̂ ′P0D
1/2
0 Φ0(h)D

1/2
0 P ′

0P̂ D̂
−1/2

It then follows from lemma 2 (iv), lemma 4 (i), and the fact that Φ0(h) = O(1) that:

D̂−1/2P̂ ′Λ0Φ0(h)Λ′
0P̂ D̂

−1/2 = Φ0(h) +OP

(
1
n

)
+OP

(
1√
T

)

Then, under assumption (A3) and (CR3), it is possible to extend what has been done in

lemma 2 (i) for h = 0, and to show that: 1
n ∥S(h) − Λ0Φ0(h)Λ′

0)∥ = OP

(
1
n

)
+OP

(
1√
T

)
,

uniformly in h ≤ p.

Indeed, if we decompose S(h) as:

S(h) =
1

T − h

[
Λ0

T∑

t=h+1

GtG
′
t−hΛ′

0 + Λ0

T∑

t=h+1

Gtξ
′
t−h +

T∑

t=h+1

ξtG
′
t−hΛ′

0 +
T∑

t=h+1

ξtξ
′
t−h

]
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we get:

1
n(S(h) − Λ0Φ0(h)Λ′

0) = 1
nΛ0

(
1

T −h

∑T
t=h+1GtG

′
t−h − Φ0(h)

)
Λ′

0

+ 1
n

(
Λ0

1
T −h

∑T
t=h+1Gtξ

′
t−h + 1

T −h

∑T
t=h+1 ξtG

′
t−hΛ′

0

)

+ 1
n

(
1

T −h

∑T
t=h+1 ξtξ

′
t−h − Ψ0(h)

)
+ 1

nΨ0(h)

Then, using assumptions (A3) and (CR3) and a multivariate extension of the proof

given in the univariate case by Brockwell and Davies (1991, pp226-227), it is possible,

as in lemma 2 (i), to show that:

. E
(

∥ 1
T −h

∑T
t=h+1GtG

′
t−h − Φ0(h)∥2

)
= O

(
1
T

)

. E
(

∥ 1
T −h

∑T
t=h+1 ξtξ

′
t−h − Ψ0(h)∥2

)
= O

(
n2

T

)

so that:

. ∥ 1
T −h

∑T
t=h+1GtG

′
t−h − Φ0(h)∥ = OP

(
1√
T

)

. ∥ 1
T −h

∑T
t=h+1 ξtξ

′
t−h − Ψ0(h)∥ = OP

(
n√
T

)

Using the and the same kind of arguments as we have used in lemma 2 (i), it then also

follows that:

∥ 1
T − h

T∑

t=h+1

Gtξ
′
t−h∥ = OP

(√
n√
T

)

From assumption (CR1), we also have: ∥Λ0∥ = O (
√
n) and ∥Ψ0(h)∥ = O (1), so

that:
1
n

∥S(h) − Λ0Φ0(h)Λ′
0∥ = OP

(
1
n

)
+OP

(
1√
T

)

Finally, as D̂−1/2P̂ ′ (S(h) − Λ0Φ0(h)Λ′
0) P̂ D̂

−1/2 = ( D̂
n )−1/2P̂ ′ S(h)−Λ0Φ0(h)Λ′

0
n P̂ ( D̂

n )−1/2,

and D̂
n = OP (1), it follows that

D̂−1/2P̂ ′ (S(h) − Λ0Φ0(h)Λ′
0

)
P̂ D̂−1/2 = OP

(
1
n

)
+OP

(
1√
T

)
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ii) Let us first recall that any VAR(p) model can be written in a VAR(1) form. More

precisely, if we denote: G(p)
t = (G′

t, G
′
t−1, . . . , G

′
t−p+1)

′, we can write:

G
(p)
t = A

(p)
0 G

(p)
t−1 + w

(p)
t

with A(p)
0 =




A01 A02 . . . A0p

Ir 0 . . . 0
...

...
...

0 0 . . . Ir




and w(p)
t = (w′

t, 0, . . . , 0)′.

If we denote Φ(p)
0 = E

[
G

(p)
t G

(p)′
t

]
and Φ(p)

1 = E
[
G

(p)
t G

(p)′
t−1

]
, so that:

Φ(p)
0 =




Ir Φ0(1) . . . Φ0(p − 1)

Φ′
0(1) Ir . . . Φ0(p − 2)
...

...
...

Φ′
0(p − 1) Φ′

0(p − 2) . . . Ir




Φ(p)
1 =




Φ0(1) Φ0(2) . . . Φ0(p)

Φ′
0(1) Ir . . . Φ0(p − 1)
...

...
...

Φ′
0(p − 2) Φ′

0(p − 3) . . . Φ0(1)




we have:

A
(p)
0 = Φ(p)

1 (Φ(p)
0 )−1

We can define Φ̂(p)
0 and Φ̂(p)

1 having respectively the same form as Φ(p)
0 and Φ(p)

1 , with

Φ0,k replaced by Γ̂Ĝ(k) for any value of k. Then, we also have:

Â(p) = Φ̂(p)
1 (Φ̂(p)

0 )−1

where: Â(p) =




Â1 Â2 . . . Âp

Ir 0 . . . 0
...

...
...

0 0 . . . Ir




.
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It thus follows from (i) that:

∥Φ(p)
0 − Φ̂(p)

0 ∥ = OP

(
1
n

)
+OP

(
1√
T

)
and ∥Φ(p)

1 − Φ̂(p)
1 ∥ = OP

(
1
n

)
+OP

(
1√
T

)

We have: ∥A(p)
0 − Â(p)∥ ≤ ∥Φ(p)

1 − Φ̂(p)
1 ∥∥(Φ(p)

0 )−1∥ + ∥Φ̂(p)
1 ∥∥(Φ(p)

0 )−1 − (Φ̂(p)
0 )−1∥. If

we apply to the last term the relation (R) which has been introduced in the proof of

proposition 1, we then get:

∥A(p)
0 − Â(p)∥ = OP

(
1
n

)
+OP

(
1√
T

)

It then follows that: ∥A0s − Âs∥ = OP

(
1
n

)
+OP

(
1√
T

)
for any s = 1, . . . , p.

Proof of proposition 4

i) If we denote by SG,R(ω) and ŜG,R(ω) the spectral density matrices of Gt under ΩR

and Ω̂R, for R = R3 and R4, we can apply the same result as in lemma 1 (ii) and we

get:

∥Σ̂G,R − ΣG,R∥ ≤ 2πMaxω∈[−π,+π]λmax

(
ŜG,R(ω) − SG,R(ω)

)

or ∥Σ̂G,R − ΣG,R∥ ≤ 2πMaxω∈[−π,+π]∥ŜG,R(ω) − SG,R(ω)∥

As A0(L)Gt = wt and V Gt = Ir, we know that V wt = W0, with

W0 = E(utG
′
t) = E

(
(Gt −

p∑

s=1

A0sGt−s)G′
t

)
= Ir −

p∑

s=1

A0sΦ′
0(s)

In the same way, we have: V̂ wt = Ŵ = Γ̂Ĝ(0) − ∑p
s=1 ÂsΓ̂′

Ĝ
(s).
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We thus get:

∥W0 − Ŵ∥ = ∥(Ir − Γ̂Ĝ(0)) −
p∑

s=1

(
ÂsΓ̂′

Ĝ
(s) − A0sΦ′

0(s)
)

∥

≤ ∥Ir − Γ̂Ĝ(0)∥ +
p∑

s=1

∥Âs − A0s∥∥Γ̂Ĝ(s)∥ +
p∑

s=1

∥A0s∥∥Γ̂Ĝ(s) − Φ0(s)∥

It then follows from proposition 3 (i) and (ii) that:

∥W0 − Ŵ∥ = OP

(
1
n

)
+OP

(
1√
T

)

Turning now to the spectral density matrices, we have:

SG,R(ω) =
1
2π
(
A0(eiω)

)−1
W0

(
A′

0(e
−iω)

)−1

and ŜG,R(ω) =
1
2π

(
Â(eiω)

)−1
Ŵ
(
Â′(e−iω)

)−1
.

As ∥
(
A′

0(e
−iω)

)−1−
(
Â′(e−iω)

)−1
∥ ≤ ∥

(
A′

0(e
−iω)

)−1 ∥∥A′
0(e

−iω)−Â′(e−iω)∥∥
(
Â′(e−iω)

)−1
∥,

we have:

Maxω∈[−π,+π]∥
(
A′

0(e
−iω)

)−1 −
(
Â′(e−iω)

)−1
∥ = OP

(
1
n

)
+OP

(
1√
T

)

Using the fact that ∥W0 − Ŵ∥ = OP

(
1
n

)
+OP

(
1√
T

)
, it then immediately follows that:

Maxω∈[−π,+π]∥SG,R(ω) − ŜG,R(ω)∥ = OP

(
1
n

)
+OP

(
1√
T

)

which gives the desired result.

ii) Since we know, from lemma 1 (ii) that ∥ΣG,R∥ = O(1), it follows from (i) that

∥Σ̂G,R∥ = OP (1).
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Further: ∥Σ̂G,R∥−1 = 1
λmin(Σ̂G,R)

, with |λmin(Σ̂G,R) − λmin(Σ̂G,R)| ≤ ∥ΣG,R − Σ̂G,R∥ by

Weyl theorem. It then follows from (i) and from lemma 1 (ii) that ∥Σ̂G,R∥−1 = OP (1).

Finally, as ∥Σ̂−1

Ĝ,R
− Σ−1

G,R∥ ≤ ∥Σ̂−1

Ĝ,R
∥∥Σ̂Ĝ,R − ΣG,R∥∥Σ−1

G,R∥, we also obtain:

∥Σ̂−1

Ĝ,R
− Σ−1

G,R∥ = OP

(
1
n

)
+OP

(
1√
T

)

Proof of proposition 5

As Gt/t,R = ProjΩR [Gt|Xt] and Ĝt/t,R = ProjΩ̂R [Gt|Xt], they are obtained through

the same formulas so that, by construction:

Ĝt/T,R = U′
t(Σ̂

−1

Ĝ,R
+ IT ⊗ Λ̂′Ψ̂−1

R Λ̂)−1(IT ⊗ Λ̂′Ψ̂−1
R )XT

Using relation (R) as in the proof of proposition 1 (Taylor expansion at order 0),

we obtain the same kind of decomposition for Ĝt/T,R as the one we have used to study

Gt/T,R. Thus, if we denote M̂ = Λ̂′Ψ̂−1
R Λ̂, we can write: Ĝt/T,R = Ĝ1

t/T,R − Ĝ2
t/T,R −

Ĝ3
t/T,R, with:

Ĝ1
t/T,R = U′

t

(
IT ⊗ M̂−1

)(
IT ⊗ Λ̂′Ψ̂−1

R

)
XT = M̂−1Λ̂′Ψ̂−1

R Xt

Ĝ2
t/T,R = U′

t

(
Σ̂−1

Ĝ,R
+ IT ⊗ M̂

)−1
Σ̂−1

Ĝ,R

(
IT ⊗ M̂−1Λ̂′Ψ̂−1

R

)
(IT ⊗ Λ0)GT

Ĝ3
t/T,R = U′

t

(
Σ̂−1

Ĝ,R
+ IT ⊗ M̂

)−1
Σ̂−1

Ĝ,R

(
IT ⊗ M̂−1Λ̂′Ψ̂−1

R

)
ZT

Let us study separately these three terms.

If we compare the first term with G1
t/T,R, we get:

Ĝ1
t/T,R − G1

t/T,R =
((

Λ̂′Ψ̂−1
R Λ̂

)−1
Λ̂′Ψ̂−1

R −
(
Λ′

0Ψ
−1
0RΛ0

)−1 Λ′
0Ψ

−1
0R

)
Xt
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with

∥
((

Λ̂′Ψ̂−1
R Λ̂

)−1
Λ̂′Ψ̂−1

R −
(
Λ′

0Ψ
−1
0RΛ0

)−1 Λ′
0Ψ

−1
0R

)
Xt∥

≤ ∥
(
Λ̂′Ψ̂−1

R Λ̂
)−1

Λ̂′Ψ̂−1
R −

(
Λ′

0Ψ
−1
0RΛ0

)−1 Λ′
0Ψ

−1
0R ∥∥Xt∥

As Xt = OP (
√
n), it then follows from lemma 5 (v) that:

Ĝ1
t/T,R − G1

t/T,R = OP (
1
n

) +OP (
1√
T

)

Finally, as G1
t/T,R = Gt +OP ( 1√

n
), we get:

Ĝ1
t/T,R = Gt +OP (

1√
n

) +OP (
1√
T

)

In the same way, we can write:

Ĝ2
t/T,R − G2

t/T,R = U′
t

(
Σ̂−1

Ĝ,R
+ IT ⊗ M̂

)−1
Σ̂−1

Ĝ,R

(
IT ⊗ M̂−1Λ̂′Ψ̂−1

R

)
(IT ⊗ Λ0)GT

−U′
t

(
Σ−1

G,R + IT ⊗ M0

)−1
Σ−1

G,R

(
IT ⊗ M−1

0 Λ′
0Ψ

−1
0R

)
(IT ⊗ Λ0)GT

and:

Ĝ3
t/T,R − G3

t/T,R = U′
t

(
Σ̂−1

Ĝ,R
+ IT ⊗ M̂

)−1
Σ̂−1

Ĝ,R

(
IT ⊗ M̂−1Λ̂′Ψ̂−1

R

)
ZT

−U′
t

(
Σ−1

G,R + IT ⊗ M0

)−1
Σ−1

G,R

(
IT ⊗ M−1

0 Λ′
0Ψ

−1
0R

)
ZT

so that: Ĝ2
t/T,R − G2

t/T,R = U′
tĤ (IT ⊗ Λ0)GT and Ĝ3

t/T,R − G3
t/T,R = U′

tĤZT with:

Ĥ = (Σ̂−1

Ĝ,R
+IT ⊗M̂)−1Σ̂−1

Ĝ,R
(IT ⊗M̂−1Λ̂′Ψ̂−1

R )−(Σ−1
G,R+IT ⊗M0)−1Σ−1

G,R(IT ⊗M−1
0 Λ′

0Ψ
−1
0R)
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We can also decompose Ĥ as: Ĥ = Ĥ1 + Ĥ2 + Ĥ3 with:

Ĥ1 = (Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1Σ̂−1

Ĝ,R

(
IT ⊗ (M̂−1Λ̂′Ψ̂−1

R − M−1
0 Λ′

0Ψ
−1
0R)
)

Ĥ2 = (Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1(Σ̂−1

Ĝ,R
− Σ−1

G,R)(IT ⊗ M−1
0 Λ′

0Ψ
−1
0R)

Ĥ3 =
(
(Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1 − (Σ−1

G,R + IT ⊗ M0)−1
)

Σ−1
G,R(IT ⊗ M−1

0 Λ′
0Ψ

−1
0R)

We then get:

∥Ĥ1∥ ≤ ∥(Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1∥∥Σ̂−1

Ĝ,R
∥∥IT ⊗ (M̂−1Λ̂′Ψ̂−1

R − M−1
0 Λ′

0Ψ
−1
0R)∥

≤ ∥IT ⊗ M̂−1∥∥Σ̂−1

Ĝ,R
∥∥IT ⊗ (M̂−1Λ̂′Ψ̂−1

R − M−1
0 Λ′

0Ψ
−1
0R)∥

= ∥M̂−1∥∥Σ̂−1

Ĝ,R
∥∥M̂−1Λ̂′Ψ̂−1

R − M−1
0 Λ′

0Ψ
−1
0R ∥

∥Ĥ2∥ ≤ ∥(Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1∥∥Σ̂−1

Ĝ,R
− Σ−1

G,R∥∥IT ⊗ M−1
0 Λ′

0Ψ
−1
0R ∥

≤ ∥M̂−1∥∥Σ̂−1

Ĝ,R
− Σ−1

G,R∥∥M−1
0 Λ′

0Ψ
−1
0R ∥

∥Ĥ3∥ ≤ ∥(Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1 − (Σ−1

G,R + IT ⊗ M0)−1∥∥Σ−1
G,R∥∥IT ⊗ M−1

0 Λ′
0Ψ

−1
0R ∥

≤ ∥(Σ̂−1

Ĝ,R
+ IT ⊗ M̂)−1∥∥Σ̂−1

Ĝ,R
+ IT ⊗ M̂ − Σ−1

G,R − IT ⊗ M0∥

×∥(Σ−1
G,R + IT ⊗ M0)−1∥∥Σ−1

G,R∥∥M−1
0 Λ′

0Ψ
−1
0R ∥

≤ ∥M̂−1∥
[

∥Σ̂−1

Ĝ,R
− Σ−1

G,R∥ + ∥M̂ − M0∥
]

∥M−1
0 ∥∥Σ−1

G,R∥∥M−1
0 Λ′

0Ψ
−1
0R ∥

From lemma 5 (v), we get: M̂−1 = OP

(
1
n

)
. Thus, applying lemma 5 (v) and (vi),

and proposition 4, we get that:

∥Ĥi∥ = OP

(
1

n2
√
n

)
+OP

(
1

n
√
nT

)
for i = 1 to 3

so that ∥Ĥ∥ = OP

(
1

n2
√

n

)
+OP

(
1

n
√

nT

)
.
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As E (∥GT ∥)2 = E
(∑T

t=1 ∥Gt∥2
)

= rT , we have: ∥GT ∥ = OP

(√
T
)

so that:

∥Ĝ2
t/T,R − G2

t/T,R∥ ≤ ∥Ut∥∥Ĥ∥∥IT ⊗ Λ0∥∥GT ∥ = OP

(√
T

n2

)
+OP

(
1
n

)

Similarly, E (∥ZT ∥)2 = E
(∑T

t=1 ∥ξt∥2
)

= Ttr(Ψ0) = O(nT ), so that:

∥Ĝ3
t/T,R − G3

t/T,R∥ ≤ ∥Ut∥∥Ĥ∥∥ZT ∥ = OP

(√
T

n2

)
+OP

(
1
n

)

Finally, as we know, from the proof of proposition 1 that:

G2
t/T,R = OP

(
1
n

)
and G3

t/T,R = OP

(
1

n
√
n

)

we get: Ĝ2
t/T,R + Ĝ3

t/T,R = OP

(√
T

n2

)
+OP

(
1
n

)
, so that:

Ĝt/T,R = Gt +OP

(
1√
n

)
+OP

(
1√
T

)
+OP

(√
T

n2

)

If limsup T
n3 = O(1), we then get:

Ĝt/T,R = Gt +OP

(
1√
n

)
+OP

(
1√
T

)
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Table 1:

T=50 T=100
j n = 5 n = 10 n = 25 n = 50 n = 100 n = 5 n = 10 n = 25 n = 50 n = 100

∆j,R4: evaluation of the Kalman filter with cross-sectional heteroscedasticity
-4 0.45 0.35 0.30 0.29 0.28 0.34 0.23 0.19 0.18 0.17
-3 0.45 0.35 0.30 0.28 0.28 0.36 0.24 0.19 0.18 0.17
-2 0.47 0.36 0.30 0.28 0.27 0.37 0.26 0.20 0.18 0.17
-1 0.50 0.39 0.31 0.29 0.27 0.40 0.29 0.21 0.18 0.17
0 0.57 0.44 0.34 0.30 0.28 0.48 0.35 0.25 0.21 0.19

∆j,R4/∆j,R1: relative performances of simple Principal components
-4 0.97 0.97 0.98 0.99 0.99 0.95 0.94 0.96 0.98 0.99
-3 0.95 0.95 0.97 0.98 0.99 0.93 0.93 0.96 0.98 0.98
-2 0.92 0.93 0.97 0.98 0.99 0.90 0.91 0.95 0.97 0.98
-1 0.88 0.89 0.95 0.97 0.98 0.84 0.85 0.92 0.95 0.97
0 0.80 0.82 0.90 0.95 0.98 0.73 0.75 0.85 0.92 0.96

∆j,R4/∆j,R2: relative performances of Weighted Principal components
-4 0.98 0.98 0.99 1.00 1.00 0.96 0.98 0.99 1.00 1.00
-3 0.96 0.97 0.99 1.00 1.00 0.95 0.96 0.99 1.00 1.00
-2 0.94 0.96 0.99 1.00 1.00 0.93 0.95 0.99 1.00 1.00
-1 0.90 0.92 0.98 0.99 1.00 0.86 0.89 0.97 0.99 1.00
0 0.81 0.84 0.94 0.98 1.00 0.75 0.78 0.91 0.97 1.00

∆j,R4/∆j,R3: relative performances of the Kalman filter with cross-sectional homoscedasticity
-4 1.00 0.99 0.99 0.99 1.00 1.00 0.97 0.97 0.98 0.99
-3 0.99 0.99 0.98 0.99 0.99 1.00 0.97 0.96 0.98 0.98
-2 0.99 0.98 0.98 0.98 0.99 0.98 0.96 0.96 0.97 0.98
-1 0.98 0.98 0.98 0.98 0.99 0.97 0.96 0.96 0.96 0.97
0 0.97 0.98 0.99 0.97 0.98 0.96 0.96 0.94 0.95 0.96
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Table 2:

preceding quarter current quarter one quarter ahead Average across
(backcast) (nowcast) (forecast) horizons

AR 0.82 0.91 1 0.92
VAR 0.81 0.89 0.98 0.90

KF 0.71 0.76 0.78 0.75
PC 0.78 0.86 0.90 0.85
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