Model selection via worts-case criterion for nonlinear bounded-error estimation

Abstract : In this paper the problem of model selection for measurement purpose is studied. A new selcetion procedure in a deterministic framework is proposed. The problem of nonlinear bounded-error estimation is viewed as a set inversion procedure. As each candidate model structure leads to a specific set of admissible values of the measurement vector, the worts-case criterion is used to select the optimal model. The selection procedure is applied to a real measurement problem, grooves dimensioning using Remote Field Eddy Current (RFEC) inspection.
Type de document :
Communication dans un congrès
16th IEEE Instrumentation and Measurement, May 1999, Venise, Italy. pp.1075-1080, 1999
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00844628
Contributeur : Marie-Françoise Gerard <>
Soumis le : lundi 15 juillet 2013 - 16:14:21
Dernière modification le : mercredi 20 février 2019 - 14:40:19
Document(s) archivé(s) le : mercredi 16 octobre 2013 - 04:18:25

Fichier

IEEEmodelSelect_LISA1999.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00844628, version 1

Citation

S. Brahim-Belhouari, Michel Kieffer, G. Fleury, Luc Jaulin, Eric Walter. Model selection via worts-case criterion for nonlinear bounded-error estimation. 16th IEEE Instrumentation and Measurement, May 1999, Venise, Italy. pp.1075-1080, 1999. 〈hal-00844628〉

Partager

Métriques

Consultations de la notice

568

Téléchargements de fichiers

159