archives-ouvertes

Guaranteed mobile robot tracking using interval analysis
Michel Kieffer, Luc Jaulin, Eric Walter, Dominique Meizel

» To cite this version:

Michel Kieffer, Luc Jaulin, Eric Walter, Dominique Meizel. Guaranteed mobile robot tracking using
interval analysis. MISC’99, Workshop on Application of Interval Analysis to System and Control, Feb
1999, Girona, Spain. pp.347-360, 1999. <hal-00844601>

HAL Id: hal-00844601
https://hal.archives-ouvertes.fr /hal-00844601
Submitted on 15 Jul 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.archives-ouvertes.fr/hal-00844601
https://hal.archives-ouvertes.fr

GUARANTEED MOBILE ROBOT TRACKING
USING INTERVAL ANALYSIS

Michel KIEFFER!, Luc JAULIN'2, Eric WALTER'® and Dominique MEIZEL?

L Laboratoire des Signauz et Systémes, CNRS-Supélec
Plateau de Moulon, 91192 Gif-sur- Yvette, France
{kieffer, jaulin, walter}@lss.supelec.fr
2on leave from
Laboratoire d’Ingénierie des Systémes Automatisés,
Université d’Angers
SHEUDIASYC, UMR CNRS 6599,
Université de Technologie de Compiégne
B.P. 20529 Compiégne Cédex, France
dominique.meizel Quitc. fr

Abstract: The problem considered here is state estimation in the presence of bounded process
and measurement noise. A new nonlinear state estimator, based on interval analysis and the
notion of set inversion, is applied to robot localization and tracking. This estimator evaluates
a set guaranteed to contain all values of the state that are consistent with the available obser-
vations, given the noise bounds and some possibly very large set containing the initial value of
the state. Three situations are considered to illustrate the properties of the estimator.

Keywords: Bounded-error estimation, Interval analysis, Robot localization, Robot tracking,
State estimation.

1 Introduction

Much of recent research in robotics has been devoted to increasing autonomy, e.g., by adding
sensors, mobility and decision capability. To be autonomous, robots must be able to estimate
their present state from available prior information and measurements.

The problem to be considered here is the autonomous localization and tracking of a robot
such as that described by Figure 1, using distance measurements provided by a belt of on-board
exteroceptive sensors. Ultrasonic sensors are used, but other types of sensors could also be
considered, with the same methodology. The environment is assumed to be two-dimensional (al-
though a three-dimensional extension poses no problem in principle), and a map of its landmarks
is available to the robot.

In this paper, the methods developed in [11] for static robot localization and in [9] for state
estimation are combined. The model of the robot and its environment is presented in Section 2.
In Section 3, an interval method recently developed for the guaranteed localization of a robot
is briefly recalled. In Section 4, a guaranteed state estimator based on interval analysis and the
notion of subpaving is presented. Application of the methodology described in Sections 3 and 4
to robot tracking is reported in Section 5.

2 The robot and its map

The vehicle considered has a single body and its motions are generated by two coaxial indepen-
dently driven wheels. Its displacement is planned in a 2D environment with respect to a set of



Figure 1: Robuter mobile robot by Robosoft.

landmarks and obstacles among which the robot has to move. Part of these landmarks define
the world reference frame W, in which the mission is defined. Let R be a reference frame tied
to the vehicle (see Figure 2). The configuration of the vehicle in the 2D-world is x = (¢, ., 0)",
where x. and y. are coordinates of a characteristic point ¢ which defines the origin of R, and
0, the heading angle of the robot, is the angle between R and W. In what follows, x will be
considered as a state vector, since a kinematic model of motion will be used. Points and their
coordinates will be denoted by bold lower-case letters in VW and by tilded bold lower-case letters
in R. Thus, for example, a sensor and the coordinates of its emission cone will be denoted by s

in W and s in ‘R, with
e n cos@ —sinf \ -
5= Ye sinf  cos® )

where z, and y. are the coordinates of ¢ in W.

Figure 2: Configuration of the robot.

Given some (possibly very large) initial search box [x¢] in configuration space, robot localiza-
tion can be formulated as the task of characterizing the set Xy = {x € [x¢] | t(x) holds true},



where ¢ (x) is some test expressing that the state x is consistent with the measurements and
prior information. This test is built using informations given to the robot, namely distance
measurements and a map of the landmarks.

The robot is equipped with a belt of ng on-board Polaroid ultrasonic sensors (sonars). The
position of the ith sensor in the robot frame R is §; = (&;,7;). This sensor emits in a cone
characterized by its vertex §;, orientation 6; and half-aperture 4, (Figure 3). As 7, is frame-

independent, 4, = ;. The emission cone of the ¢th sensor will be denoted by C (§Z-, i, ’yz>

Figure 3: Emission cone.

The ith sensor measures the time-lag between emission and reception of the wave reflected
or refracted by some landmark. This time-lag is then converted into a distance d; to some
obstacle, so far unidentified. To take measurement inaccuracy into account, each data point
d; is associated with the interval [d;] = [d; (1 — «;) ,d; (1 + «;)], where a; is the known relative
measurement accuracy of sensor ¢. Thus, [d;] is assumed to contain the actual distance to the
closest reflecting landmark intercepting at least part of the ith emission cone.

To localize itself, the robot uses a map M of the environment. This map is assumed to
consist of ny oriented segments which describe the landmarks (walls, pillars, etc.): M =
{laj,b;] |7 =1,...,nw }. By convention, when going from a; to bj, the reflecting face of the
segment is on the left-hand side.

3 Static localization

To check whether a given state x is consistent with the measured outputs {[d;]};=,, the robot
evaluates the measurements that its sensors would return if it were in the state x and compares
them with the actual measurements. The test ¢ (x) must hold true if and only if they are
deemed compatible; ¢ (x) is based on the notion of remoteness. Consider first a sensor ¢ and
a single segment j of the map. If the segment does not lie in the emission cone, or if the
sensor is on the non-reflecting side of the segment, then the remoteness r;; of ¢ from j is infinite
(Figure 4(a) and (b)). Otherwise, 745 is finite and corresponds to the distance between the sensor
and the intersection of the segment of the map and the emission cone (Figure 4(c)). When all
segments of the map are taken into account, the remoteness r; of i from the map is given by



= Enin rij. 1t is consistent with the measured output if r; € [d;]. The state x is consistent
Jj= 7"'7nW

with all measurements (and thus ¢ (x) = 1) if all r;’s are consistent with the map. More details
on the evaluation of remoteness and techniques improving the previous test may be found in
[11].

(a) (b)
Figure 4: Evaluation of remoteness 7;;: (a) and (b) r;; = oo, (¢) r;; = ||S;m]|.

When the robot is motionless, the set of all configurations in the prior box that are consistent
with all measurements can be written as

Xo = {x € [x0] |t (x) holds true},

where ¢ (x) holds true if and only if (r; (x) € [d;]);=, . Equivalently, Xy = r[;})] ([d]). Except
in very particular cases, it is not possible to evaluate the set Ay, but it is possible to get a
guaranteed outer approximation of Xj, as accurate as desired, using subpavings [9] and the
SIVIA (Set Inversion Via Interval Analysis) algorithm ([7], [8]).

A subpaving is a finite set of non-overlapping boxes that are all included in some root box.
It is called regular when all its boxes result from successive bisections of the root box according
to some canonical bisection law. Any compact subset X’ can be approximated with any desired
precision using a regular subpaving X. Obviously, a subpaving may be empty or consist of its
entire root box.

Characterizing &p belongs to the class of set-inversion problems, formulated as follows:
given two sets X C R™, Y C R™ and a function f :R® — R™, characterize the set f);l ) =
{x €X | f(x) € V}. SIviA characterizes fy' () by bracketing it between inner and outer sub-
pavings. Its convergence has been studied in [8]. In [9], a recursive version of SIVIA, evaluating
the outer subpaving only, is presented. It returns a subpaving SA'E = SIvVIA (X s 177, JA), €) contain-

ing f/%l (?), where fj) is an inclusion function for f and € a precision parameter.

So Ap can easily be approximated by .5(\0 = S1vIA ([xo] , rﬁl, [d], €), which encloses all states
consistent with measurements.

In the dynamical case, this procedure could be repeated periodically, but this approach would
have two drawbacks. Firstly it would be uselessly time-consuming, because no information about
the previously evaluated configurations would be taken into account. Secondly, it would often
lead to a more pessimistic characterization, because past measurements would be neglected.
Using a model of the dynamics of the robot should help predict the configuration of the robot
after a move and thus reduce the prior feasible domain in state space in which consistency with
the new measurements should be studied. This policy is based on the recursive state-estimation
algorithm presented in [9] and briefly recalled in Section 4.



4 Guaranteed state estimation
Consider the nonlinear and possibly time-varying discrete time-system defined by

{ Xp+1 = B (Xk, W, Vi)

k=01, 2
Vi = hy (x3) + Wy, 2)

where u, € R™, x; € R and y; € RP are respectively the input, state, and output vectors. The
initial state x¢ is assumed to be included in some prior compact set Xy C R™. {vy} and {wy} are
unknown state and measurement noise sequences, respectively assumed to belong to the known
intervals sequences {[v],} and {[w],}. f; and hy are known functions (or finite algorithms)
evaluating x;41 and yji at each step k. Let A be the smallest set guaranteed to contain all
values of x; compatible with the information available at time [, i.e., with

T = { X, (e v Vs (W] o 3)

We shall first present an idealized algorithm to estimate A} recursively, and then describe an
actual algorithm for computing an outer approximation of A;. Let Aj4 be the set of all values
of the state that are reachable from some x; in A} with input u; for some state noise v; € [v];:

Xy =i (X, w, [v]) = {fi (x,w,vi) | x€A,vi€[v]}.

Moreover, let V11 be the set of all admissible values of the output, when its measured value is

Yir
Vi1 =yirr — Wist] = {yir1 —wiyr | wigr € (W]},

and let X ; be the set of all values of x which could have led to an observation y € Y41

Xy =h Y Vi) = {x € R" | hyyy (x) € Vi } -
A set containing all values of x; compatible with Z;,; is then given by
X1 = X4 NG,

As Xy contains all possible values of the initial state vector xg, one may thus, at least theoreti-
cally, recursively evaluate Xj. These ideas are summarized in the following idealized algorithm,
which parallels a Kalman filter in its structure.

Algorithm 1
Forl=0to L, do
(a) Prediction: X = f; (A, uy, [v];).
(b) Correction: X1 = hl;ll (Vi41) N Aoy

Proposition 1 [9] X}, as computed by Algorithm 1, is the smallest set guaranteed to contain x;
that can be computed from 1.

As in the case of static localization, it will usually not be possible to evaluate the sets A7,
and AXj.1 exactly, but one may obtain a guaranteed outer approximation of A7, 1, as accurate as
desired.

The correction step requires characterizing X711 = {x € A | hy11 (x) € Viy1}. This task is
again performed in a approximated way using STVIA:

X1 = SVIA(Xr, hyyag, Visrs €.

The task performed by the prediction step can be included in the more general problem
of direct image evaluation, which is at the core of interval arithmetic: given two compact sets



X C R" and S € R™ and a function f:R™ — R™, characterize the set S C &p such that
S={f(x) €Sy | x € A}. Two procedures, depending on whether f can be inverted, have been
presented in [9]. They are shortly recalled here.

When f is invertible, prediction can again be cast in the formalism of set inversion, as the
problem of finding § = {x € Sy ‘f’l (x) € X }. The prior search set Sp should be taken large

enough to be guaranteed to contain the set of interest. If 35 and X are subpavings enclosing Sp
and &', then S can be approximated by

o~

S. = Svia(Sy, f[]_l, X, o),

provided that an inclusion function f7*! is available for 1. Assuming that f is invertible may
seem rather strong, but in many physical cases inverting the dynamics only means inverting
time, so the inverse dynamics is rather simple to obtain from the direct one.

When f is not invertible, a specific and computationally more demanding procedure is needed.
The basic idea of the direct IMAGE Subpaving evaluation procedure (IMAGESP) is to describe
the initial set X' using a subpaving consisting of p boxes [x], whose widths are less than e. Then
IMAGESP evaluates the image of each of these p boxes using an inclusion function f}; of f and
stores these images in a list. One thus gets p image boxes, each of which contains the true
image set of the associated initial box. The image set S is therefore included in the union of
all of them. At last, IMAGESP merges all these image boxes into a subpaving to allow further
processing. The convergence of this algorithm has been studied in [10]. IMAGESP returns the
image subpaving S, = IMAGESP ([s]g .ff X, € of the subpaving X by the function f (more
exactly by one of its inclusion function f[]), or rather the part of it that is included in some prior
search box [s],. Again, € is a precision parameter.

An approximate but guaranteed version of Algorithm 1 is then as follows:

Algorithm 2
Forl=0to L, do

(a) Guaranteed prediction. Compute the set estimate .)/(l: for the state at step [ +1
before measurement either by

X, = SIvVIA (S, £

Ay x {w} x v, €);
if £, is invertible, where S = {[s]} is the search subpaving consisting of a possibly
very large box in which all states are assumed to stay, or by

X = IMAGESP ([s], iy, & x {w} x [v];, €);

(b) Guaranteed correction. From /'/Yl:, select all elements that are compatible with
measurements at step [+ 1

Xip1 = SIVIA(AL, by, Vi, €);

5 Application to robot tracking

In order to use this state-estimation algorithm for robot tracking, the two functions f and
h required in (2) have to be built. The observation equation is directly deduced from the
remoteness function. To predict the configuration of the robot, a model of its dynamics based
on the kinematic equations of the motion is used. This model is reliable only when slow motions
are considered. Moreover, the wheels are supposed to roll without sliding. The sampling time
is T', both driving wheels have the same radius R, and their angular rotation speeds are w,, (for
port side) and w; (for starboard side), assumed to be constant between two samples. The origin



c of R is taken as the middle of the segment joining the two independently controlled steering
wheels (the two other wheels are free). When the state is x; = ((z¢); , (ye); , (0),)" at step 1, one
may easily show that the state at step [ + 1 is given by

(xe); + Qd% cos ((9)l + TW) sin (TW)

(2e)iq
Ezg)lil = W)+ Qdﬁ—f& sin ((9)1 + TR(w—flgw&)) sin (TR(W—Z;w&))
1 0), + Tw modulo 27
if wg # wp, and
(Te)4q (), + TR(w—S;wL) cos (0),
i) - (e

if ws = wp. No state noise has been considered here, but it could easily be introduced to take
sliding or speed variation between samples into account.

Interval-based localization and tracking will now be illustrated on three fairly realistic sim-
ulated test cases. The characteristics of the robot are those of that of Figure 1. This robot is
equipped with ns = 24 ultrasonic sensors located on its periphery. As a result of experimen-
tation on the actual robot, their emission angle 7 is taken as 0.2 rad and the distance relative
inaccuracy « in the operating range is taken as 2%. In all test cases, the initial search domain
in state space is [—12 m, 12 m] X [—12 m, 12 m] x [0 rad, 27 rad]; the precision parameter € is
taken as 0.1 m (for z, and y.) and 0.1 rad (for #) and the sampling time as T' = 1 s. The
robot is assumed to be located in the room described by Figure 5, and the map available to the
robot is supposed to match the environment. All computations were performed on a P233MMX
personal computer, using a C++ implementation.

12

-12

12 12

Figure 5: Map used by the robot for the test-cases.

The first test case illustrates the properties of the initial localization algorithm and of the
prediction step alone: no correction step is applied to take into account new information on the
state of the robot. So the state at step [ is obtained from initial measurements by cascading {
predictions.



The emission diagram of the 24 sensors during these initial measurements is represented on
Figure 6. Two arcs are associated with each sensors, between which some obstacle(s) should lie
at least in part.

Figure 6: Emission diagram during initial measurements (Test Case 1); the scale is as in Figure 5.

This diagram was obtained using the algorithm described in Section 3 for the actual initial
state (Z¢, Ye, @)y = (—5 m, 6 m, 4 rad). This information was obviously not made available to the
tracking algorithm. First, a static localization is performed, which corresponds to the correction
step with a search space equal to the prior feasible configuration space. A first subpaving
enclosed in the box [—5.09 m, —4.89 m| x [5.93 m, 6.07 m] x [3.99 rad, 4.01 rad], and guaranteed
to contain the actual initial state, is found in less than 8 s. Then, the robot starts moving with
linear wheel speeds v, = Rw, = 1.2 m.s~! and v, = Rws = 1.6 m.s~!, so the robot trajectory
should be an arc of circle in (x,y)-space. Prediction is applied for T € [0 s,6 s|. At each step

—

{, the predicted subpaving Xl+ is evaluated using IMAGESP, and displayed on Figures 7 and 8.

No correcting step is performed, so /'?l:l is taken equal to Xf.

Figure 7: First test case. Projection onto the (x,y)-plane.



Figure 8: First test case. Projection onto the (y, 8)-plane.

As could be expected, the predicted set grows at each step, due to the accumulation of
prediction errors (IMAGESP gives only an outer approximation of the image of a subpaving, and
these approximations accumulate). Thus, at step [ = 6, the subpaving containing the possible
state is enclosed in [—6.85 m, —4.12 m] x [—2.25 m, —1.03 m] x [5.10 rad, 5.70 rad], the volume of
the subpaving has been multiplied by more than 2000 in six steps. This first example illustrates
the difficulty of performing realistic tracking without taking observations into account.

In the second test case, the conditions (initial configuration, wheel speeds) are the same as
in the first one, but now, at each step I, prediction is updated using observations. The tracking

algorithm is applied for {T' € [0 s,13 s|. At each step [, the predicted subpaving X[" is evaluated

using IMAGESP, and the corrected subpaving Aj.; is evaluated using Sivia. The corrected
subpavings are presented on Figures 9 and 10.

The evaluation of the 13 steps takes 10 s. In this test case, the observations allow the
uncertainty on the robot configuration to be kept within reasonable bounds. It would be possible
to improve these bounds, at a higher computing time cost, by reducing the precision factor e.
On Figure 10, the state seems to jump, this is only due to the fact that # remains into [0, 27].

The third test case illustrates the ability of the tracking algorithm to estimate the state of a
robot the configuration of which is only known to belong to one of possibly many disconnected
sets in configuration space. The room that the robot is supposed to belong to is the same as
before. Actual initial configuration is (x¢,y.,6), = (6,6.5, 7). Figure 11 represents two possible
states belonging to the subpaving 56\0, which consists of two disconnected subsets because of the

symmetry of the room, and is not presented here for the sake of brevity.

The tracking algorithm is applied, now with v, = Rw, = 0.6 m.s™! and vy = Rw, = 0.6 m.s L.

Figure 12 represents the projection in the (x,y)-space of the subpavings guaranteed to contain
the actual configuration at each step.

Both disconnected feasible state sets are tracked until information is available to prove that
one of them should become empty. Only corrected subpavings are presented. Figure 13 illus-
trates the measurements available to the robot for step | = 9, when the lower configuration set
is eliminated.



Figure 9: Second test case. Projection onto the (z,y)-plane.

Figure 10: Second test case. Projection onto the (y, 8)-plane.
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Figure 11: Third test case. Two possible initial states belonging to Aj.

1=20 =8 [=0

[=8 [=0

Figure 12: Third test-case. Projection onto the (x,y)-plane. One subset disappears at step 9.
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Figure 13: Third test case. Step 9 eliminates ambiguity.

The algorithm takes 17 s for 20 steps. It could thus be implemented for real-time tracking.
As long as the volume of the subpaving remains small (the configuration is fairly well known),
prediction and correction are fast.

6 Conclusions

Some properties of an interval-based recursive non-linear state estimation algorithm have been
illustrated on a non-trivial robot tracking example. At each estimation step, the estimator has
the important property of delivering a set guaranteed to contain all states that are consistent
with the measurements returned by the sensors to the robot. Even when disconnected sets of
configurations have to be considered, each of them is tracked until information is available to
eliminate it.

The localization procedure used in the tracking algorithm does not suffer some of the tra-
ditional drawbacks of previous localization methods. Tt delivers a guaranteed solution, unlike
the methods based on the extended Kalman filter (see [2], [12] and [13]) or bounded-error tech-
niques requiring a linearization, such as described in [1], [16], [14] and [4]. Tt does not need a
separate matching algorithm to recognize the environment prior to the localization, as in [3] and
[5]. Tt directly manages multiple hypothesis contrary to [6]. Tt does not request any separate
initialization procedure ([15] and [12]).

The ultrasonic sensors are known to be inaccurate; moreover, they often return outliers.
Thus, before actual real-time implementation, a robust version of the algorithm has to be tested.
The prediction step will remain unchanged, the correction step needs some modifications to
tolerate measurements that do not satisfy the initial hypothesis made on the noise. This is
currently under investigation.
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