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FUSION COEFFICIENTS AND RANDOM WALKS IN ALCOVES

MANON DEFOSSEUX

ABSTRACT. We point out a connection between fusion coefficients and random
walks in a fixed level alcove associated to the root system of an affine Lie
algebra and use this connection to solve completely the Dirichlet problem
on such an alcove for a large class of simple random walks. We establish
a correspondence between the hypergroup of conjugacy classes of a compact
Lie group and the fusion hypergroup. We prove that a random walk in an
alcove, obtained with the help of fusion coefficients, converges, after a proper
normalization, towards the radial part of a Brownian motion on a compact Lie
group.

1. INTRODUCTION

In the early nineties Ph. Biane pointed out relations between representation
theory of semi-simple complex Lie algebras and random walks in a Weyl chamber
associated to a root system of such an algebra (see for instance [2]). Actually,
random walks in a Weyl chamber are obtained considering the hypergroup of char-
acters of a semi-simple complex Lie algebra, with structure constants given by the
Littlewood-Richardson coefficients. A Weyl chamber is a fundamental domain for
the action of a Weyl group associated to a root system. If we consider an affine
Lie algebra, which is an infinite dimensional Kac-Moody algebra, a fundamental
domain for the action of the Weyl group associated to its (infinite) root system is a
collection of level k alcoves, k € N. Thus it is a natural question to ask if random
walks in alcoves are related to representation theory of infinite dimensional Lie al-
gebras. There are several ways to answer. A first one could be to consider tensor
products of highest weight representations of an affine Lie algebra. One would ob-
tain random walks in alcoves with increasing level at each time. This approach has
to be related to the very recent paper [16]. A second one is to consider the so-called
fusion product. In that case, one obtains random walks living in an alcove with
a fixed level. This is this approach that we develop in this paper. Fusion coeffi-
cients can be seen as the structure constants of the hypergroup of the discretized
characters of irreducible representations of a semi-simple Lie algebra (see [21] and
references therein). Following an idea of Ph. Bougerol' we point out that random
walks in an alcove are related to such an hypergroup. Thus one answers positively
to the question explicitly formulated in [11] : does it exist a link between repre-
sentation theory and random walks in alcoves ? In particular one can completely
solve the discrete Dirichlet problem on an alcove, for a large class of simple random
walks, as P. H. Berard did in [1] in a continuous setting, which is important to
obtain, for instance, precise asymptotic results. Thus we get a very natural new
integrable probabilistic model, i.e a probabilistic object which can ”be viewed as

1Private communication.



2 MANON DEFOSSEUX

a projection of a much more powerful object whose origins lie in representation
theory” [4]. We obtain in addition a better understanding of some previous results
concerning random walks in alcoves. Actually, the restriction to a classical alcove
of the Markov kernel of most of reflectable random walks considered in [11] is given
by fusion coefficients. This is due to the fact that these reflectable random walks
are mostly related to minuscule representations of classical compact Lie groups and
that in these cases fusion coefficients give the number of walks remaining in an al-
cove. In [11] Grabiner is interested in a class of reflectable walks, for which Gessel
and Zeilberger have shown a Karlin-MacGregor type formula in [10]. In our per-
spective, this formula has to be related to a Karlin-MacGregor type formula which
holds for the so-called fusion coefficients.

A random walk on a Weyl chamber converges after a proper normalization to-
wards a Brownian motion on a Weyl chamber, which can also be realized as the
radial part of a Brownian motion in a semi-simple complex Lie algebra. It is maybe
enlightening to notice that the orbit method of Kirillov provides a kind of interme-
diate between the discrete and the continuous objects. It establishes in particular a
relation between convolution on a Lie algebra and tensor product of its representa-
tions. Taking an appropriate sequence of convolutions on a Lie algebra one obtains
by a classical central limit theorem a chain of correspondences between random
walks in a Weyl chamber, tensor product of representations, convolution on a Lie
algebra and Brownian motion in this Lie algebra. We establish that convolution
on a connected compact Lie group involves fusion product of irreducible represen-
tations. We prove that a random walk obtained considering the fusion hypergroup
converges after a proper normalization towards the radial part of a Brownian mo-
tion in a compact Lie group. Thus, the paper should be read keeping in mind the
following informal chain of correspondences.

Random walk in ~ Fusion ~ Random walkin ~  Brownian motion
an alcove product a compact group in a compact group.

The paper is organized as follows. Basic definitions and notations related to rep-
resentation theory of semi-simple complex Lie algebras are introduced in section
3. The fusion coefficients are defined in section 4. We define in section 5 random
walks in an alcove considering the hypergroup of the so-called discretized characters
of irreducible representations of a semi-simple complex Lie algebra, with structure
constants given by fusion coefficients. Moreover we show how the discretized char-
acters provide a complete solution to a Dirichlet problem in an alcove for a large
class of simple random walks. We indicate precisely in section 6 how most of simple
random walks considered in [11] and [15] appear naturally in this framework. We
explain in section 7 how the fusion product is related to convolution on a compact
Lie group. We established in section 8 a convergence towards the radial part of a
Brownian motion in a compact Lie group.

Note that a discrete Laplacian on Weyl alcoves has been introduced in [18] in a
more general framework of double affine Hecke algebras. The Bethe Ansatz method
is employed to find eigenfunctions, which are proved to be the periodic Macdonald
spherical functions. Even if the underlying Markov processes are the same as ours,
his approach is quite different. We hope that ours, which explicitly involves the
fusion hypergroup, is enlightening in a sense that fusion coefficients are proved to
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play the same role for random walks in an alcove as the Littlewood Richardson
coefficients for random walks in a Weyl chamber.

Acknowlegments: The author would like to thank Ph. Bougerol for having made
her know the fusion product and its beautiful probabilistic interpretation.

2. THE CASE OF SU(2)

In order to facilitate the lecture of the paper we first begin to detail how the
simplest example of random walk in an alcove has to be related to fusion coefficients.
Let k € N* and T = {0, ..., k}. We consider the simple random walk (X (n))n>0
on Z with transition kernel P defined by P(z,y) = £1,_y=1, for z,y € Z. For
f:T =R, welet Af =P f— f. The discrete Dirichlet problem consists in finding
eigenvalues \ and eigenfunctions f defined on T'U 0T satisfying

Af+Af=0 onT
f=0 on 0T,

where 0T = {—1,k+1}. It is a consequence of the Perron-Frobenius theorem that
the smallest eigenvalue is positive, simple and that the corresponding eigenfunction
can be chosen positive on T'. Such a function is said to be a Perron-Frobenius
eigenfunction. The eigenfunctions corresponding to the other eigenvalues change
of sign on T. An easy computation shows that the eigenvalues of the Dirichlet
problem are 1 — 2y1(m), for m € {0,...,k}, with corresponding eigenfunctions fp,
defined by f, (1) = xi(m), i € T U T, where

F(l+1}2i7;1+1))

m+1 )
k+2

sin(
Xi(m) = —
sin(m
For m = 0, one gets a Perron-Frobenius eigenfunction. Actually the y;’s are the
so-called discretized character of the Lie algebra sl (C). The fact that they provide
a solution to the Dirichlet problem comes from the fact that here the restriction

of the Markov kernel P to T is the sub-stochastic matrix (%Ngl)ogi,jgk where the

NE’s are level k fusion coefficients of type Agl). Let us say how the asymptotic
for the number of walks in the alcoves obtained in [15] by Krattenthaler using the
explicit formulas of Grabiner, follows immediately in our framework. Classically,
we define a Markov kernel P letting

A - Xy(o)
P@9) = T 0 )

As T is supposed to be bounded, there exists a unique P-invariant probability
measure on each communication class of P and the solution of the Dirichlet problem
leads in particular to an estimation of the number of walks with initial state z,
remaining in 7" and ending at y after n steps for large n. Actually one can show
that the measure 7 defined on T' by

P\T(‘Tay)'

141
0
k+2

i€T,is a P-invariant probability measure. As the simple random walk is irre-
ducible with period equals 2, one obtains the following estimation for large n
4 1 +1 Y+ 1)

- 2n4r o; < :
—2+/€(2X1(0)) sm(7rk+2)sm(7rk+2

(i) = 2 sin?(

24+ k )

B () ~
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where r = 0 when y — x € 2Z and r = 1 otherwise.

3. BASIC NOTATIONS AND DEFINITIONS

Let K be a simple, connected and compact Lie group with Lie algebra £ and
complexified Lie algebra g. We choose a maximal torus T' of K and denote by t its
Lie algebra. We consider the set of real roots

R={aet' :3X €g\{0},VH € t, [H, X] =ia(H)X}.
We choose the set 3 of simple roots of R and denote by R, the set of positive roots.

The half sum of positive roots is denoted by p. The dual coxeter number denoted
by hY is equal to 1+ p(8), where 6 is the highest root. Letting for a € R,

go ={X€g:VHet, [H X]=1ia(H)X},

the coroot " of « is defined to be the only vector of t in [ga,g—q] such that
a(a¥) = 2. We denote respectively by @ and Q" the root and the coroot lattice.
The weight lattice {\ € t* : AM(a¥) € Z} is denoted by P. We equip ¢ with a

K-invariant inner product (.|.), normalized such that (§V|#¥) = 2. The linear
isomorphism
vt — e,
h— (hl].)

identifies £ and £*. We still denote by (.|.) the induced inner product on £*. Note
that the normalization implies v(#¥) = 6. The irreducible representations of g
are parametrized by the set of dominant weights P, = P N C, where C is the
Weyl chamber {\ € t* : (\,a") > 0 foralla € X}. Let V) be the irreducible
representation of g with highest weight A € Py and chy be the character of this
representation. It is defined by

Ch)\ = Z Kfeﬁ,
pep

where € is defined on t by e(z) = €*™#(®) for z € t, and Kf is the dimension of
the S-weight space of V. We denote by dim(X) the dimension of the representation
V, ie. dim(A\) = chy(0). We have the following Weyl dimension formula (see for
instance [12]).

(N — (@400
dim(\) a!}g o)

The Weyl character formula states that for any x € ¢,

_ 1 2im(w.(A+p)—p,z)
chy(z) = Moon (%) W;V det(w)e ,

where W is the Weyl group i.e. the subgroup of GL(t*) generated by fundamental
reflections s,, a € X, defined by s,(8) = 8 — B(aY)a, B € t*. When ) is not
dominant, we let chy = det(w)ch, if w(p + p) = A+ p for p a dominant weight.
The Weyl character formula remains obviously true for a non-dominant weight.
The Littlewood-Richardson coefficients Mfﬂ, for A\,v,B8 € P4, are defined to be
the unique integers such that for every x € t

(1) chy (z)chy(z) = Z Mfﬁchg(x).
BePy
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4. FUSION COEFFICIENTS

For every y € t*, we write t, for the translation defined on t* by t,(z) = = + v,
x € t*. For k € N*, we consider the group Wy, generated by W and the translation
t(e+nvyo- Actually Wy is the semi-direct product W x Tij4pvyar, where M = v(QV)
and Tpnvymr = {ttnvye : ¢ € M}. Thus for w € Wy, one can define det(w) as
the determinant of the linear component of w. The fundamental domain for the
action of Wy, on t* is

A ={ et : Aa))>0and \(0Y) < k+h"}.
Let us introduce the subset Pf of P, defined by
Pi={\e Py :\0Y) <k},
and the subset C¥ of C defined by
Ch={reC:\BY) <k}

Pf is called the level k alcove. The level k fusion coefficients NV f S for Ay, B e P_’ﬁ,
are defined to be the unique non negative integers such that

(2) Vo e P, xa(o)xy(0) = > NY_xs(0).
BePy
where x is the level k discretized character, which is defined by

o+p
k+hY
The Weyl character formula shows that for any A € P and w € W,

xa0) = chy (= w1 (ZEL)), o € PE.

(3) Xw(A+p)—p = det(w)X)\v

which implies in particular that xyx =0 if (A + p) is on a wall {z € t* : z(a¥) =0}
for some « € 3, or on the wall {x € t* : (0V) = k + hV}. Unicity of the fusion
coefficients follows from the fact - proved for instance in [13] - that the vectors
{(xﬂ(a))oepi, B € Pk} are orthogonal with respect to the measure defined in
proposition 5.6. The non negativity of the fusion coefficients is not clear from this
definition, which is the one given in [13]. Nevertheless, fusion coefficients can be
seen as multiplicities in the decomposition of some ”modified products” of repre-
sentations : the truncated Kronecker product, appearing in the framework of rep-
resentations of quantum groups, and the fusion product, defined in the framework
of representations of affine Lie algebras. In these frameworks, the non negativity of
the fusion coefficients follows from the definition (see for instance [9]). Moreover,
they are proved to satisfy the following inequality, which we’ll be useful for the last
section. For any \,v,8 € Pf,

(4) Nfﬂ < Mf,v'

It follows for instance from identities (16.44) and (16.90) in [6]. Note that we have
also the following inequality

8 B
M < KPA

It follows for instance from the Littelmann path model for tensor product of irre-
ducible representations (see [17]).
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5. MARKOV CHAINS ON AN ALCOVE

Let v € P_’f_. From a probabilistic point of view, discretized characters provide,
by definition of the fusion coefficients, a basis of eigenvectors of the sub-stochastic
matrix

1

B
dim(v) N)\,y)/\,ﬁePf .

(
Actually for o € P, mxw(a) is an eigenvalue with a corresponding eigenvector
(Xg(a))ﬁepi. For XA € P¥, x»(0) is a non negative real number. Actually we have

the following formula (see for instance [13]).

0 Ovtpla)
SIN |\ T~ 7v

®) )= [ i)
acRr, S (”kihV)

The quantity x(0) is the so-called asymptotic dimension, which appears naturally
in the framework of highest weight representations of affine Lie algebras. Let v €
Pf. We define a Markov kernel ¢, on Pf by letting

x5(0) k
6 MNB)=NZ 20 for X\, B € Pk
( ) q’y( ) Ay a (O)X'y(o) +
In other words ¢, is defined by the formula

xa(9) x4(9) xs(9) K
7 = g\, B , Ao€ Py,
™ w000 ~ 2 "G ’

k
BePk

Definition 5.1. For ~ € Pf, a random walk in the level k alcove, with increment
v, is defined as a Markov process in P_"f, with Markov kernel q.

The definition of the Markov kernel ¢, implies that for o € P¥, X2(9) g an eigen-

x~(0)
ii({é?)ﬂ@i' Thus for any positive

value of ¢,, with a corresponding eigenvector (

integer n, one has for \,o € Pf

xa(o) xy(o) DAL ﬂ)Xﬁ(U)
n YN ’
(050 x5(0)
which is equivalent to say that for any A, 5 € Pf,
n 8 x5(0)
q ()\a /3) =N n. M\n/n’
ol A XA (O)X;‘(O)
where the coefficients NV f oy for A\,v,pB € Pf, are the unique integers satisfying
X (0) = D7 NL, xs(0),
BePk

for any o € Pf. We denote by Kfn the dimension of the S-weight space of VV®",
i.e.

(8) chl =" K ef.
pep
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Let us consider a random walk on the weight lattice P, whose transition kernel p,
is defined by
K=
ANp)= ——
We consider the subset .S, of P of weights of V,,i.e. Sy ={8€ P Kfj > 0}. In the
case when + is minuscule S is {w(v) : w € W} and the random walk is a simple
random walk with uniformly distributed steps on S,. The following proposition
states that in that case fusion coefficients give the number of ways for the walk to
go from a point to another, remaining in Pf.

 \BEP

Proposition 5.2. Let B, )\ € Pf and v be a minuscule weight in Pf. Then for any

* B
n €N, N/\mn
in P_’ﬁ and ending at B after n steps.

is the number of walks with steps in S, initial state \, remaining

Proof. The following formula is known as the Brauer-Klimyk rule. It is an imme-
diate consequence of the Weyl character formula. For A,y € P, it says that

chychy = Z Kfch)\ﬂg.
Bepr
The highest weight v being minuscule 5(6Y) € {0,—1,1} for every § such that
KZ > 0. Thus (A + B)(0") € {k,k — 1,k + 1} and (A + B)(") > —1 for every
a€X. As xg =0 when (B+p)(0Y) =k+hY or (B+ p)(«¥) =0 for some simple
root a;, we obtain that

e = Y Klaes= Y K
ﬁ:AJrﬁEPJ’i ﬁ:ﬁePf

As v is minuscule K € {0,1}. Thus

N6 _J 1 ifBePfand K >0
A 0 otherwise,

which implies the proposition. ([

Proposition 5.2 implies that when v is minuscule, the sub-stochastic matrix

1 s
(dlm(’y) Nkfy)A,ﬁGPi

is the restriction of p, to the alcove Pf. As noticed after identity (3), the discretized
characters are null on the boundary of the bounded domain {X € P : A + p € A},
which is {A\ € P: A+ p € Ag} \ Pf. Thus one obtains, when 7 is minuscule, the
following important corollary.

Corollary 5.3. Let us consider for v € Pf a discrete Dirichlet problem, which
consists in finding eigenvalues A and eigenfunctions f defined on {x € P:ax+p €
Ai}, satisfying

Ay f(@)+Af(x)=0 ifzePf
f(@) =0 ifo ¢ Pk,

where Ay f =p,f — f. If v is minuscule then
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(1) for o € PY,
1
1——
dim(7)
is an eigenvalue, with a corresponding eigenfunction f, defined by

fU(ﬁ):XB(U)a BGPJ]?,

(2) the eigenfunction fo is a Perron-Frobenius eigenfunction. In particular, the
random walk in a level k alcove with increment v is a Doob-transformed
transition kernel of p.

Xy (J)v

Proposition 5.2 remains true in the framework of Littelmann paths. In that
framework, it includes the case of standard representation of type B. In the follow-
ing a path 7 defined on [0, T, for T" € R, is a continuous function from [0, 7] to t*
such that 7(0) = 0. If 7 is a path defined on [0, 7] we write 7 € C (resp. w € C¥) if
7(t) € C (resp. w(t) € C¥) for every t € [0, T]. For two paths 7 and 7 respectively
defined on [0, T3] and [0, T], we write 7y * w2 for the usual concatenation of 7 and
ma. Note that 71 x 79 is a path defined on [0,77 + T2]. For A € P;, we denote
by 7 the dominant path defined on [0,1] by mx(t) = tA, ¢t € [0,1] and by By
the Littelmann module generated by 7). More details about the Littelmann paths
model for representation theory of Kac-Moody algebras can be found in [17]. The
important fact for us is that for any dominant A and ~ one has

Ch)\ Ch»y = Z Ch)\_,_ﬂ.(l) .
TEBTy: mAxTEC
Let us recall that a weight v € Py is said to be quasi-minuscule if S, = {w(y) :
w e W}u{0}.

Proposition 5.4. Let 3, )\ € Pf and v be a minuscule weight or a quasi-minuscule
weight such that B(0Y) € {0,—1,1} for every weights B of the representation V..
Then for any n € N, ny

and remaining in C*.

*70

is the number of paths in By x (Bmy)*™ ending on [

vn

Proof. Littelmann theory implies that

XAXy = Z XAtm(1)-
TEB®y: mA*TEC
When +v is a minuscule weight, the Littelmann module B, is {mg : § € W~}.
When 7 is quasi-minuscule every paths 7 in the Littelmann module Br., are of the
form g for 8 € W+ or are defined by 7(t) = —otlc1 + at — Dl t e [0, 1],
for a € ¥. Thus, if 7 € B, one has for every t € [0,1], (mA(1) + 7(¢))(6Y) <
E+1.If (A +7(1))(0Y) = k+ 1 then xx1r() = 0. As a(6Y) > 1 for all a € X,
A+ m(1))(8Y) < k implies (A + 7(t))(8") < k for every t € [0,1]. One obtains,

XAX~y = Z Xt (1)

TEBT: mA*TECK

O

The first formula of the following proposition is well known for n = 1. It is
a consequence of the Kac-Walton formula (see [19]). For n € N*, proposition 5.2
implies that when + is minuscule, it turns to be the Karlin-MacGregor type formula
obtained for affine Weyl group by Gessel and Zeilberger in [10] in the framework of
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reflectable walks. The second formula can be found as an exercise in chapter 13 of
[13].
Proposition 5.5. Let A\, B be dominant weights in the alcove Pf. Then

w —(A
(1) N A — ZwEW det(w) K %gf-i-ﬂ) ( ""P)7
(2) Nf\iy,y = Nﬁﬁt,y, where 'y is the highest weight of the dual representation Vi

Proof. The proof rests on the Weyl character formula. We let A(z) = >,y det(w)e

for any = € t*. We have
A(A+ p)chl

Z det(w)Kﬁnew(’\“HB
weW, geP
Z det(w)Kﬁnew(’\“"’B)

weW, BeP

ZKﬂ AN+ B+ p).
Ber

The Weyl character formula implies

ChAChZ = Z K'[yi,nChA-i-ﬂ’
Bepr
which is an extension of the Brauer-Klimyk rule. For g € P, it exists w € W} such
that w(A+ B8+ p) € Ag. f w(A+ B+ p) — p ¢ Py then w(A+ 3+ p) is on a wall
{z € t* : so(x) = x} for some o € ¥ and xa45 = 0. If wA+ B+ p)(0Y) =k +h"
then w(A+B4p) = teynvyose(w(A+B+p)) and xayp = 0. If it exists two distinct
wy, we € Wy, such that wy (A+ 8+ p) = we(A+F+p) € Ag then wglwl(/\jLﬂer) =
A+ B+ pand xxa4p = 0. Finally if xa43 # 0 it exists a single w € W}, such that
w(A+ B+ p) — p € PF and we get that

Xt = 30 Y det(w) ke -Orely
Bepk weWy

which proves the first identity. Let us prove the second one. The affine Weyl group
being the semi-direct product T{x4xvyar x W, the first identity for n = 1 implies

—-(x
Nfﬁ _ Z det(w)K’t)/(k+hV)zw(ﬂ+p) (A+p)
zeEM,weW

Z det(w)K;U(B-irp)—L(HhV)x(>\+P)
zeEM,weW

— A
Z det(w)KfﬂJ WE (g n Ve (A+P)
zeEM,weW

Z det(w w(/\-i-p) (B+p)
weWy

AT
*Nﬂ,"v'

O

In the following proposition |P/(k + h")M]| is the cardinal of the quotient space
P/(k+h")M

w(z)
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Proposition 5.6. The measure w defined on Pf by
1

7
N=— 4sin®(———— (A
aERy
for any X\ € Pf, s a g -tnvariant probability measure.

Proof. Let us consider the measure y defined on P¥ by u(\) = x3(0), A € P,
which is proportional to the measure 7. Let us show that p is g,-invariant. We

have
Do NToo= D0 N
AeP§ AeP§
= XBXt~;
Thus
Xt'y(o)

As the longest element of W send p onto —p, xt~(0) = x~(0), and p is ¢,-invariant.
For a proof of the fact the 7 is a probability measure, see for instance theorem 13.8
in [13]. O

Note that the probability measure 7 is not g,-reversible in general. It is the case
when V, and its dual representation V' are isomorphic.
Classical results on convergence of Markov chain toward the invariant probability

measure provides asymptotic approximation of the fusion coefficients. We let for
AE P,
T
s =] sin(7——7v (A + pla)).
acRy

Note that the Markov kernel ¢, is not necessary irreducible and aperiodic. As all
Markov chains that we’ll consider in section 6 are irreducible, we suppose that ¢,
is irreducible in the following proposition.

Proposition 5.7. Suppose that q, is irreducible with period d > 1. Let A and B be
dominant weights in the alcove Pf. Let r be an integer in {0,...,d — 1} defined by

m =1 mod (d) for some integer m such that mem > 0. Then,
(1) k#r mod (d) implies mek =0,

B dx ;"7 (0)
(2) Nxqmarr 2 rorym s(A)s(6).

Proof. The application x — x,(0) is non negative on PJ’f. For z,y € Pf and n € N,
we have the following equivalence

ay(z,y) >0 <= N}, >0.

z,y,m

Thus the first assertion comes from usual properties of periodic Markov chains.
As 7 is a g,-invariant probability measure, classical results on finite state space
periodic Markov chains also implies

xs(0) s
m ——— 0 nd+r — dr(B),
n—-+4oo X)\(O)Xzyld—ﬁ“(o) Ay,nd+

which is equivalent to the second assertion. (I
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Proposition 5.8. Let B, ),y € Pf. Suppose that v be a minuscule weight or
a quasi-minuscule weight such that u(6Y) € {0,—1,1} for every weight i of the
representation V. Suppose that q is irreducible with period d. Then for every
B8 e P_’ﬁ, the number of paths of Bmy * (Bmy)*"*" ending on B and remaining in
Pf s equivalent to

andJrr(O)
S s(Ns(6),
|P/(k + hV)M]|
where r is an integer in {0,...,d — 1} defined by m =r mod (d) for some integer
m such that vam > 0.

6. APPLICATIONS

In this section we explicit which fusion products have to be considered to recover
reflectable random walks studied in [11]. Moreover, we explain how to get without
no additional work the asymptotics obtained by Krattenthaler in [15] for the number
of walks between two points remaining in an alcove. Actually our model for the
type B with standard steps differs slightly from the one considered by Grabiner.
Moreover our models don’t include random walks with diagonal steps in an alcove
of type C studied in [11].

The results presented in this section only use the knowledge of the Perron-
Frobenius eigenfunction given by the corollary 5.3. It would be interested to con-
sider whole the solution of the Dirichlet problem in order to study more precisely
asymptotic behaviors of the conditioned chain.

Let eq,..., e, be the standard basis of R™ which is endowed with the standard
euclidean structure denote by (.,.). The inner product identifies R™ and its dual.
In the following we consider a random walk (X (k))r>1 on R™ with standard pos-
itive steps : its steps are uniformly distributed on the set {eq,...,e,}, a random
walk (Y (k))k>1 on R™ with standard steps : its steps are uniformly distributed on
the set {£eq,...,+e,} and a random walk (Z(k))g>1, whose steps are uniformly
distributed on the set of diagonal steps {1 (+e; £--- £ e,)}. The Markov kernels
of (Y(k))r>1 and (Z(k))r>1 are respectively denoted by S and D.

6.1. Alcove of type A. When K is the unitary group SU(n), we have R = {e; —
ej,i 75_7}, Y= {ei—ei_ﬂ,i = 1,...,77,—1}, P, = {)\ e R™: Z:l 1)\ =0, \i— N1 €
N}, 0V =€ —en, PP ={NePy : M =Ny <k}, p=323" (n—2i+1)e; and
h =n.

Positive standard steps. The random walk (X (k))k>0 can be decomposed into a

deterministic walk and a random walk on the hyperplane H = {x € R" : Y """ | x; =
0} as follows.

X(k) = X (k) = X(k)e + X (k)e,
where e = 37" | e; and X(k) = 1 3" | X;(k). The random walk (X (k))r>0 is a
deterministic random walk and (X (k) — X (k)e)x>0 is a random walk with uniformly

distributed steps on {e; — %e, N Ee} which is the set of weights of the
standard representation of type A,. Let us denote by P its Markov kernel. The
standard representation is a minuscule representation. Thus by proposition 5.2, for
y=-e — %e, the Markov Kernel g, defined by (7) is

Xy(o)

q~ (‘T’ y) = Yo (O)X'y (0>

nP|PJ’i($ay)a T,y € Ha
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where
sin(ﬂimi_zjﬂ_i))
©) wo= [ 2 en
1<i<j<n Sm(”m)
The weights lattice is generated by e; — %e, B %e. The Markov kernel g, is

irreducible with period equals to n. Let x and y be in Pf. fy—z=>" nilei— %e)
then P"IEi (x,y) > 0, where m = ). n;. We define the integer r € {0,...,n —1} by
m =1 mod (n). Thus proposition 5.7 implies the following asymptotic for large
teN.

Proposition 6.1. For larget € N, x,y € Pf, the number of walks with steps in
{e1 — %e, B %e}, going from x to y and remaining in Pff, after tn + r steps,
is equivalent (up to a multiplicative constant which doesn’t depend on (x,y)) to

n Sintn-i-7‘(7r 1 )

| | — ikl sin(ﬂ—xi i B i)sin(w—yi — Yt Z)
- tnt i—1 | | )
s sin” T(W:H_k) 1<i<i<n k+n k+n

Diagonal steps. The random walk (Z(k))r>0 can be decomposed as the previous
one.

Z(k) = Z(k) — Z(k)e + Z(k)e.

For m € {0,...,n}, the m-th exterior power of standard representation is a minus-
cule representation with highest weight > | ;— e and weights e;, +- e, — e
for 1 <i; < --- <1y <n. One notices that the random walk (Z (k) — Z(k))x>0 has
uniformly distributed steps on the set of weights of the m-th exterior power of the
standard representations for m = 0,...,n. If we denote by R its Markov kernel and

consider the fusion coefficients Nf - where v, =Y " € — %e, PWRS Pf, propo-

sition 5.2 implies that > _, vam = 2"Rps (A, ). Thus one defines a Markov
chain on P_{f letting

Xy (0)
Xa(0) 3210 X (0)

where x, is given by (9). This chain is irreducible and aperiodic. Thus proposition
5.7 implies the following one.

q(@,y) = 2"Rp+(2,y), z,y € H,

Proposition 6.2. For larget € N, x,y € Pf, the number of walks with steps in
{ei, +---+ei, —Te, 1 <0y < <y <nyme{0,...,n}}, with initial state x,
ending at y after t steps, remaining in P_’f_, s equivalent to

1+j—i)

[ZH H %1)] H &n(ﬁTj))sm(ﬁ%)

Sln(ﬂ.k n 1<i<j<n

6.2. Alcove of type C. When K is the symplectic group Sp(n), we have R =
{%(iei +e;), £v2¢;}, ¥ = {%(61 —e2),..., \%(en_l —en),V2e,}, Py ={\ €
R™ : V2, € N,v2(\i — A1) € N}, 0V = V2e1, PP = {\ € Py : V2\ < K},
p= %gzi(n—i—i—l)ei and hY =n+ 1.



FUSION COEFFICIENTS AND RANDOM WALKS IN ALCOVES 13

Standard steps. The random walk (Y(k))g>o0 has uniformly distributed steps on
{xey,...,+e,}, which is the set of weights of the standard representation of type
C,. This standard representation is a minuscule representation. Thus by propo-
sition 5.2, for v = ey, the Markov Kernel ¢, defined by (7) is in this case defined
by

Xy (0)

2nS\Pi(:r7y)a T,y € Rna

where x,(0) equals

. I(II IJ)"’ (3—19)) . f(m +IJ)+ (2n+2—j—1)) no . V2x;+n—i+1
H sin(m ] ) sin(7 ] ) H sm(ﬂikﬁmﬂ )
1/ . . —a
. 3(j—1) . —(2n+2 j—1)) sin(r2 i+1
1<i<j<n sin(m&557) sin(m 2= —) =1 (T i)

Moreover, the chain is irreducible with period 2. Thus one obtains the following
proposition.

Proposition 6.3. Let x,y € P_’f_. We write y —x = Y., nse; and define r by
>-;ni=r mod (2). Then the number of standard walks from x to y remaining in
Pf after 2t 4+ r steps for large t, is equivalent to

[sin(wk‘fnt:’l) i sin(ﬂ%)sin(ﬂ%) 2t4r
ST ) s S (T zgs) Sn(Ta s
<11 sin(w%(%_xj)Jr%(j_i)))sin(w%(%+$j)+%(2n+2_j_i)))
- E+n+1 E+n+1
1<i<j<n
V2z;+n—i+1 Wiy + 50— 1)
stm [—— ) H sin(7m [—

1<i<j<n

L( ) 1 _4i_3 n .

yity;) +5(2n+2—75—1) 2y +mn—i+1

X H sin(7r‘/§ 2 )Hsin(w\/_szrn s ).
k4+n+1 k4+n+1

1<i<j<n i=1

Alcove of type D. When K is the orthogonal group SO(2n), we have R = {+e; +
ej}, ¥ ={e1 —e2,...,6n_1 —€n,n_1 + e}, P = {A €R" : N1+ A, €
N, )‘i_)‘i-l—l eN,7 € {1,...,71—1}}, oV =e1 + e2, Pf = {)\EP+ A+ Ao Sk/’},
p=>1(n—1i)e; and hV =2n —2.

Standard steps. The set of standard steps {+eq,...,+e,} is also the set of weights
of the standard representation of type D,,, which is a minuscule representation with
highest weight e;.

Proposition 6.4. Let x,y € Pf. We write y — x = Z?:l kie; and define r as
previously. Then the number of standard walks from x to y remaining in P_’f_ after
2t + r steps for large t, is equivalent to

[ﬁ sin(7rk++n_2) sin(m k+2 )} 2t4r

i=2 Sin(ﬁ k-i-iQ_nl—Q) Sin( ELQ_E)
L, x4 L, it x;+2n—j5—1
X H sm(ﬂ'—k o -2 ) H sin(rm [ — )
1<i<j<n 1<i<j<n
. Yi—y;ti—i . Yityi+2n—j5—1
X —_—
H sin(m P — ) H sin(m [ — )

1<i<j<n 1<i<j<n
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Diagonal steps. The two half spin representations of type D,, have respective highest
weight %(61 +---+e,) and %(el + -+ en_1 —ep). They are minuscule and their
weights are respectively {3 > €e; : ¢ € {—1,1},[[;& = 1} and {33, cie;
€ € {—1,1}, ;& = —1} . Thus the set of diagonal steps {£3ey & - & fe,} is
the disjoint union of sets of weights of the two half spin representations. Similar
arguments as previously show the following proposition.

Proposition 6.5. Let x,y € Pf. The number of walks with diagonal steps from x
to y remaining in Pf after t steps for large t, is equivalent to

Lezn—ijy nod gin(r A=) 1 2640

. 142n—i—j .
sin(m k+721n12]) H sin(m kr2n—2 H Fr2n—2
' T - o - T
1<i<j<n Sm(ﬂkizﬁjz) 1<i<j<n—1 Sm(”kizﬁjz) i=1 Sm(ﬂkf?nl?)
L, Tz —1 ., it xp+2n—j5 —1
X S _— S
_H_ ) H e s R
1<i<j<n 1<i<j<n
. Yi— Yyt . Yty +2n—j—i
X sin(mp—>—>"— sin(7m ,
H ( k+2n—2 ) H ( k+2n—2 )
1<i<j<n 1<i<j<n

where v = 1 if the coordinates of y — x are half integers and r = 0 otherwise.

Alcove of type B. When K is the orthogonal group SO(2n + 1), we have R =
{xe;tej, te;}, X ={e1—ea,...,en_1—€n, e}, P={A€R": N, e N, \;=Xi+ 1€
N,i€{l,...,n—1}},0Y = e1+es, Pf ={N € Py : \j+Xo <k}, p=,(n—i+3)e;,
and hY =2n — 1.

Standard steps. The set of weights of the standard representations of type B, is
{£e1,...,%e,,0}. Let us consider the Littelmann module Br,. We have B,, =
{7te,,mo} where 7o is defined on [0,1] by mo(t) = —tenlicy + (1 = t)enlisy,
i.e. mo is the concatenation of m_., and m., in the sense of Littelmann. This
standard representation is a quasi-minuscule representation satisfying hypothesis
of proposition 5.4. Its highest weight is e;.

Proposition 6.6. Let z,y € Pf. For large t the number of paths from 7, x (B, )t
ending at y and remaining in Pff s equivalent to

. -+ . ; . —i
sin(7m kf%"_l) ﬁ Sin(7 5=y ) sin(m 13-7-;1—1)
sin(m g2y) i3 ST ) sin(T ety
o ri—xi4j—i, . itz +2m+l—i—j yr ., Titn—%
< 1 s ) sine === ) [ [sin(r 5 =)
1<i<j<n i=1
. . . .oon 1
oYy tg - Yty H2n4+ 1l -0 Yit+n—;
X e :
H sin(7m [ — ) sin(w [ — ) Sm(ﬂ_k+2n—1)
1<i<j<n i=1

Diagonal steps. The spin representation is a minuscule representation with highest
weight (e1 4+ -+ + €,). Its weights are {3 . eie; : ¢ € {—1,1}}. Thus the
diagonal steps are the weights of the spin representation and we have the following
asymptotic.
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Proposition 6.7. Let x,y € Pf. The number of walks with diagonal steps from x
to y remaining in Pf after t steps for large t, is equivalent to

[ " sin(m 25 ) H sin(m 2350 ) 1 264
_ il i j
i=1 Sm(”%) 1<i<j<n sin(7 55, —5)

n

i Ty i j+2n+1l—-1—7 : i +n—
X H sim(ﬂ'L—’—jZ)sm(ﬂ'aj trjtentlor j)Hsm(ﬂ$)

1<i<i<n k+2n—-1 k+2n—-1 Pl k+2n—-1
Lo Yimyitd—d gty Al i oy gt g
X 1<g<n sin(m P — ) sin( [ — )ESIH(Wk o 1),

where v = 1 if the coordinates of y — x are half integers and r = 0 otherwise.

7. CONVOLUTION ON K AND FUSION COEFFICIENTS

In this section K is supposed to be simply connected. The Kirillov orbit method
consists in establishing a correspondence between representations of K and coad-
joint orbits on £*. For A\ € t*, we denote by O(X) the orbit of the coadjoint action
of the group K on A. The fifth rule in the "User’s guide” of [14] is the following: if
what you want is to describe the decomposition of the tensor product of V) ® V,,
then what you have to do is to take the arithmetic sum O()\) + O(u) and split into
coadjoint orbits. In this section, we establish that a similar rule stands for fusion
product and convolution on K. if we denote by O(u) the orbit of the adjoint action
of K on u € K, informally the rule is : if you want to describe the fusion product of
Vy and V,, then you have to take the product O(exp(r—*(\)))O(exp(v~(u))) and
split into adjoint orbits for the adjoint action of K on itself. Actually the fusion
hypergroup can be seen as an approximation of the hypergroup of conjugacy classes
of K.

For o € ¥ the fundamental reflection s,v is defined on t by s,v(z) = = —
a(z)aY, for € t. We consider the extended affine Weyl group W generated by
the reflections s,v and the translations tov by oV, for o € ¥. The fundamental
domain for its action on t is

A={zet:ai(x) >0, 0(zx) <1}.
Notice that
v(A) ={z et : (z|ay) >0, 2(0Y) < 1},
where v has been defined as the linear isomorphism
vt —
h— (h|.).
We can suppose without loss of generality that K is a subgroup of a unitary group.

The adjoint action of K on itself, which is denoted by Ad, is defined by Ad(k)(u)
kuk*, k,u € K. We consider the exponential map exp : ¢ — K defined by exp(z) =

e2™ where e is the usual matrix exponential. We denote by A the kernel of the
restriction exp), and by A* the set of integral weights {\ € t* : A(A) € Z}, which

2imA(z)

is included in P since a¥ € A (see [5]). The application exp(z) — e is
well defined, for z € t, when A € A*. The irreducible representations of K are
parametrized by the set AT = A* N C. Let py be the irreducible representation
with highest weight A € A%. The character of py is defined as the trace of py(k),
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k € K. We have tr(py(exp(z))) = chy(x), x € t. The Peter-Weyl theorem ensures
that a probability measure p on K which is invariant for the adjoint action of K,
is caracterized by the Fourier coefficients

/K tr(pa(k™")) p(dk), for X € A%,

and that a sequence of Ad(K)-invariant probability measures on K weakly con-
verges towards a measure if and only if the Fourier coefficients converge towards
those of this measure. We denote by K/Ad(K) the quotient spaces of conjugacy
classes. Recall that K/Ad(K) is in one to one correspondence with A when K is
simply connected (see [5]).

Proposition 7.1. Let & and v be in v(A). Let (§n)n>1 and (Yn)n>1 be two se-
quences of elements in Py such that for every k € N*, &, € P_’f_, Vi € P_’f_, and such
that %ék and %'yk respectively converge to € and vy, as k tends to +0o. Let us define
the sequence (ux)k>1 of probability measures on v(A) by

,U/k = Z q’Yk(gkaﬁ)(s%a
BePy

where g, is the Markov kernel of a random walk in P,:r, defined in definition 5.1,
with increment y,. Then (pg)k>1 weakly converges toward a measure fv on v(A),
satisfying

Ch/\(—y_l(f)) Ch,\(_V_l(’Y)) :/ Mu(dﬁ),
(A)

dim A dim A dim A
for every dominant weight A € A.

Proof. Let A € A. Note that A(8¥) < k for k sufficiently large. The weyl character
formula implies

xx(0) xx(0)
XA (&) XA (k) = xe (N Xy (A) :
S Xﬁk(o) T XVk(O)
Thus
Xa (&) xalw) Z NP x5(0) XA(0) xa(B)
dim(}) dim(A) £ 7 X e, (0)X, (0) dim(X) dim(A)”
+
and
LG KNG NNy e NElE T
dim(\) dim(\) T dim(\) oy dima R
As 2 ((0)\)) tends to 1 as k goes to infinity, proposition follows.
(Il
For A € A% the function g5 : K — C defined by ¢x(u) = 42592 u € K,
satisfies
(10) Vuve K, [ wakuk ) dk = vy s,
K

where dk is the normalized Haar measure on K, i.e. the function v, is spherical.
Thus proposition 7.1 establishes a correspondence between fusion coefficients and
convolution on K. We have the following corollary.
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Corollary 7.2. Let & and vy be in v(A). If  is the limit measure of proposition 7.1
associated to & and v, and u is a random variable distributed according to the nor-
malized Haar measure on K, then the random variable exp(v~1(&))uexp(v=1(y))u*
has the same law as uwexp(v=1(B))u*, where (3 is distributed according to p.

Let (x)r>1 be a sequence defined as in proposition 7.1. For k > 1, corollary 7.2
implies that a random walk in Pf, with increment v, can be seen as an approxi-
mation of an Ad(K)-invariant random walk in K, with steps uniformly distributed
on O(exp(r~1(v))). Notice that Dooley and Wildberger have established a cor-
respondence between convolution on a compact group and convolution on its Lie
algebra, and thus between convolution on a compact group and tensor product
of representations. They called this correspondence the wrapping map. It rests
principally on the fact that Gelfand pairs (K x K, K) and (K x ¢, K) have similar
spherical functions. Nevertheless measures on the group K that they obtain from
the wrapping map are signed measures. It is quite noticing that the measures ob-
tained considering fusion product, instead of tensor product, are positive measures
on K.

Ilustration. Let us illustrate corollary 7.2 with the example of K = SU(2). In
that case,

t={M e My(C): M+ M* =0},

2imx

T:{Tz:(eo

There is a single positive root «, which is defined by «(H,) = 2z, € R. Thus
a¥ = 0¥ = Hy. The normalized inner product is defined by (M|N) = tr(M N*).

€ 1

Sm):xe[o,u}, t:{sz(ig 0 ):xeR}.

A={Hy:xcl0,1]},

T

o) = (( 5 S )0

Irreducible representations of SU(2) have highest weight A such that A(Hy) =n €
N. In that case, we write n rather than A in the level k fusion coefficients., which
are given by

e

s 1 ifli—j|<s<min(i+j,2k—i—j), andi+j+ s €2Z
NS = .
v 0 otherwise.

For any X in SU(2) it exists a single « € [0,1] such that X = kexp(H,2)k™!
for some k € SU(2). Let us call it the radial part of X. Corollary 7.2 implies
that if U is distributed according to the Haar measure on SU(2) the radial part of
UT,;sU"'T, s, for 2,y € [0,1], has a density defined on R by

1 wsin(wz)
a —1 u,v ? E R,

2 sin(mz) sin(my) ™ =), 2

where u = min(|z—y|, min(z+y, 2— (z+y))), v = max(|z—y|, min(z+y, 2—(x+y))).
This result should to be compared with the example of SU(2) given in [7].
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8. UNITARY BROWNIAN MOTION AND FUSION COEFFICIENTS

A Brownian motion (b;)¢>0 on K is defined as an Ad(K)-invariant continuous
Lévy process on K whose semi-group (pu¢):>0 satisfies for any A € A4,

/ Ua(g)ue(dg) = e IHeIP=lelll -y > g,
K

where ¢ € RY%. The radial process (a;)¢>o associated to (b;);>o is defined as the
unique continuous process on A such that for any ¢ > 0 it exists £k € K such
that b; = kexp(a:)k*. Notice that continuity is important for the definition to
make sense. Actually, when K is simply connected, the conjugacy classes are in
one-to-one correspondence with the fundamental domain A and for a given process
(%¢)ter, , the associated radial process is defined with no ambiguity. In general, we
know that the map from (K/T, A) to K, which sends (g7, v) to g.exp(v).g*, where
K, is the set of regular elements of K, is a universal covering. Thus if (z;);>0 is a
continuous path such that x € K, for any ¢t > 0 and x¢ = 0, the covering homotopy
property and the fact that the exponential map is a local homeomorphism about
the origin, implies that the radial part of a process (x¢)¢>0, such that zp = 0 and
x; € K, for all t > 0, is well defined if we impose the continuity of the trajectories.
As a Brownian motion on K lives, except at time 0, in K., the associated radial
process on A is well defined.
Let v be a dominant weight. We consider a sequence
(At € R )n

of random processes such that for any n, (Aé"))kzl is a Markov process in PJ[F‘/m
with Markov kernel defined by (6) with level [y/n] fusion coefficients and discretized

characters : (Aé")) k>1 is the random walk in PJ[F‘/H] with increment 7 defined in def-
inition 5.1. The following convergence is in the sense of convergence in distribution
in D(R4, t) endowed with the topology of uniform convergence on compact sets.

Theorem 8.1. The sequence (ﬁu_l(AE:t)]),t € Ry)n>1 of random processes con-

verges towards the radial process associated to a Brownian motion on K.
Theorem follows from lemma 8.2 and proposition 8.4.

Lemma 8.2. As n goes to infinity, the sequence

L)
(exp [ﬁl/ (A[nt]):l’t S ]R+)n21
of K/Ad(K)-valued random processes converges - in the sense of finite dimensional
distributions convergence - towards (exp(at))i>0, where (a;)i>0 s the radial process
associated to a Brownian motion on K.

Proof. Let o be a dominant weight in A . It exists an integer ng such that o(8¥) <
[v/n], for all n > ng. For n > ng and t > 0, one has,
E[XAEZQ](U)} _ {Xv(g)} [nt]
XA(W) (O) X’Y (0)

[nt]
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where the discretized characters are level [\/n] discretized characters. As for any
e PJ[F\/m, the Weyl character formula implies

- A
(o) _ o (v () eho (0)
xx(0) ch, (0) Xo(0)
one obtains taking the conjugates,

(n)
E[chg(vl([f/%%))} _ x(0) {chg@l([?m—m hol0) g
ch, (0) ch, (0) ch, (0) cho (v ()

The central limit theorem for Ad(K)-invariant random walks on compact Lie groups
(see [20]) implies that the right hand side of the identity converges to

/K o () e (B),

where (p¢)e>0 is the semi-group of a Brownian motion (b;)¢>0 on K. If we denote
by (at)¢>0 the corresponding radial process, one obtains that

Jim B (explv™ (F=A(71) = E(, (explan))

It implies that in K/Ad(K), exp [ﬁl’_l(AE:t)]} converges in distribution towards
exp(at) as n tends to infinity. As the function v, satisfies (10), a Lévy process

(kt)i>0 on K satisfies for s,¢ >0

E(vo (ktys)|kr,m < 8) = o (ks)E(vo (kt))-
Thus the following identity

R HASIGINGD X )y (o) el
E |A[nr]ar <s| = 0 0 ,
XAEZ()HS)](O) XA[ns]( ) Lx~(0)
proves that for any sequences 0 < t; < --- < t,,, and 01,...,0, € Ay

Jim B o exo (=7 )) = B[] v (exp(an)

which implies the lemma. ([

When K is simply connected the lemma implies that (V’l(\/iﬁ/\[nt],t > 0) con-
verges - in the sense of finite dimensional distributions - towards (a;)¢>o. We will
show that this convergence holds even when K is not simply connected. For this
we’ll use a tightness result for the sequence of processes (ﬁAth)], t>0).

Let (m;);en+ be a sequence of i.i.d. random variables such that 7y is uniformly
distributed on the Littelmann module Bm.,. We let 7(t) = m1(t) + ma(t) + --- +
Tg+1(t — [t]), t > 0. Donsker theorem implies in particular that (ﬁw([nt]),t >0)
converges in distribution in D(R4, t*) endowed with the topology of uniform con-
vergence on compact sets. It has been proved in [3] that it exists a continuous map
Py, Where wy is the longest element of W, defined from D(R,,t*) to D(R4, t*),
such that the random process (Y, k > 0) defined by

Y = Puo (m)(k), k >0,
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is a Markov chain living on P, starting at zero, whose transition kernel s, is
defined by

diHl(y)
_ MY e P
(:E y) li ( )]1 ( ) xy? T,y +>

where the MY, ’s are the Litlewood-Richardson defined by (1).

Lemma 8.3. For any T € R, there ewists a constant C' such that for any n € N,
and any measurable positive function f: D([0,T],t*) — R4,

E(f(A{7)t € 0,71))) < CE(f(Yiuy, t € 0,T))

Proof. Using the inequality (4), one obtains

X3, (0)] dim(v)} nTl)

E(f(Aén), ) AEZ;“])) < E(f(YO’ Tt Y[nT])dim(Y[ T]) X'y(0>

As for z € Pf,

i (- aele) (pla)
Xz(0) _ 11 sin (T [Jfine) e

: z+p|o « ?
dlm(z) a€ERy [(\/mi'h)v Sln( [\/(%‘Jr)h\/)

| d’f;(o )) | is uniformly bounded in x € t* and n € N*. As [d;n((o'y))} ] converges when

n goes to infinity, it exists a constant C' such that for any = € t* and n € N*

dnnz x~(0) -

which proves the lemma. (I

As Py, is a continuous map which commutes with the scaling, the sequence of
processes (\/LHY[nt],t > 0) converges in D(R,,t*) endowed with the topology of
uniform convergence on compact sets. Thus it satisfies the tightness property of
the following proposition which is consequently - thanks to the previous lemma -
also proved to be satisfied by the sequence of processes (\/LHAEZZ]J > 0). Thus we
have the following proposition.

Proposition 8.4. For any T,n,e > 0 there exists § > 0 such that

VneN*, P( sup A L gm sy
(Ogt,t’gT |\/— nt] \/— nt]| 77)

[t—t'| <68

Proof of theorem 8.1 Suppose that a subsequence of (\/—Afsz] t > 0)p>0 con-

verges towards a process X. Lemma 8.2 implies that in K/Ad(K), (exp(X;),t > 0)

has the same finite dimensional distributions as (exp(a¢),t > 0). As maxk(||A,(€7_l|r)1 -

Aé")”) is bounded, theorem 10.2 of [8] shows that X has continuous trajectories,
which implies (see discussion above) that (X;);>0 as the same law as (a¢);>0. The

theorem follows, as (\/—A[(22],t > 0)p>0 is tight.



il
[2
3

[4

[9
10

[11
[12

[13
[14

[15
16
[17
(18
[19

[20
[21

FUSION COEFFICIENTS AND RANDOM WALKS IN ALCOVES 21

REFERENCES

| P. H. BERARD, Spectres et groupes cristallographiques. I. Domaines euclidiens. Invent. Math.,
58(2):179-199, 1980.

| BIANE, PH., Minuscule weights and random walks on lattices, Quant. Prob. Rel. Topics 7
51-65, 1992.

| PH. BIANE, PH. BOUGEROL AND N. O’CONNELL, Littelmann paths and Brownian paths, Duke
Math. J., 130, no. 1, 127-167, 2005.

] A. BORODIN, V. GORIN, Lectures on integrable probability, arXiv preprint arXiv:1212.3351,
2012

| T. BROCKER, T. DIECK , Representations of compact Lie groups, Graduate texts in Mathe-
matics, Vol 98, 1985

| P. D1 FRANCESCcO, P. MATHIEU, D. SENECHAL, Conformal Field Theory, Springer, New.
York, 1997

] A.H. DooLEY, N.J. WILDBERGER, Harmonic Analysis and the Global Exponential Map for
Compact Lie Groups, Funktsional. Anal. i. Prilozhen 27 2532. MR1225907 (94e:22032), 1993.

| S. N. ETHIER, T. G. KURTZ, Markov Processes : Characterization and Convergence. Wiley
Series in Probab. Math. Stat., 1986.

| J. FucHs, Affine Lie Algebras and Quantum Groups, Cambridge University Press, 1992.

| I.M. GESSEL AND D. ZEILBERGER, Random walk in a Weyl chamber, Proc. Amer. Math.
115 27-31, 1992.

] D.J. GRABINER, Random walk in an alcove of an affine Weyl group, and non-colliding random
walks on an interval, Journal of Combinatorial Theory Series A 97 285-306, 2002.

| J.E. HUMPHREYS, Introduction to Lie algebras and representation theory, Graduate Texts in
Mathematics, vol. 9, Springer-Verlag, New York, 1978.

| V. G. KAc, Infinite dimensional Lie algebras, third edition, Cambridge university press, 1990

| KiriLLov, A. A. Lectures on the Orbit Method. Graduate Studies in Mathematics, Vol. 64.
American Mathematical Society, Providence, RI. MR2069175 (2005c:22001), 2004

| C. KRATTENTHALER, Asymptotics For Random Walks In Alcoves Of Affine Weyl Groups,
Journal of Combinatorial Theory Series A 97 285-306, 2003.

] C. LECOUVEY, E. LESIGNE, M. PEIGNE, Conditioned random walks from Kac-Moody root
systems, arXiv:1306.3082 [math.CO], 2013

] P. LITTELMANN, Paths and root operators in representation theory, Annals of Mathematics
142, pp. 499-525, 1995.

| J.F. VAN DIEJEN AND E. EMSIz, Discrete harmonic analysis on a Weyl alcove, arxiv:
1209.3296v1, 2012.

| M.WALTON Affine Kac-Moody Algebras and the Wess-Zumino- Witten Model, arxiv:hep-
th/9911187v1, 1999

| D. WEHN, Limit distributions on Lie groups, Yale thesis, 1960.

| N. J. WILDBERGER, Finite commutative hypergroups and applications from group theory to
conformal field theory, Applications of Hypergroups and Related Measure Algebras, 413434,
Contemp. Math., 183, 1995.

LABORATOIRE DE MATHEMATIQUES APPLIQUEES A PARIS 5, UNIVERSITE PARIS 5, 45 RUE DES

SAINTS PERES, 75270 PARIS CEDEX 06.

E-mail address: manon.defosseux@parisdescartes.fr



