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CARLEMAN ESTIMATES FOR ELLIPTIC OPERATORS WITH COMPLEX COEFFICIENTS

PART I: BOUNDARY VALUE PROBLEMS

MOURAD BELLASSOUED AND JÉRÔME LE ROUSSEAU

ABSTRACT. We consider elliptic operators with complex coefficients and we derive microlocal and local Car-
leman estimates near a boundary, under sub-ellipticity and strong Lopatinskii condition. Carleman estimates
are weighted a priori estimates for the solutions of the associated elliptic boundary problem. The weight is of
exponential form, exp(τϕ) where τ is meant to be taken as large as desired. Such estimates have numerous
applications in unique continuation, inverse problems, and control theory. Based on inequalities for interior
and boundary differential quadratic forms, the proof relies on the microlocal factorization of the symbol of the
conjugated operator in connection with the sign of the imaginary part of its roots. We further consider weight
functions of the previous form with moreover ϕ = exp(γψ), where γ meant to be taken as large as desired, and
we derive Carleman estimates where the dependency upon the two large parameters, τ and γ, is made explicit.
Applications on unique continuation properties are given.

RÉSUMÉ. Nous considérons des opérateurs elliptiques à coefficients complexes et nous obtenons des inégalités
de Carleman, microlocales et locales, au voisinage du bord, sous une hypothèse de sous-ellipticité et une con-
dition de Lopatinskii forte. Les fonctions poids que nous utilisons sont de forme exponentielle, exp(τϕ) où le
paramètre τ peut être choisi arbitrairement grand. De telles estimations ont de nombreuses applications comme
pour les questions de prolongement unique, les problèmes inverses et le contrôle. Fondée sur des inégalités pour
des formes quadratiques différentielles à l’intérieur et au bord, la démonstration repose sur une factorisation
microlocale du symbole de l’opérateur conjugué liée aux signes des parties imaginaires de ses racines. Nous
considérons aussi des fonctions poids de la forme précédente avec de plus ϕ = exp(γψ), où γ peut-être choisi
arbitrairement grand et nous obtenons des inégalités de Carleman pour lesquelles la dépendence en les deux
grands paramètres, τ et γ, est rendue explicite. Des applications aux questions de prolongement unique sont
proposées.
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ation
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1. INTRODUCTION AND MAIN RESULT

Let Ω be a bounded and connected domain in R
n with a C∞-boundary ∂Ω. Points in Ω are denoted by

x = (x1, . . . , xn) and we write Dj = −i∂/∂xj where i =
√
−1. Let us consider a linear partial differential
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operator of order m = 2µ, µ ≥ 1:

(1.1) P =
∑

|α|≤m

aα(x)D
α,

where the coefficients aα(x) are bounded measurable complex-valued functions defined in Ω. The higher-
order coefficients aα(x) with |α| = m are assumed to be C∞ in Ω. In what follows, we assume that the
operator P is elliptic.

Moreover, we consider a system of linear boundary operators of order less than m

(1.2) Bk =
∑

|α|≤βk

bkα(x)D
α, k = 1, . . . , µ = m/2,

where the coefficients bkα(x) are C∞ complex-valued functions defined in some neighborhood of ∂Ω.
The aim of the present article is to derive a Carleman estimate for the following elliptic boundary value
problem {

Pu(x) = f(x), x ∈ Ω,

Bku(x) = gk(x), x ∈ ∂Ω, k = 1, . . . , µ.

Carleman estimates are weighted a priori inequalities for the solutions of a partial differential equation
(PDE), where the weight is of exponential type. For the partial differential operator P away from the

boundary it takes the form:

(1.3) ‖eτϕw‖L2 ≤ C ‖eτϕPw‖L2 , w ∈ C
∞
c (Ω), τ ≥ τ0.

The exponential weight involves a parameter τ that can be taken as large as desired. Additional terms in the
l.h.s., involving derivatives of u, can be obtained depending on the order of P and on the joint properties of
P and ϕ. For instance for a second-order operator P such an estimate can take the form

τ3 ‖eτϕu‖2L2 + τ ‖eτϕ∇xu‖2L2 ≤ C ‖eτϕPu‖2L2 , τ ≥ τ0, u ∈ C
∞
c (Ω).(1.4)

This type of estimate was used for the first time by T. Carleman [8] to achieve uniqueness properties for
the Cauchy problem of an elliptic operator. Later, A.-P. Calderón and L. Hörmander further developed
Carleman’s method [7, 16]. To this day, Carleman estimates remain an essential method to prove unique
continuation properties; see for instance [42] for an overview. On such questions more recent advances
have been concerned with differential operators with singular potentials, starting with the contribution of
D. Jerison and C. Kenig [25]. The reader is also referred to [40, 27, 28]. In more recent years, the field of
applications of Carleman estimates has gone beyond the original domain; they are also used in the study of:

• Inverse problems, where Carleman estimates are used to obtain stability estimates for the unknown
sought quantity (e.g. coefficient, source term) with respect to norms on measurements performed
on the solution of the PDE, see e.g. [6, 23, 29, 21]; Carleman estimates are also fundamental in the
construction of complex geometrical optic solutions that lead to the resolution of inverse problems
such as the Calderón problem with partial data [26, 9].

• Control theory for PDEs; through unique continuation properties, Carleman estimates are used for
the exact controllability of hyperbolic equations [2]. They also yield the null controllability of linear
parabolic equations [34] and the null controllability of classes of semi-linear parabolic equations
[14, 1, 13].

Here, we seek an estimate similar to (1.3) in the neighborhood of a point of the boundary ∂Ω. The
estimate we shall obtain will exhibit additional terms that account for the boundary conditions given by
the operators Bk, k = 1, . . . , µ. This question was addressed by D. Tataru for general operators with real
coefficients [41] and applied to the unique continuation problem near the boundary. Here, we shall focus on
the case of general elliptic operators, yet allowing for complex coefficients. In such case there is no general
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theory for the derivation of Carleman estimates at the boundary. In [41] because of the generality of the
types of operators treated, norms in the Carleman estimates are not optimal in the case of elliptic operators
with real coefficients. Here we obtain norms that precisely coincide with those one could anticipate from the
known estimates away from the boundary and from particular cases of operators for which such an estimate
has been derived at the boundary, e.g. for the Laplace operator [34, 22].

The key conditions for the derivation of the Carleman estimate are compatibility properties between the
elliptic operator P , the weight function ϕ, and the boundary operators Bk, k = 1, . . . , µ. Those are the
sub-ellipticity and the strong Lopatinskii condition. The former involves P and ϕ and is known to be
necessary and sufficient for the estimate to hold away from the boundary in the case of an elliptic operator.
The latter involves P , ϕ, and the Bk. The Lopatinskii condition is used in [41]. In the present article, by
proper (tangential) microlocalizations at the boundary we show the precise action of this condition. These
microlocalizations are important as the Lopatinskii condition is function of the sign of the imaginary parts of
the roots of1 pϕ(x, ξ

′, τ, ξn) = p(x, ξ + iτϕ′(x)) viewed as a polynomial in ξn. Of course the configuration
of the roots changes as the other parameters (x′, ξ′, τ) are modified. Roots can for instance cross the real
axis. Each configuration needs to be addressed separately through a microlocalization procedure. For the
Laplace operator at the boundary this was exploited to obtain a Carleman estimate in [35] for the purpose of
proving a stabilization result for the wave equation.

As in [41] the method of the present article is based on the study of interior and boundary differential
quadratic forms, an approach that originates in the work of [17] for estimates away from boundaries and in
[38, 39, 37] for the treatment of boundaries. In connection with the microlocalizations described above we
give a microlocal treatment of those differential quadratic forms. Positivity arguments rely on the Gårding
inequality for homogeneous polynomials in connection with the position of the roots of the polynomial
pϕ(x, ξ

′, τ, ξn). In fact the roots are split into three groups: roots with positive imaginary part, roots with
negative imaginary part, and real roots. Accordingly, gathering the associated monomials we write pϕ as a
product of three factors:

pϕ = p+ϕp
−
ϕp

0
ϕ.

The regularity of each factor is important to carry pseudo-differential calculus and applying Gårding type
inequalities. Roots can however cross and only their continuity is certain. Yet, using the Rouché theorem,
the three factors can be shown smooth in proper microlocal regions.

The Carleman estimate we prove is of the form:

‖eτϕu‖2 + |eτϕ tr(u)|2 ≤ C
(
‖eτϕP (x,D)u‖2 +

µ∑
k=1

|eτϕBk(x,D)u|∂Ω|2
)
,

for u supported near a point at the boundary, where tr(u) stands for the trace of (u,Dνu, . . . , D
m−1
ν u), the

successive normal derivatives of u, at ∂Ω. In this form, the estimate is incorrect as norms needs to be made
precise. For a correct statement please refer to Theorem 1.6 below.

For Carleman estimates, one is often inclined to choose a weight function of the form ϕ = exp(γψ), with
the parameter γ > 0 chosen large. Several authors have derived Carleman estimates for some operators in
which the dependency upon the second parameters γ is kept explicit. See for instance [14]. Such results can
be very useful to address systems of PDEs, in particular for the purpose of solving inverse problems. On
such questions see for instance [10, 12, 24, 5].

Compatibility conditions need to be introduced between the operator P and the weight ψ. Those are
the so-called strong pseudo-convexity conditions introduced by L. Hörmander [17, 20]. With the weight
function ϕ of the form ϕ = exp(γψ), the parameter γ can be viewed as a convexification parameter.
As shown in Proposition 28.3.3 in [20] the strong pseudo-convexity of the function ψ with respect to P

1Here to simplify we consider the case Ω = {xn > 0}. Then ξn corresponds the (co)normal direction at the boundary
∂Ω = {xn = 0}. In the main text we shall use change of variables to reach this configuration locally.
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implies the sub-ellipticity condition for ϕ mentioned above2 for γ chosen sufficiently large. Away from
the boundary, for a second-order estimate the resulting Carleman estimate can take the form (compare with
(1.4)):

(γτ)3
∥∥ϕ3/2eτϕu

∥∥2
L2 + γτ

∥∥ϕ1/2eτϕ∇xu
∥∥2
L2 . ‖eτϕPu‖2L2 , τ ≥ τ0, γ ≥ γ0, u ∈ C

∞
c (Ω).(1.5)

We aim to extend such estimate in the neighborhood of the boundary. We then assume that the strong
Lopatinskii condition holds for the operators P , Bk and the weight ψ. The work [30] provides a general
framework for the analysis and the derivation of Carleman estimates with two large parameters away from
boundaries. For that purpose it introduces a pseudo-differential calculus of the Weyl-Hörmander type that
resembles the semi-classical calculus and takes into account the two large parameters τ and γ as well as
the weight function ϕ = exp(γψ). Here, the analysis of [30] is adapted to the case of an estimate at
the boundary. Estimates with the two large parameters τ and γ are derived in the case of general elliptic
operators.

If we strengthen strong pseudo-convexity condition of ψ and P , assuming the so-called simple character-
istic property, sharper estimates can be obtained [30]. We also derive such estimates at the boundary.

With the different Carleman estimate that we obtain here she shall be able to achieve unique continuation
properties at a boundary across some hypersurface for some classes of elliptic operators and some products
of such operators.

Perspectives. The treatment of transmission problems for elliptic operators is a natural extension of the
present work. If elliptic operators are given on both sides of an interface and transmission conditions are
given by interface operators, the potential derivation of a Carleman estimate is a natural question. It was
studied for second-order elliptic operators for the purpose of stabilization of the associated wave equations
[3] and the controllability of the associated heat equation [33, 32]. The treatment of general elliptic trans-
mission problems is the subject of an ongoing joint work by the two authors of the present article [4].

Here, we consider Carleman estimates with the loss of a half derivative. It would be interesting to carry
out a similar analysis for estimates with a larger loss of derivatives. Such estimates can be very important
in some classes of inverse problems; see for instance [26, 9]. An important example of operator exhibiting
a loss of a full derivative could be the bi-Laplace operator with clamped boundary conditions for which
estimates cannot be deduced from estimates for the Laplace operator.

1.1. Setting. We shall now give more precision on the setting we consider. For x = (x1, . . . , xn) ∈ R
n, we

denote by ξ = (ξ1, . . . , ξn) the corresponding Fourier variables. Moreover, for every ξ ∈ R
n and α ∈ N

n

we define ξα = ξα1

1 · · · ξαnn . We denote by

p(x, ξ) =
∑

|α|=m

aα(x)ξ
α

the principal symbol of the operator P given in (1.1) and, for k = 1, . . . µ, we denote by

bk(x, ξ) =
∑

|α|=βk

bα(x)ξ
α

the principal symbol of the boundary operator Bk in (1.2).
Here, we assume that the operator P is elliptic, viz.,

p(x, ξ) 6= 0, ∀x ∈ Ω, ∀ξ ∈ R
n\ {0} .

2The terminology for the strong pseudo-convexity condition and the sub-ellipticity condition are often confused by authors.
Here we make a clear distinction of the two notions.
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Let ν = ν(x) denote the unit outward conormal vector to ∂Ω at x. We assume that the system B =
(B1, . . . , Bµ) of boundary differential operators is normal at x ∈ ∂Ω, that is,

0 ≤ β1 ≤ β2 ≤ · · · ≤ βµ < m,

and, for all k = 1, . . . , µ, that
bk(x, ν(x)) 6= 0, ∀x ∈ ∂Ω.

Moreover since P is elliptic we have that ∂Ω is not characteristic with respect the operator P (x,D):

p(x, ν(x)) 6= 0, ∀x ∈ ∂Ω.

We now review the definition of important properties that will be used in what follows: the sub-ellipticity
and the strong Lopatinskii condition.

1.2. Sub-ellipticity condition. For any two functions f(x, ξ) and g(x, ξ) in C∞(Ω×R
n) we denote their

Poisson bracket in phase-space by

{f, g} =
n∑
j=0

( ∂f
∂ξj

∂g

∂xj
− ∂f

∂ξj

∂g

∂xj

)
.

It is to be connected with the commutator of two (pseudo-)differential operators. In fact, if f and g are poly-
nomials in ξ, then the principal symbol of the commutator [f(x,D), g(x,D)] is precisely −i{f, g}(x, ξ).

The sub-ellipticity condition connecting the symbol p and a weight function ϕ is the following (See [17,
Chapter 8] and [20, Sections 28.2–3]).

Definition 1.1. Let ϕ(x) be a smooth functions on Ω and let U be an open subset of Ω. The pair {P, ϕ}
satisfies the sub-ellipticity condition on U if ϕ′(x) := dϕ(x) 6= 0 at every point in U and if

p(x, ξ + iτϕ′(x)) = 0 ⇒ 1

2i

{
p(x, ξ − iτϕ′(x)), p(x, ξ + iτϕ′(x))

}
> 0,

for all x ∈ U and all non-zero ξ ∈ R
n, τ > 0.

For an elliptic operator p the sub-ellipticity condition is necessary and sufficient for a Carleman estimate
of the form of (1.3) to hold away from the boundary [20, Section 28.2]. For a simple exposition of the
derivation of Carleman estimates for second-order elliptic operators under the sub-ellipticity condition we
refer to [31].

Note also that the sub-ellipticity condition is invariant under changes of coordinates. This is an important
fact here as we shall work in local coordinates in what follows.

Remark 1.2. Note that here, as the operator P is elliptic, we have p(x, ξ) 6= 0 for each ξ ∈ R
n, ξ 6= 0. The

sub-ellipticity condition thus holds naturally at τ = 0.

Remark 1.3. Setting pϕ(x, ξ, τ) = p(x, ξ + iτϕ′(x)) and writing pϕ = a+ ib with a and b real, we have

1

2i

{
p(x, ξ − iτϕ′(x)), p(x, ξ + iτϕ′(x))

}
=

1

2i
{pϕ, pϕ} (x, ξ, τ) = {a, b}(x, ξ, τ).

Below, we shall use the sub-ellipticity condition in the form

p(x, ξ + iτϕ′(x)) = 0 ⇒ {a, b}(x, ξ, τ) > 0,

for all x ∈ U and all non-zero ξ ∈ R
n, τ > 0.

In connection with the symbol interpretation of the Poisson bracket given above, we see that the sub-
ellipticity condition guarantees some positivity for the operator i[a(x,D, τ), b(x,D, τ)] on the characteris-
tic set of p(x,D + iτϕ′) = a(x,D, τ) + ib(x,D, τ). A proper combination of a(x,D, τ)∗a(x,D, τ) +
b(x,D, τ)∗b(x,D, τ) and i[a(x,D, τ), b(x,D, τ)] thus leads to a positive operator. This is the heart of the
proof of Carleman estimates.
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1.3. Strong Lopatinskii condition. Elliptic boundary value problems are well-posed only if boundary con-
ditions are chosen appropriately. By well-posedness one usually means that the solution exists and is unique
in some space, and it depends continuously on data (boundary conditions and source terms) and parameters.
A sufficient condition to obtain well-posedness is the so-called Lopatinskii condition that is of algebraic
nature. Here, we shall treat conditions of this type adapted to the elliptic operators we consider after conju-
gation by the Carleman weight function.

For x ∈ ∂Ω we denote by N∗
x(∂Ω) the conormal space at x given by

N∗
x(∂Ω) =

{
N ∈ T ∗

x (Ω); N(Z) = 0, ∀Z ∈ Tx(∂Ω)
}
.

The conormal bundle of ∂Ω is given by

N∗(∂Ω) =
{
(x,N) ∈ T ∗(Ω); x ∈ ∂Ω, N ∈ N∗

x(∂Ω)
}
.

By a boundary quadruple ω = (x, Y,N, τ) we shall mean x ∈ ∂Ω, Y ∈ T ∗
x (∂Ω), N ∈ N∗

x(∂Ω) \ {0}
pointing inside Ω and τ ≥ 0. We also require (τ, Y ) 6= (0, 0). For a boundary quadruple ω and λ ∈ C, we
set

p̃ϕ(ω, λ) := p (x, Y + λN + iτdϕ(x)) .(1.6)

For a fixed boundary quadruple ω0 = (x0, Y0, N0, τ0), we denote by σj the roots of p̃ϕ(ω0, λ) with multi-
plicity µj , viewed as a polynomial of degreem in λ, with leading-order coefficient c0. We can then factorize
this polynomial as follows:

p̃ϕ(ω0, λ) = c0p̃
+
ϕ (ω0, λ)p̃

−
ϕ (ω0, λ)p̃

0
ϕ(ω0, λ),

with
p̃±ϕ (ω0, λ) =

∏
± Imσj>0

(λ− σj)
µj , p̃0ϕ(ω0, λ) =

∏
Imσj=0

(λ− σj)
µj .

We define the polynomial κϕ(ω0, λ) by

(1.7) κϕ(ω0, λ) = p̃+ϕ (ω0, λ)p̃
0
ϕ(ω0, λ).

Similarly, for B =
{
Bk

}
k=1,...,µ

the set of boundary operators and bk(x, ξ) their principal symbols, for
a boundary quadruple ω = (x, Y,N, τ) we set

(1.8) b̃kϕ(ω, λ) = bk(x, Y + λN + iτdϕ(x)).

Definition 1.4. (1) We say that {P,Bk, ϕ, k = 1, . . . , µ} satisfies the strong Lopatinskii condition at a

boundary quadruple ω0 = (x0, Y0, N0, τ0) with N0 pointing inside Ω, τ0 ≥ 0, and (τ, Y0) 6= (0, 0),

if the set of polynomials {b̃kϕ(ω0, λ)}1≤k≤µ is complete modulo κϕ(ω0, λ) as polynomials in λ: for

all f(λ) polynomials there exist q(λ) polynomial and ck ∈ C, 1 ≤ k ≤ µ, such that

f(λ) =
µ∑
k=1

ck b̃
k
ϕ(ω0, λ) + q(λ)κϕ(ω0, λ), λ ∈ R.

(2) We say that {P,Bk, ϕ, k = 1, . . . , µ} satisfies the strong Lopatinskii condition at x0 ∈ ∂Ω if

the previous property holds for all boundary quadruples ω = (x0, Y,N, τ) with Y ∈ T ∗
x0(∂Ω),

N ∈ N∗
x0(∂Ω) with N pointing inside Ω, τ ≥ 0, and (τ, Y ) 6= 0.

Remark 1.5. (1) Observe that the strong Lopatinskii condition only depends on dϕ rather than ϕ. It is
thus a geometrical condition that concerns the level sets ofϕ (as here dϕ(x) 6= 0 – see Definition 1.1)
in connexion with the differential operators P and Bk, k = 1, . . . , µ.
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(2) Observe that for a polynomial f(λ), the Euclidean division yields the existence of two polynomials
g(λ) and q(λ), with d◦g < d◦κϕ(ω0, τ0, λ), such that

f(λ) = g(λ) + q(λ)κϕ(ω0, λ), λ ∈ R.

In the statement of the strong Lopatinskii condition we may thus restrict ourselves to polynomials of
degree less than that of κϕ(ω0, λ). Considering the definition of κϕ(ω0, λ) in (1.7) that depends on
the roots of the polynomial of p̃ϕ(ω0, λ), in what follows we shall restrict ourselves to polynomials
f(λ) of degree less than or equal to m− 1.

(3) Note that the strong Lopatinskii condition implies d◦κϕ ≤ m − 1. Hence d◦p̃−ϕ > 0. In fact,
otherwise, the vector space of the polynomial functions of degree less than or equal to m − 1, of
dimension m, is generated by a family of µ = m/2 polynomials; a contradiction.

Invariance by change of coordinates. We finish the presentation of the strong Lopatinskii condition by
observing that this definition is of geometrical nature, independent of the choice of coordinates. This fact is
important as we shall make use of local coordinates at the boundary ∂Ω of the open set Ω in what follows.

In fact, for a point x ∈ ∂Ω we consider an open neighborhood X ∈ R
n of x and two coordinate systems

(X1, ψ1) and (X2, ψ2), that is ψ1 : X → X1 and ψ2 : X → X2 are diffeomorphisms and X1, X2 are open
sets in R

n. We set x1 = ψ1(x) and x2 = ψ2(x).
We then introduce the diffeomorphism κ : X1 → X2 given by κ = ψ2 ◦ ψ−1

1 and we have κ(x1) = x2.
Let Y1, N1 (resp. Y2, N2) be the local versions of Y and N in the two coordinate systems. Similarly let p(1)

and b(1)k , k = 1, . . . , µ, (resp. p(2) and b(2)k ) be the local versions of the principal symbols of the differential
operators P and Bk. We also define ϕ1 = ϕ ◦ψ1 and ϕ2 = ϕ ◦ψ2 the local versions of the weight function
in the coordinate patches.

With standard differential geometry arguments we have the following relations:

Y1 =
tκ′(x1)Y2, N1 =

tκ′(x1)N2, dϕ1(x1) =
tκ′(x1)dϕ2(x2),

p(1)(x, ξ) = p(2)(κ(x), tκ′(x)−1ξ), b
(1)
k (x, ξ) = b

(2)
k (κ(x), tκ′(x)−1ξ).

If we set fj(λ) = p(j)(xj , Yj + iτdϕj(xj) + λNj), j = 1, 2, we find

f1(λ) = p(1)(x1, Y1 + λN1 + iτdϕ1(x1)) = p(2)
(
κ(x1),

tκ′(x1)
−1(Y1 + λN1 + iτdϕ1(x1))

)

= p(2)(x2, Y2 + λN2 + iτdϕ2(x2)) = f2(λ),

which simply means that the polynomial function p̃ϕ defined in (1.6) does not depend on the coordinate sys-
tem chosen. The same holds for the polynomial function b̃kϕ defined in (1.8), which allows one to conclude
that the strong Lopatinskii condition of Definition 1.4 can be stated (and checked) in any coordinate system.

1.4. Sobolev norms with a parameter. The L2 inner-products on Ω and ∂Ω will be denoted by (., .) and
(., .)∂ respectively.

Let τ ≥ 0 and s ≥ 0. We introduce the Sobolev spaces Hs
τ (Ω) and Hs

τ (∂Ω) defined by the following
norms respectively:

(1.9) ‖u‖2s,τ = τ2s ‖u‖2L2(Ω) + ‖u‖2Hs(Ω) and |u|2s,τ = τ2s |u|2L2(∂Ω) + |u|2Hs(∂Ω) ,

where we denote the usual Sobolev norms on Ω and ∂Ω by ‖.‖Hs(Ω) and |.|Hs(∂Ω). Observe that for σ ∈
[0, s] we have

τ s−σ ‖u‖Hσ(Ω) . ‖u‖s,τ , τ s−σ |u|Hσ(∂Ω) . |u|s,τ .
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For m ∈ N and s ∈ R we introduce the following boundary space

Hm,s
τ (∂Ω) =

m∏
j=0

Hm−j+s
τ (∂Ω),

equipped with the norm

(1.10) |u|2m,s,τ =
m∑
j=0

|uj |2m−j+s,τ , u = (u0, . . . , um).

If u ∈ C∞(Ω) we denote trm(u) = (tr0(u), . . . , trm(u)) where trj(u) = (1i ∂ν)
ju is the trace of u of

order j and we define

|trm(u)|2m,s,τ =
m∑
j=0

|trj(u)|2m−j+s,τ .

In what follows we shall write tr(u) in place of trm(u) for concision. We shall also write norms of the form
|eτϕ tr(u)|2m,s,τ actually meaning

|eτϕ trm(u)|2m,s,τ =
m∑
j=0

|eτϕ trj(u)|2m−j+s,τ .

1.5. Statement of the main result. We can now state the local Carleman estimate that we prove in the
neighborhood of a point of the boundary, with the sub-ellipticity and strong lopatinskii conditions.

Theorem 1.6. Let x0 ∈ ∂Ω and let ϕ ∈ C∞(Ω) be such that the pair {P, ϕ} has the sub-ellipticity property

of Definition 1.1 in a neighborhood of x0 in Ω. Moreover, assume that
{
P, ϕ,Bk, k = 1, . . . , µ

}
satisfies

the strong Lopatinskii condition at x0. Then there exist a neighborhood W of x0 in R
n and two constants

C and τ∗ > 0 such that

(1.11)

τ−1 ‖eτϕu‖2m,τ + |eτϕ tr(u)|2m−1,1/2,τ ≤ C
(
‖eτϕP (x,D)u‖2L2(Ω) +

µ∑
k=1

|eτϕBk(x,D)u|∂Ω|2m−1/2−βk,τ

)
,

for all u = w|Ω with w ∈ C∞
c (W ) and τ ≥ τ∗.

First, this results will be established microlocally: at a boundary point x0 we shall assume that the strong
Lopatinskii condition holds for some Y0 and N0 in the cotangent space at x0 and τ0 ≥ 0 (as introduced in
Section 1.3) and we shall prove that a Carleman estimate of the form above holds in a conic neighborhood
of (x0, Y0, N0, τ0) in phase-space; localization in phase-space will be done by means of cut-off functions
and associated pseudo-differential operators. We refer the reader to Section 4.4. Second, we will deduce
Theorem 1.6 from such microlocal estimates.

Estimates of the form of (1.11) are local. Yet, they can be patched together to form global estimates. We
do not cover such details here. Patching of local estimates away from the boundary can be found in [17,
Lemma 8.3.1]; for estimates near the boundary one can for instance consult [31].

In Section 6 we shall prove Carleman estimates with a weight function of the form ϕ(x) = exp(γψ(x))
as is usually done in practice with the parameter γ chosen as large as desired. We shall provide the precise
dependency of the Carleman estimate with respect to this second large parameter.

1.6. Local reduction of the problem. Let x0 ∈ ∂Ω. There exists a neighborhood V of x0 and a local
system of coordinates x = (x1, . . . , xn) where V ∩ Ω ⊂ {xn > 0} and x′ = (x1, . . . , xn−1) parametrizes
the boundary V ∩ ∂Ω ⊂ {xn = 0}. We denote by R

n
+ the half space {xn > 0} and V+ = V ∩ R

n
+. For our

purpose here, without any loss of generality, we may assume that V+ is bounded. We shall write ∂Ω ∩ V to
denote {x ∈ V ; xn = 0} in the local system of coordinates.
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In such local coordinates, in V+, the differential operator3 P of order m with complex coefficients takes
the form

P = P (x,D) =
m∑
j=1

Pj(x,D
′)Dj

n, Dn =
1

i
∂n,

where Pj(x,D′), j = 1, . . . ,m, are tangential differential operators with complex coefficients of order
m− j. We have Pm = Pm(x) 6= 0. Upon dividing by Pm(x) we may assume that Pm(x) = 1.

Similarly the boundary operators take the form

Bk = Bk(x,D) =
βk∑
j=0

Bk
j (x,D

′)Dj
n, 1 ≤ k ≤ µ,

where Bk
j (x,D

′), j = 0, . . . , βk are tangential differential operators of order (βk − j).

Calling (ξ′, ξn) the Fourier variables corresponding to (x′, xn) we have, for the principal symbol of P ,

p(x, ξ) =
m∑
j=0

pj(x, ξ
′)ξjn,

which is a polynomial homogeneous of degree m in the n variables (ξ′, ξn).

We introduce pϕ(x, ξ, τ) := p (x, ξ + iτϕ′(x)). Setting ̺′ = (x, ξ′, τ) and ̺ = (̺′, ξn), for simplicity
we shall write pϕ(̺) in place of pϕ(x, ξ, τ) and often pϕ(̺′, ξn) to emphasize that the symbol is polynomial
in ξn.

1.7. Symbol factorization. For a fixed point ̺′0 = (x0, ξ
′
0, τ0) ∈ S

∗
T,τ (V ) (see the definition below in

Section 1.10) with x0 ∈ ∂Ω, we denote the roots of pϕ(̺′0, ξn), viewed as a polynomial function in ξn, by
α1, . . . , αN , with respective multiplicities µ1, . . . , µN satisfying µ1+ · · ·+µN = m. By Lemma A.2, there
exists a conic open neighborhood U of ̺′0 such that

(1.12) pϕ(̺
′, ξn) = p+ϕ (̺

′, ξn) p
−
ϕ (̺

′, ξn) p
0
ϕ(̺

′, ξn), ̺′ ∈ U , ξn ∈ R,

with p±ϕ and p0ϕ, polynomials in ξn of constant degrees in U , smooth and homogeneous; in U the imaginary
parts of the roots of p+ϕ (̺

′, ξn) (resp. p−ϕ (̺
′, ξn)) are all positive (resp. negative) and we have

p±ϕ (̺
′
0, ξn) =

∏
± Imαj>0

(ξn − αj)
µj , p0ϕ(̺

′
0, ξn) =

∏
Imαj=0

(ξn − αj)
µj .

The polynomial pϕ is thus decomposed into three factors in the neighborhood U of ̺′0. For p±ϕ the sign of
the imaginary part of their roots remain constant equal to ± respectively; for p0ϕ this sign may change and
the roots are precisely real at ̺′ = ̺′0.

We then define the polynomial κϕ(̺′, ξn) by

(1.13) κϕ(̺
′, ξn) = p+ϕ (̺

′, ξn)p
0
ϕ(̺

′, ξn).

For B =
{
Bk

}
k=1,...,µ

the set of boundary operators and bk(x, ξ) their principal symbols, we set

bkϕ(x, ξ, τ) = bk(x, ξ + iτϕ′). As above we write bkϕ(̺
′, ξn) where ̺′ = (x, ξ′, τ) to emphasize that the

symbol is polynomial in ξn. We have

bkϕ(̺
′, ξn) =

βk∑
j=0

bkϕ,j(̺
′)ξjn,

with bkϕ,j(̺
′) homogeneous of degree βk − j in (ξ′, τ).

3By abuse of notation, in the new local coordinates, we keep the notation P and Bk, k = 1, . . . , µ, for the operators introduced
in Section 1.
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Remark 1.7. Observe that the factorization in (1.12) depends quite significantly on the point ̺′0. It may
actually be different even for point ̺′ in the neighborhood U introduced above. We should rather write
something like

pϕ(̺
′, ξn) = p+

ϕ,̺′
0

(̺′, ξn) p
−
ϕ,̺′

0

(̺′, ξn) p
0
ϕ,̺′

0
(̺′, ξn), ̺′ ∈ U , ξn ∈ R,

in place of (1.12) and set

κϕ,̺′
0
(̺′, ξn) = p+

ϕ,̺′
0

(̺′, ξn) p
0
ϕ,̺′

0
(̺′, ξn).

For ̺′1 ∈ U we may very well have

p+
ϕ,̺′

0

(̺′, ξn) 6= p+
ϕ,̺′

1

(̺′, ξn), or p−
ϕ,̺′

0

(̺′, ξn) 6= p−
ϕ,̺′

1

(̺′, ξn), or p0ϕ,̺′
0
(̺′, ξn) 6= p0ϕ,̺′

1
(̺′, ξn).

Yet, we shall see below that the notation in (1.12) is sufficiently clear for our purpose.
Still, if we denote by M±(̺′) the number of roots (counted with their multiplicities) with postive (resp.

negative) imaginary parts of pϕ(̺′, ξn) for ̺′ ∈ U we may have M±(̺′0) 6= M±(̺′) for some ̺′ ∈ U .
Note that in such case we have M±(̺′0) ≤ M±(̺′) from the construction of the neighborhood U given in
Lemma A.2. Arguing as in the proof of Lemma A.2, using the continuity of the roots w.r.t. ̺′ we can in fact
prove that for ̺′1 ∈ U there exists a conic neighborhood U ′ ⊂ U of ̺′1 such that

κϕ,̺′
0
(̺′, ξn) = h(̺′, ξn)κϕ,̺′

1
(̺′, ξn), ̺′ ∈ U

′,(1.14)

where h(̺′, ξn) is polynomial in ξn with coefficients that are smooth w.r.t. ̺′ ∈ U ′.

1.8. The strong Lopatinskii condition in the local coordinates. The strong Lopatinskii condition of Def-
inition 1.4 is invariant under change of variables as seen at the end of Section 1.3. A conormal vector N is
given by (0, . . . , 0, Nn) in the present coordinate system. For the statement of the strong Lopatinskii con-
dition we can choose N = (0, . . . , 0, 1) without any loss of generality since N is asked to point inside Ω.
In the local coordinate system (x′, xn) in V , a boundary quadruple ω = (x, Y,N, τ), with Y = (ξ′, 0) can
thus be identified with ̺′ = (x, ξ′, τ). The strong Lopatinskii condition at ̺′0 = (x0, ξ

′
0, τ0), with τ0 ≥ 0

and (τ0, ξ
′
0) 6= (0, 0), thus reads as follows:

(1.15) The set
{
bkϕ(̺

′, ξn)
}
k=1,...,µ

is complete modulo κϕ(̺
′, ξn) as polynomials in ξn

for ̺′ = ̺′0.

We shall now prove that this property remains true for ̺′ in a conic neighborhood of ̺′0.

We set m− = d◦
(
p−ϕ (̺

′, .)
)

that is independent of ̺′ ∈ U , with the open conic neighborhood U as
introduced above, and we let κϕ(̺′, ξn) be the polynomial function given in (1.13). It takes the form

κϕ(̺
′, ξn) =

m−m−∑
j=0

κϕ,j(̺
′)ξjn, ̺′ ∈ U , ξn ∈ R,

where κϕ,j is homogeneous of degree (m−m− − j) w.r.t. (ξ′, τ).
We set m′ = m− + µ and for k = 1, . . . ,m′, we shall introduce a family of polynomial functions of

degree less than or equal to m− 1 denoted by ekϕ(̺
′, ξn), all taking the form

ekϕ(̺
′, ξn) =

m−1∑
j=0

ekϕ,j(̺
′)ξjn, ̺′ ∈ U ,(1.16)

with ekϕ,j homogeneous w.r.t. (ξ′, τ). This family of polynomials is composed of two different sets:
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(1) For k = 1, . . . , µ, we set ekϕ = bkϕ, yielding

ekϕ,j =

{
bkj if j ≤ βk,

0 otherwise.

Then ekϕ,j(̺
′) is homogeneous of degree βk − j w.r.t. (ξ′, τ).

(2) For k = µ+ 1, . . . ,m′, we set ekϕ(̺
′, ξn) = κϕ(̺

′, ξn)ξ
k−(µ+1)
n , yielding

ekϕ,j =

{
κϕ,j−k+µ+1 if k − µ− 1 ≤ j ≤ m−m′ + k − 1,

0 otherwise.

Setting βk = m − m− + k − (µ + 1) we have that ekϕ,j is homogeneous of degree βk − j w.r.t.
(ξ′, τ).

The strong Lopatinskii condition of Definition 1.4 also stated in (1.15) means precisely (using Remark 1.5)
that the family (ekϕ(̺

′, ξn))1≤k≤m′ generates the space of polynomials of degree less than or equal to m− 1
in ξn for ̺′ = ̺′0, implying m′ ≥ m and that the m×m′ matrix

M(̺′0) = (ekϕ,j−1(̺
′
0)) 1≤j≤m

1≤k≤m′

is of rank m. Then there exists a m×m sub-matrix M0(̺
′
0) such that detM0(̺

′
0) 6= 0. As the coefficients

of M(̺′) are continuous and homogeneous of degree βk− j we then have detM0(̺
′) 6= 0 for ̺′ in a small

conic neighborhood V ⊂ U of ̺′0. Note that the homogeneity of the coefficients is important for V to be
chosen conic since detM0(̺

′) is itself homogeneous w.r.t. (ξ′, τ). The rank of M(̺′) thus remains equal
to m in V , meaning that condition (1.15) is valid for ̺′ ∈ V .

We have thus reached the following result.

Proposition 1.8. Let the strong Lopatinskii condition hold at ̺′0 = (x0, ξ
′
0, τ0). Then we have m′ =

m− + µ ≥ m. Moreover there exists a conic neighborhood V of ̺′0 such that condition (1.15) remains true

at every point ̺′ of V .

This result can be commented in view of the proof of the Carleman estimate we give below. In fact, with
the factorization pϕ = p−ϕκϕ in the neighborhood U of ̺′0, the following states roughly the proof strategy
we shall adopt:

(1) The factor p−ϕ associated with roots with negative imaginary part yields a perfect elliptic estimate at
the boundary.

(2) The factor κϕ yields an estimate at the boundary that involves trace terms. These terms will be esti-
mated via the actions of the boundary operators Bk

ϕ by means of to the strong Lopatinskii condition.

The inequality µ ≥ m−m− thus indicates that we shall have at hand a sufficiently large number of boundary
operators to control the terms originating from the estimate with the factor κϕ that is of degree m−m−.

As here µ = m/2 note also that we have m− ≥ m/2.

Remark 1.9. Here, we use the notation of Remark 1.7. Observe that the result of Proposition 1.8 implies
that for ̺′1 ∈ V ⊂ U the following propertuy holds

The set
{
bkϕ(̺

′
1, ξn)

}
k=1,...,µ

is complete modulo κϕ,̺′
0
(̺′1, ξn) as polynomials in ξn

with κϕ,̺′
0

defined by the symbol factorization at ̺′0. Now using (1.14) we see that this implies that the
strong Lopatinskii condition also holds at ̺′1. We thus see that the Strong Lopatinskii condition remains
valid in a conic neighborhood of ̺′0. However, we shall not use this aspect here. The importance aspect



ELLIPTIC BOUNDARY VALUE PROBLEMS 13

we shall use is the local persistence of condition (1.15) stated in Proposition 1.8 (of course the two are very
related). This explains why we do not use the “more precise” notation of Remark 1.7 throughout the article.

1.9. Some examples. Here we give simple examples of operators to which the present analysis applies.
A natural example is P second-order elliptic with real coefficients. We can find local coordinates at the

boundary such that V+ = {xn > 0} and P = D2
xn+r(x,D

′) where r(x,D′) = r(x′, xn, D
′) is a xn-family

of elliptic operators with r(x, ξ′) ≥ C|ξ′|2. For any smooth ψ the pair {P, ϕ}, with ϕ = exp(γψ), satisfies
the sub-ellipticity condition of Definition 1.1 if ψ′ 6= 0 and γ is chosen sufficiently large (see e.g. [31]).
First for simplicity we consider ϕ = ϕ(xn). If ∂xnϕ > 0, the strong Lopatinskii condition is for example
satisfied in the following cases:

(1) Bu = u, Dirichlet condition;
(2) Bu = Dxnu+ a(x)u, Robin conditions.
(3) Bu = Dxnu+ iaDx1u with a2 < r.

These results remain true if we consider ϕ = ϕ(x′, xn) with |∂x′ϕ| ≪ |∂xnϕ| allowing for small variations
of ϕ in the tangential direction. With Theorem 1.6 we thus recover known results for second-order operators
[34, 35].

For a simple example of higher-order operators we consider P = D4
x1 + D4

x2 in V+ = {x2 > 0}.
Here also for any smooth ψ the pair {P, ϕ}, with ϕ = exp(γψ), satisfies the sub-ellipticity condition of
Definition 1.1 if ψ′ 6= 0 and γ is chosen sufficiently large (see e.g. [30]). Here also, considering ϕ = ϕ(x2),
if ∂x2ϕ > 0, the strong Lopatinskii condition is for example satisfied in the following cases:

(1) B1u = u, B2u = Dx2u;
(2) B1u = u, B2u = ∆u;
(3) B1u = u, B2u = Dx2∆u.

This list of examples for P = D4
x1 +D4

x2 is by far not exhaustive. Here also, including small variations of
ϕ in the tangential direction preserves these properties.

Details on these examples are given in Appendix A.1.

1.10. Notation. If V ⊂ R
n
+ we denote the semi-classical unit half cosphere bundle over V (in the cotan-

gential direction ξ′) by

S
∗
T,τ (V ) = {(x, ξ′, τ); x ∈ V, ξ′ ∈ R

n−1, τ ∈ R+, |ξ′|2 + τ2 = 1}.

The canonical inner product in C
m is denoted by (z, z′)

Cm
=

∑m−1
j=0 zjz′j , for z = (z0, . . . , zm−1), z

′ =

(z′0, . . . , z
′
m−1) ∈ C

m. The associated norm will be denoted |z|2
Cm

=
∑m−1

j=0 |zj |2.
We shall use some spaces of smooth functions in the closed half space. We set

S (R
n
+) = {u|Rn+ ; u ∈ S (Rn)}.

For two u, v ∈ S (R
n
+) we set

(u, v)+ = (u, v)L2(Rn
+
) ,

(
u|xn=0+ , v|xn=0+

)
∂
=

(
u|xn=0+ , v|xn=0+

)
L2(Rn−1)

.

We also set
‖u‖+ = ‖u‖L2(Rn

+
)

∣∣u|xn=0+
∣∣
∂
=

∣∣u|xn=0+
∣∣
L2(Rn−1)

.

In this article, when the constantC is used, it refers to a constant that is independent of the large parameter
τ . Its value may however change from one line to another. If we want to keep track of the value of a constant
we shall use another letter.

In what follows, for concision, we shall sometimes use the notation . for ≤ C, with a constant C > 0.
We shall write a ≍ b to denote a . b . a.



14 M. BELLASSOUED AND J. LE ROUSSEAU

1.11. Outline. We start by a review of pseudo-differential calculus with a large parameter in Section 2,
including regularity results on appropriate Sobolev spaces. Section 3 is an exposition of results concerning
interior and boundary differential quadratic forms. In particular we write a (microlocal) Gårding inequality
at the boundary for operators that are differential in the direction normal to the boundary and homogeneous.
We also write a generalized Green formula.

Section 4 is devoted to the proof of the Carleman estimate of Theorem 1.6. First a microlocal Carleman
estimate is proven (Theorem 4.4). The proof exploits the factorization pϕ = p+ϕp

−
ϕp

0
ϕ. To ease the reading of

the proof we have separated the action of each factor and corresponding condition to form partial estimates.
The factor p−ϕ yields a perfect elliptic estimate (Section 4.1). The factor κϕ = p+ϕp

0
ϕ yields an estimate

controlling the traces of the unknown function at the boundary with the operators Bk, through the strong
Lopatinskii condition (see Section 4.2). The sub-ellipticity condition is exploited in Section 4.3 and, based
on the generalized Green formula of Proposition 3.15, the derivation leads to a control of the norm of the
unknown function in Ω yet with remainder terms involving the traces of the function at ∂Ω. Collecting the
different arguments we obtain the microlocal Carleman estimate in Section 4.4. Then in Section 4.5 we
show how the patching of such estimates yields the result of Theorem 1.6.

In Section 5 we present the pseudo-differential calculus with two large parameters and how the analysis
of differential quadratic forms can be revisited.

In Section 6, with the weight function ϕ = exp(γψ), to prove the Carleman estimate with two large
parameters, τ and γ, by means of the Gårding inequality at the boundary we need some positivity results
on the symbol of some homogeneous differential operator. This follows from the strong pseudo-convexity
condition on ψ and P . In Section 6.5 the approach of Section 4 is then adapted to prove a microlocal Car-
leman estimate with two large parameters. This estimate is finally improved if the strong pseudo-convexity
condition is replaced by the simple characteristic property.

Section 7 is devoted to the application of the Carleman estimates of the previous sections to obtain unique
continuation properties near a boundary across a hypersurface. Strong pseudo-convexity is assumed for the
hypersurface and the strong Lopatinskii condition is assumed at the boundary. Similar results are obtained
in the case of the product of two operators. For one of them the above assumptions are made, for the second
one the simple characteristic property is further assumed.

In Appendix A we have collected some intermediate technical results.

2. PSEUDO-DIFFERENTIAL OPERATORS WITH A LARGE PARAMETER

Parameter-dependent pseudo-differential operators have proven to be important tools for the derivation
of Carleman estimates. The general aim is to obtain a pseudo-differential calculus with a large parameter,
and then to derive estimates with constants that are independent of the parameter. Often such a pseudo-
differential calculus is referred to as a semi-classical calculus.

2.1. Classes of symbols. We first introduce symbols that depend on a parameter.

Definition 2.1. Let a(̺) ∈ C∞(Rn × R
n), ̺ = (x, ξ, τ), with τ as a parameter in [τmin,+∞), τmin > 0,

and m ∈ R, be such that for all multi-indices α, β ∈ N
n we have

(2.1)
∣∣∣∂αx ∂

β
ξ a(̺)

∣∣∣ ≤ Cα,βλ
m−|β|, x ∈ R

n, ξ ∈ R
n, τ ∈ [τmin,+∞),

where λ = |(ξ, τ)| =
(
|ξ|2 + τ2

) 1

2 . Thus differentiation with respect to ξ improves the decay in ξ and τ
simultaneously. We write a ∈ Smτ (Rn × R

n) or simply Smτ . For a ∈ Smτ we denote by σ(a) its principal

part, that is, its equivalence class in Smτ /S
m−1
τ .

We also introduce tangential symbols. Let a(̺′) ∈ C∞(R
n
+ × R

n−1), ̺′ = (x, ξ′, τ), with τ as a

parameter in [τmin,+∞), τmin > 0, and m ∈ R, be such that for all multi-indices α ∈ N
n, β ∈ N

n−1 we
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have ∣∣∣∂αx ∂
β
ξ′a(̺

′)
∣∣∣ ≤ Cα,βλ

m−|β|
T

, x ∈ R
n
+, ξ

′ ∈ R
n−1, τ ∈ [τmin,+∞),

where λT = |(ξ′, τ)| =
(
|ξ′|2 + τ2

) 1

2 . We write a ∈ Sm
T,τ (R

n
+ × R

n−1) or simply Sm
T,τ . For a ∈ Sm

T,τ we

denote by σ(a) its principal part, that is, its equivalence class in Sm
T,τ/S

m−1
T,τ .

We also introduce symbol classes that behave polynomially in the ξn variable. Let a(̺) ∈ C∞(R
n
+×R

n),
with τ as a parameter in [τmin,+∞), τmin > 0, and m ∈ N and r ∈ R, be such that

a(̺) =
m∑
j=0

aj(̺
′)ξjn, aj ∈ Sm−j+r

T,τ , ̺ = (̺′, ξn), ̺
′ = (x, ξ′, τ),

with x ∈ R
n
+, ξ ∈ R

n, τ ≥ τmin, and ξn ∈ R. We write a(̺) ∈ Sm,rτ (R
n
+ × R

n) or simply Sm,rτ .

Note that we have Sm,rτ ⊂ Sm+m′,r−m′

τ , if m,m′ ∈ N and r ∈ R. We shall call the principal symbol of
a the symbol

σ(a)(̺) =
m∑
j=0

σ(aj)(̺
′)ξjn,

which is a representative of the class of a in Sm,rτ /Sm,r−1
τ .

Note that Sm,rτ 6⊂ Sm+r
τ . For example consider a(x, ξ, τ) = |(ξ′, τ)|ξn for |(ξ′, τ)| ≥ 1. We have

a ∈ S2,0
τ ∩ S1,1

τ and yet a /∈ S2
τ . In fact observe that differentiating with respect to ξ′ yields

|∂αξ′a(x, ξ, τ) ≤ Cα|(ξ′, τ)|1−|α||ξn|.

An estimate of the form of (2.1) is however not achieved for |α| ≥ 2. A microlocalization is required
to repair this flaw and to use the two different symbol classes in a pseudo-differential calculus (See [19,
Theorem 18.1.35]).

Finally, we define the corresponding spaces of poly-homogeneous symbols. Such symbols are often
referred to as classical symbols; they are characterized by an asymptotic expansion where each term is
positively homogeneous with respect to (ξ, τ) (resp. (ξ′, τ)):

Definition 2.2. We shall say a ∈ Smτ,cl(R
n×R

n) or simply Smτ,cl (resp. Sm
T,τ,cl(R

n
+×R

n−1) or simply Sm
T,τ,cl)

if there exists a(j) ∈ Sm−j
τ (resp. Sm−j

T,τ ), homogeneous of degree m − j in (ξ, τ) for |(ξ, τ)| ≥ r0, (resp.

(ξ′, τ) for |(ξ′, τ)| ≥ r0), with r0 ≥ 0, such that

(2.2) a ∼
∑
j≥0

a(j), in the sense that a−
N∑
j=0

a(j) ∈ Sm−N−1
τ (resp. Sm−N−1

T,τ ).

A representative of the principal part is then given by the first term in the expansion.

Finally for m ∈ N and r ∈ R, we shall say that a(̺) ∈ Sm,rτ,cl (R
n
+ × R

n) or simply Sm,rτ,cl , if

a(̺) =
m∑
j=0

aj(̺
′)ξjn, with aj ∈ Sm−j+r

T,τ,cl , ̺ = (̺′, ξn).

The principal part is given by
∑m

j=0 σ(aj)(̺
′)ξjn and is homogeneous of degree m in (ξ, τ).
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2.2. Classes of semi-classical pseudo-differential operators. For a ∈ Smτ (Rn × R
n) (resp. Smτ,cl(R

n ×
R
n)) we define the following pseudo-differential operator in R

n:

a(x,D, τ)u(x) = Op(a)u(x) = (2π)−n ∫
Rn
ei(x,ξ)a(x, ξ, τ)û(ξ) dξ, u ∈ S (Rn),(2.3)

where û is the Fourier transform of u. In the sense of oscillatory integrals we have

a(x,D, τ)u(x) = Op(a)u(x) = (2π)−n ∫∫
R2n

ei(x−y,ξ)a(x, ξ, τ)u(y) dξ dy.

We write Op(a) ∈ Ψm
τ (R

n) or simply Ψm
τ,cl (resp. Ψm

τ (R
n) or simply Ψm

τ,cl). Here D denotes Dx. The

principal symbol of Op(a) is σ(Op(a)) = σ(a) ∈ Smτ /S
m−1
τ (resp. Smτ,cl/S

m−1
τ,cl ).

Tangential operators are defined similarly. For a ∈ Sm
T,τ (R

n
+ × R

n) (resp. Sm
T,τ,cl(R

n
+ × R

n)) we set

a(x,D′, τ)u(x) = Op(a)u(x) = (2π)−(n−1) ∫∫
R2n−2

ei(x
′−y′,ξ′)a(x, ξ′, τ)u(y′, xn) dξ

′ dy′,(2.4)

for u ∈ S (R
n
+), where x ∈ R

n
+. Here D′ denotes Dx′ . We write A = Op(a) ∈ Ψm

T,τ (R
n
+) or simply Ψm

T,τ

(resp. Ψm
T,τ,cl(R

n
+) or simply Ψm

T,τ,cl). The principal symbol of A = Op(a) is σ(A) = σ(a) ∈ Sm
T,τ/S

m−1
T,τ

(resp. Sm
T,τ,cl/S

m−1
T,τ,cl).

Finally for m ∈ N, r ∈ R, and a ∈ Sm,rτ (resp. Sm,rτ,cl ) with

a(̺) =
m∑
j=0

aj(̺
′)ξjn, aj ∈ Sm−j+r

T,τ (resp. Sm−j+r
T,τ,cl ), ̺ = (̺′, ξn),

we set

a(x,D, τ) = Op(a) =
m∑
j=0

aj(x,D
′, τ)Dj

n,

and we write A = Op(a) ∈ Ψm,r
τ (Rn+) or simply Ψm,r

τ (resp. Ψm,r
τ,cl (R

n
+) or simply Ψm,r

τ,cl ). The principal

symbol of A is σ(A)(̺) = σ(a)(̺) =
∑m

j=0 σ(aj)(̺
′)ξjn in Sm,rτ /Sm,r−1

τ (resp. Sm,rτ,cl /S
m,r−1
τ,cl ).

We provide some basic calculus rules in the case of tangential operators.

Proposition 2.3 (composition). Let a ∈ Sm
T,τ (resp. Sm

T,τ,cl) and b ∈ Sm
′

T,τ (resp. Sm
′

T,τ,cl) be two tangential

symbols. Then Op(a)Op(b) = Op(c) ∈ Ψm+m′

T,τ (resp. Ψm+m′

T,τ,cl ) with c ∈ Sm+m′

T,τ (resp. Sm+m′

T,τ,cl ) defined by

the (oscillatory) integral:

c(̺′) = (a# b)(̺′) = (2π)−(n−1) ∫∫ e−i(y′,η′)a(x, ξ′ + η′, τ) b(x′ + y′, xn, ξ
′, τ) dy′ dη′

=
∑

|α|<N

(−i)|α|
α!

∂αξ′a(̺
′) ∂αx′b(̺

′) + rN ,

where rN ∈ Sm+m′−N
T,τ (resp. Sm+m′−N

T,τ,cl ) is given by

rN =
(−i)N

(2π)(n−1)

∑
|α|=N

1
∫
0

N(1− s)N−1

α!
∫∫e−i(y′,η′)∂αξ′a(x, ξ′ + η′, τ)∂αx′b(x

′ + sy′, xn, ξ
′, τ) dy′dη′ds.

Proposition 2.4 (formal adjoint). Let a ∈ Sm
T,τ (resp. Sm

T,τ,cl). There exists a∗ ∈ Sm
T,τ (resp. Sm

T,τ,cl) such

that

(Op(a)u, v)+ = (u,Op(a∗)v)+ , u, v ∈ S (R
n
+).
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and a∗ is given be the following asymptotic expansion

a∗(̺′) = (2π)−(n−1) ∫∫ e−i(y′,η′)a(x′ + y′, xn, ξ
′ + η′, τ) dy′ dη′

=
∑

|α|<N

(−i)|α|
α!

∂αξ′∂
α
x′a(̺

′) + rN , rN ∈ Sm−N
T,τ (resp. Sm−N

T,τ,cl ),

where

rN =
(−i)N

(2π)(n−1)

∑
|α|=N

1
∫
0

N(1− s)N−1

α!
∫∫e−i(y′,η′)∂αξ′∂αx′a(x′ + sy′, xn, ξ

′ + η′, τ) dy′dη′ds.

We denote Op(a)∗ = Op(a∗). We refer to Op(a)∗ as to the formal adjoint of Op(a).

A consequence of the previous calculus results is the following proposition.

Proposition 2.5. Let a(̺′) ∈ Sm
T,τ (resp. Sm

T,τ,cl) and b(̺′) ∈ Sm
′

T,τ (resp. Sm
′

T,τ,cl), with m,m′ ∈ R. Define

h(̺′) = Dx′(b∂ξ′a)(̺
′) ∈ Sm+m′−1

τ . Then we have

Op(a)∗Op(b)−Op(ab+ h) ∈ Ψm+m′−2
T,τ (resp. Ψm+m′−2

T,τ,cl ),

or equivalently a∗#b− ab− h ∈ Sm+m′−2
T,τ (resp. Sm+m′−2

T,τ,cl ).

For semi-classical operators in the half space with symbols that are polynomial in ξn we also provide a
notion of formal adjoint.

Definition 2.6. Let b ∈ Sm,rτ (resp. Sm,rτ,cl ), with

b(x,D, τ) =
m∑
j=0

bj(x,D
′, τ)Dj

n, bj ∈ Sm+r−j
T,τ (resp. Sm+r−j

T,τ,cl ).

We set

b(x,D, τ)∗ =
m∑
j=0

Dj
nbj(x,D

′, τ)∗.

In other words, in this definition we ignore the possible occurrence of boundary terms when performing
the operator transposition.

Note that for a ∈ Sm
T,τ,cl we have [Dn,Op(a)] = Op(Dna) ∈ Ψm

T,τ,cl and more generally, for j ≥ 1, we
have

[
Dj
n,Op(a)

]
=

j−1∑
k=0

Op(αk)D
k
n, αk ∈ Sm

T,τ,cl,

where the symbols αk involve various derivatives of a in the xn-direction. As an application we see that if
we consider aj ∈ Sm−j+r

T,τ,cl then we have

m∑
j=0

Dj
naj(x,D

′, τ) =
m∑
j=0

ãj(x,D
′, τ)Dj

n,

where ãj ∈ Sm−j+r
T,τ,cl and its principal part satisfies σ(ãj) ≡ aj in Sm−j+r

T,τ /Sm−j+r−1
T,τ . Hence

σ
( m∑
j=0

Dj
naj(x,D

′, τ)
)
=

m∑
j=0

aj(x, ξ
′, τ)ξjn mod Sm,r−1

τ .

From the calculus rules given above for the tangential operators and the above observation we have the
following results on the principal symbols.
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Proposition 2.7. Let a ∈ Sm,rτ (resp. Sm,rτ,cl ) and b ∈ Sm
′,r′

τ (resp. Sm
′,r′

τ,cl ) with

a(̺) =
m∑
j=0

aj(̺
′)ξjn, b(̺) =

m′∑
j=0

bj(̺
′)ξjn, ̺ = (̺′, ξn), ̺

′ = (x, ξ′, τ).

(1) We have a(x,D, τ)∗ ∈ Ψm,r
τ (resp. Ψm,r

τ,cl ) and

σ
(
a(x,D, τ)∗

)
≡

m∑
j=0

aj(̺
′)ξjn ∈ Sm,rτ /Sm,r−1

τ (resp. Sm,rτ,cl /S
m,r−1
τ,cl ).

Moreover we have Op(a)∗ −Op(a) ∈ Ψm,r−1
τ (resp. Ψm,r−1

τ,cl ).

(2) a(x,D, τ)b(x,D, τ) ∈ Ψm+m′,r+r′
τ (resp. Ψm+m′,r+r′

τ,cl ) and

σ
(
a(x,D, τ)b(x,D, τ)

)
≡ ∑

0≤j≤m
0≤k≤m′

aj(̺
′)bk(̺

′)ξj+kn ∈ Sm+m′,r+r′

τ /Sm+m′,r+r′−1
τ

(resp. Sm+m′,r+r′

τ,cl /Sm+m′,r+r′−1
τ,cl ).

We have Op(a)Op(b)u−Op(ab)u ∈ Ψm+m′,r+r′−1
τ (resp. Ψm+m′,r+r′−1

τ,cl ).

2.3. Sobolev continuity results. Here we state continuity results for the operators defined above using the
Sobolev norms with parameters introduced in Section 1.4. Such results can be obtained from their standard
counterparts.

Let λT(ξ
′, τ) =

(
τ2 + |ξ′|2

)1/2
and ΛT := Op(λT). For a given real number s, the boundary norm given

by (1.10) is equivalent to the following norms (see (1.9) for the definition of |.|p,τ ):

|u|2m,s,τ =
m∑
k=0

|Λs
T
uk|2m−k,τ , u = (u0, . . . , um) ∈

(
S (Rn−1)

)m+1
.

Moreover, we define the following semi-classical interior norm

‖u‖2m,s,τ = ‖Λs
T
u‖2m,τ , u ∈ S (R

n
+).

Proposition 2.8. If a(̺) ∈ Sm,rτ , with m ∈ N and r ∈ R, then for m′ ∈ N and r′ ∈ R there exists C > 0
such that

‖Op(a)u‖m′,r′,τ ≤ C ‖u‖m+m′,r+r′,τ , u ∈ S (R
n
+).

A consequence of this results and Proposition 2.7 is the following property.

Corollary 2.9. Let a ∈ Sm,rτ and m′ ∈ N and s ∈ R. We have

‖a(x,D, τ)∗u− a(x,D, τ)u‖m′,s,τ ≤ C ‖u‖m+m′,r+s−1,τ , u ∈ S (R
n
+).

The following simple inequality will be used implicitly at many places in what follows when we invoke
the parameter τ to be chosen sufficiently large. This will then allow us to absorb semi-classical norms of
lower order.

Corollary 2.10. Let m ∈ N and s ∈ R and ℓ ≥ 0. For some C > 0, we have

‖u‖m,s,τ ≤ Cτ−ℓ ‖u‖m,s+ℓ,τ , u ∈ S (R
n
+).

This implies that ‖u‖m,s,τ ≪ ‖u‖m,s+ℓ,τ for τ sufficiently large.
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3. INTERIOR AND BOUNDARY QUADRATIC FORMS

In this section, we present quadratic forms involving pseudo-differential operators that are differential in
the normal direction and some of their properties.

3.1. Interior quadratic forms.

Definition 3.1. Let u ∈ S (R
n
+). We say that

(3.1) Q(u) =
N∑
s=1

(Asu,Bsu)+ , As = as(x,D, τ), Bs = bs(x,D, τ),

is a quadratic form of type (m,σ) with C∞ coefficients, if for each s = 1, . . . N , we have as(̺) ∈
Sm,σ

′

τ,cl (R
n
+ × R

n), bs(̺) ∈ Sm,σ
′′

τ,cl (R
n
+ × R

n), with σ′ + σ′′ = 2σ, ̺ = (x, ξ, τ).
The symbol of the quadratic form Q is defined by

(3.2) q(̺) =
N∑
s=1

as(̺)bs(̺) ∈ S2m,2σ
τ,cl (R

n
+ × R

n).

Remark 3.2. Note that σ′ and σ′′ can vary with s ∈ {1, . . . , N}. Their sum yet remains constant equal to
2σ. In what follows we shall not write this dependency explicitly for concision.

Clearly, this definition raises an ambiguity as one symbol can be associated with several quadratic forms.
As an example, in one dimension, for N = 1 we can choose A = D2

n ∈ Ψ2,0
τ and B = Λ2

T
∈ Ψ0,2

τ ⊂ Ψ2,0
τ

yielding to |ξ′|2ξ2n for the symbol. The choice A = B = ΛTDn ∈ Ψ1,1
τ ⊂ Ψ2,0

τ leads to the same symbol.
In fact if u ∈ C∞

c (Rn+) then

Q(u) =
N∑
s=1

((Bs)∗ ◦Asu, u)+ .

The symbol of Q thus coincides with the principal symbol of
∑N

s=1(B
s)∗ ◦ As. Note that considering test

functions with non-vanishing traces at the boundary xn = 0+ will naturally generate boundary terms when
performing such operator transpositions. Such questions will be dealt with bellow.

For s = 1, . . . , N , as we have

as(̺) =
m∑
j=0

asj(̺
′)ξjn, bs(̺) =

m∑
j=0

bsj(̺
′)ξjn, ̺ = (̺′, ξn), ̺

′ = (x, ξ′, τ),

with asj ∈ Sm−j+σ′

τ,cl and bsj ∈ Sm−j+σ′′

τ,cl , we write

As =
m∑
j=0

AsjD
j
n, Bs =

m∑
j=0

Bs
jD

j
n, Asj = asj(x,D

′, τ), Bs
j = bsj(x,D

′, τ).

Then, for u ∈ S (R
n
+), the quadratic form given by (3.1) can be written as

Q(u) =
m∑
j=0

m∑
k=0

(
Cj,kD

j
nu,D

k
nu

)
+
,

where Cj,k are tangential operators given by

Cj,k =
N∑
s=1

(Bs
k)

∗Asj ,

with symbols

cjk(̺
′) =

N∑
s=1

(bsk)
∗#asj(̺

′) ∈ S
2(m+σ)−(j+k)
T,τ,cl .

We have the following lemma whose proof is left to the reader.
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Lemma 3.3. We consider the interior quadratic form of type (m,σ), as above,

Q(u) =
m∑
j=0

m∑
k=0

(
Cj,kD

j
nu,D

k
nu

)
+
, Cj,k = cj,k(x,D

′, τ), cj,k ∈ S
2(m+σ)−(j+k)
T,τ,cl .

We have

|Q(u)| ≤ C ‖u‖2m,σ,τ , u ∈ S (R
n
+).

Next we consider the case of a quadratic form with a vanishing symbol. Such a result will be usefull
when comparing quadratic forms associated with the same symbol.

Lemma 3.4. We consider the interior quadratic form of type (m,σ), as above,

Q(u) =
m∑
j=0

m∑
k=0

(
Cj,kD

j
nu,D

k
nu

)
+
, Cj,k = cj,k(x,D

′, τ), cj,k ∈ S
2(m+σ)−(j+k)
T,τ,cl ,

and we further assume that the principal part of its symbol vanishes, that is,
∑

1≤j,k≤m
j+k=ℓ

cj,k(̺
′) ≡ 0 mod S

2(m+σ)−ℓ−1
T,τ,cl , ∀ℓ ∈ {0, . . . , 2m} , ̺′ = (x, ξ′, τ).

Then the following estimate holds

|Q(u)| ≤ C
(
‖u‖2m,σ−1/2,τ + |tr(u)|2m−1,σ+1/2,τ

)
, u ∈ S (R

n
+).

Proof. Let ℓ ∈ {0, . . . , 2m}. We introduce αℓ = max(0, ℓ−m) and βℓ = min(m, ℓ). Note that βℓ = ℓ−αℓ.
We set

Iℓ =
∑

1≤j,k≤m
j+k=ℓ

(
Cj,kD

j
nu,D

k
nu

)
+
=

βℓ∑
k=αℓ

(
Cℓ−k,kD

ℓ−k
n u,Dk

nu
)
+

We first consider 0 < ℓ < 2m. For k > αℓ we write
(
Cℓ−k,kD

ℓ−k
n u,Dk

nu
)
+
=

(
Cℓ−k,kD

ℓ−k+1
n u,Dk−1

n u
)
+
+
(
Op(Dncℓ−k,k)D

ℓ−k
n u,Dk−1

n u
)
+

− i
(
Cℓ−k,kD

ℓ−k
n u|xn=0+ , D

k−1
n u|xn=0+

)
∂
,

which by induction yields,

(
Cℓ−k,kD

ℓ−k
n u,Dk

nu
)
+
=

(
Cℓ−k,kD

βℓ
n u,D

αℓ
n u

)
+
+
k−αℓ∑
s=1

(
Op(Dncℓ−k,k)D

ℓ−k+s−1
n u,Dk−s

n u
)
+

− i
k−αℓ∑
s=1

(
Cℓ−k,kD

ℓ−k+s−1
n u|xn=0+ , D

k−s
n u|xn=0+

)
∂
.

As Dncℓ−k,k ∈ S
2(m+σ)−ℓ
T,τ,cl we note that
∣∣(Op(Dncℓ−k,k)D

ℓ−k+s−1
n u,Dk−s

n u
)
+

∣∣(3.3)

≤ C
∥∥Λm+σ+k−ℓ−s+ 1

2

T
Dℓ−k+s−1
n u

∥∥
+

∥∥Λm+σ−k+s− 1

2

T
Dk−s
n u

∥∥
+

≤ C
∥∥Λm+σ+k−ℓ−s+ 1

2

T
u
∥∥
ℓ−k+s−1,τ

∥∥Λm+σ−k+s− 1

2

T
u
∥∥
k−s,τ

≤ C ‖u‖ℓ−k+s−1,m+σ+k−ℓ−s+ 1

2
,τ ‖u‖k−s,m+σ−k+s− 1

2
,τ

≤ C ‖u‖2m−1,σ+ 1

2
,τ ,

as m+ k − ℓ− s ≥ 0 and m− 1− k + s ≥ 0.
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Similarly we write
∣∣(Cℓ−k,kDℓ−k+s−1

n u|xn=0+ , D
k−s
n u|xn=0+

)
∂

∣∣ ≤ C |tr(u)|2m−1,σ+ 1

2
,τ .

We thus obtain

|Iℓ| ≤
∣∣∣

βℓ∑
k=αℓ

(
Cℓ−k,kD

βℓ
n u,D

αℓ
n u

)
+

∣∣∣+ C
(
‖u‖2m−1,σ+ 1

2
,τ + |tr(u)|2m−1,σ+ 1

2
,τ

)
.

As by assumption we have

βℓ∑
k=αℓ

Cℓ−k,k =
∑

1≤j,k≤m
j+k=ℓ

Cℓ−k,k ∈ Ψ
2(m+σ)−ℓ−1
T,τ,cl ,

we find
∣∣∣

βℓ∑
k=αℓ

(
Cℓ−k,kD

βℓ
n u,D

αℓ
n u

)
+

∣∣∣ ≤ C
∥∥Λm+σ−βℓ−

1

2

T
Dβℓ
n u

∥∥
+

∥∥Λm+σ−αℓ−
1

2

T
Dαℓ
n u

∥∥
+

≤ C ‖u‖βℓ,m+σ−βℓ−
1

2
,τ ‖u‖αℓ,m+σ−αℓ−

1

2
,τ

≤ C ‖u‖2m,σ− 1

2
,τ ,

since m− αℓ ≥ 0 and m− βℓ ≥ 0. In the case 0 < ℓ < 2m we have thus obtained

|Iℓ| ≤ C
(
‖u‖2m,σ− 1

2
,τ + |tr(u)|2m−1,σ+ 1

2
,τ

)
.(3.4)

Let now ℓ = 0. Then I0 = (C0,0u, u)+ and as C0,0 ∈ Ψ
2(m+σ)−1
T,τ,cl we find |I0| ≤ C ‖u‖2m,σ− 1

2
,τ .

Similarly for ℓ = 2m we have I2m = (Cm,mD
m
n u,D

m
n u)+ with Cm,m ∈ Ψ2σ−1

T,τ,cl yielding |I2m| ≤
C ‖u‖2m,σ− 1

2
,τ . This concludes the proof. �

We shall need a Gårding inequality for the quadratic forms we have introduced.

Proposition 3.5 (Gårding inequality). Let U be an open conic set in R
n
+ × R

n−1 × R+ and let Q be an

interior quadratic form of type (m, 0) with its symbol q ∈ S2m,0
τ,cl satisfying, for some C > 0 and R0 > 0,

Re q(̺) ≥ Cλ2m, for λ = |(ξ, τ)| ≥ R0, ̺ = (̺′, ξn), ̺
′ = (x, ξ′, τ) ∈ U , ξn ∈ R.

Let then χ ∈ S0
T,τ , homogeneous of degree 0, be such that supp(χ) ⊂ U . For 0 < C0 < C and N ∈ N

there exist τ∗, C ′ > 0, and C ′′
N > 0 such that the following inequality holds

ReQ(Op(χ)u) ≥ C0 ‖Op(χ)u‖2m,τ − C ′ |tr(Op(χ)u)|2m−1,1/2,τ − C ′′
N ‖u‖2m,−N,τ ,

for u ∈ S (R
n
+) and τ ≥ τ∗.

The important feature of this version of the Gårding inequality is that it concerns functions defined on a
half space. Such an inequality can be found in [41, 11]. Here we give a microlocal version of the inequality.

Remark 3.6. In the case U = U0 × R
n × R

+, with U0 open subset of R
n
+ then, by continuity, there exists

U1 open subset of R
n
+ such that U1 is a neighborhood of U0 and

Re q(̺) ≥ C ′
0λ

2m, for λ = |(ξ, τ)| ≥ R0, ̺ = (̺′, ξn), ̺
′ = (x, ξ′, τ) ∈ U1 × R

n × R
+, ξn ∈ R.

for C0 < C ′
0 < C. Then there exist C ′ and τ∗ > 0 such that

ReQ(u) ≥ C0 ‖u‖2m,τ − C ′ |tr(u)|2m−1,1/2,τ ,
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for u ∈ S (R
n
+) with supp(u) ⊂ U0. This is obtained from Proposition 3.5 by choosing χ = χ(x) ∈

C∞(Rn) with supp(χ|xn>0) ⊂ U1 and χ ≡ 1 on U0 and by taking τ sufficiently large.

Proof. Let χ̃ ∈ S0
T,τ have the same properties as χ with moreover 0 ≤ χ̃ ≤ 1 and χ̃ = 1 on supp(χ).

We introduce the interior quadratic form

Q̃(u) = ReQ(u) =
1

2

N∑
s=1

(
(Asu,Bsu)+ + (Bsu,Asu)+

)
,

that we may write in the form of (3.1) with 2N terms in the sum. Its symbol is given by (see (3.2))

1

2

N∑
s=1

(
b
s
as + asb

s
)
= Re

N∑
s=1

asb
s ∈ S2m,0

τ,cl .

Without any loss of generality we may thus assume that the interior quadratic form Q has a real symbol
q(̺).

The symbol q(̺) is in S2m,0
τ,cl and thus is written as

q(̺) =
2m∑
j=0

qj(̺
′)ξjn, qj ∈ S2m−j

T,τ,cl , ̺ = (̺′, ξn), ̺
′ = (x, ξ′, τ).

Each symbol qj takes the form qj ∼
∑

k≥0 qj,k with qj,k homogeneous of degree 2m− j − k in (ξ′, τ) for
|(ξ′, τ)| ≥ r0 with r0 ≥ 0 (see Definition 2.2). We set q0 as the principal part of q:

q0(̺) =
2m∑
j=0

qj,0(̺
′)ξjn.(3.5)

Observe that q0 satisfies, for C0 < C1 < C,

Re q0(̺) ≥ C1λ
2m, ̺′ ∈ U , ξn ∈ R.

WithC0 < C2 < C1, we see that q0(̺)−C2λ
2m is a real polynomial function in the variable ξn of order 2m,

that takes positive values on the real line for ̺′ ∈ U . The leading coefficient a0(̺′) ∈ S0
τ is homogeneous

of degree 0 in (ξ′, τ), for |(ξ′, τ)| ≥ r0, and is positive. The roots of the polynomial come into conjugated
pairs and are functions of the other variables ̺′ ∈ U . We may thus write

q0(̺)− C2λ
2m = f(̺)f(̺), ̺ = (̺′, ξn), ̺

′ ∈ U , ξn ∈ R,

with

f(̺) =
√
a0(̺′)

m∏
i=1

(
ξn − ρ+i (̺

′)
)
,

where ρ+i , i = 1, . . . ,m, denote the roots with positive imaginary parts. For all ̺′0 = (x0, ξ
′
0, τ0) ∈ U ,

there exists a neighborhood U̺′
0

of ̺′0 in U such that, with the Rouché theorem, arguing as in Appendix A.2

we find that f(̺) ∈ Sm,0τ for ̺′ ∈ U̺′
0
, more precisely a polynomial in ξn with smooth homogeneous

coefficients |(ξ′, τ)| ≥ r0. Note in particular that this uses the homogeneity of the functions qj,0 in (3.5).
We pick V a conic open set such that V ⊂ U and supp(χ̃) ⊂ V . Making use of the conic structure in

the variables (ξ′, τ), as above we can then pick ̺′j ∈ V and conic neighborhoods Uj , j ∈ J , such that we
obtain a locally finite covering of V . We then associate a partition of unity of the form

χ̃ =
∑
j∈J

χj , supp(χj) ⊂ Uj , χj homogeneous of degree 0,
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and fj(̺) = χj(̺
′)f(̺) ∈ Sm,0

T,τ . Since the supports of the χj are locally finite χ̃f =
∑

j fj ∈ Sm,0
T,τ . We

have

χ̃2(̺′)
(
q0(̺)− C2λ

2m
)
= χ̃2(̺′)|f |2(̺),(3.6)

for ̺ = (̺′, ξn) with ̺′ ∈ R
n
+ × R

n−1 × R+ and ξn ∈ R. We now take τ ≥ r0. Observe that v →
‖Op(χ)v‖2m,τ is an interior quadratic form of type (m, 0) with symbol χ̃2|(ξ, τ)|2m. We thus see that

Q(Op(χ̃)v)−C2 ‖Op(χ̃)v‖2m,τ − ‖Op(χ̃f)v‖2+ is an interior quadratic form of type (m, 0) with a symbol
r with vanishing principal part:

r(̺) =
m∑
j=0

rj(̺
′)ξjn, with rj ∈ S2m−j−1

τ .

Lemma 3.4 (with σ = 0) then yields
∣∣ReQ(Op(χ̃)v)− C2 ‖Op(χ̃)v‖2m,τ − ‖Op(χ̃f)v‖2+

∣∣ ≤ C
(
‖v‖2m,−1/2,τ + |tr(v)|2m−1,1/2,τ

)
,(3.7)

for v ∈ S (R
n
+). The triangular inequality then yields

ReQ(Op(χ̃)v) ≥ C2 ‖Op(χ̃)v‖2m,τ − C ′
(
‖v‖2m,−1/2,τ + |tr(v)|2m−1,1/2,τ

)
, v ∈ S (R

n
+),

by taking τ sufficiently large. We now set v = Op(χ)u. We have Op(χ̃)v = Op(χ)u + Ru with R ∈
∩N∈NΨ

−N
T,τ by pseudo-differential calculus. We then obtain the sought estimate by taking τ sufficiently

large. �

3.2. Boundary quadratic forms.

Definition 3.7. Let u ∈ S (R
n
+). We say that

B(u) =
N∑
s=1

(
Asu|xn=0+ , B

su|xn=0+
)
∂
, As = as(x,D, τ), Bs = bs(x,D, τ),

is a boundary quadratic form of type (m− 1, σ) with C∞ coefficients, if for each s = 1, . . . N , we have

as(̺) ∈ Sm−1,σ′

τ,cl (R
n
+ × R

n), bs(̺) ∈ Sm−1,σ′′

τ,cl (R
n
+ × R

n) with σ′ + σ′′ = 2σ, ̺ = (̺′, ξn) with ̺′ =

(x, ξ′, τ). The symbol of the boundary quadratic form B is defined by

B(̺′, ξn, ξ̃n) =
N∑
s=1

as(̺′, ξn)bs(̺
′, ξ̃n).

For z = (z0, . . . , zm−1) ∈ C
m and a(̺) ∈ Sm−1,r

τ,cl , of the form a(̺′, ξn) =
∑m−1

j=0 aj(̺
′)ξjn with

aj(̺
′) ∈ Sm−1+r−j

T,τ,cl we set

Σa(̺
′, z) =

m−1∑
j=0

aj(̺
′)zj .

From the boundary quadratic form B we introduce the following bilinear symbol ΣB : Cm × C
m −→ C

ΣB(̺′, z, z′) =
N∑
s=1

Σsa(̺
′, z)Σsb(̺

′, z′), z, z′ ∈ C
m.

We let W be an open conic set in R
n−1 × R

n−1 × R+.

Definition 3.8. Let B be a boundary quadratic form of type (m− 1, σ) associated with the bilinear symbol

ΣB(̺′, z, z′). We say that B is positive definite in W if there exist C > 0 and R > 0 such that

ReΣB(̺′′, xn = 0+, z, z) ≥ C
m−1∑
j=0

λ
2(m−1−j+σ)
T

|zj |2,
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for λT = |(ξ′, τ)| ≥ R, ̺′′ = (x′, ξ′, τ) ∈ W , and z = (z0, . . . , zm−1) ∈ C
m.

We have the following Lemma.

Lemma 3.9. Let B be a boundary quadratic form of type (m− 1, σ), positive definite in W , an open conic

set in R
n−1 × R

n−1 × R+, with bilinear symbol ΣB(̺′, z, z′). Let χ ∈ S0
T,τ be homogeneous of degree 0,

with supp(χ|xn=0+) ⊂ W and let N ∈ N. Then there exist τ∗ ≥ 1, C > 0, CN > 0 such that

ReB(Op(χ)u) ≥ C |tr(Op(χ)u)|2m−1,σ,τ − CN |tr(u)|2m−1,σ−N,τ ,

for u ∈ S (R
n
+) and τ ≥ τ∗.

Proof. The boundary quadratic form can be written as

B(v) =
m−1∑
j,k=0

(
GjkΛ

m+σ−1−j
T

Dj
nv|xn=0+ ,Λ

m+σ−1−k
T

Dk
nv|xn=0+

)
∂

where Gjk = Op(gjk) ∈ Ψ0
T,τ,cl.

We introduce χ̃ ∈ S0
T,τ that has the same properties as χ with moreover 0 ≤ χ̃ ≤ 1 and χ̃ = 1 in a

neighborhood of suppχ. We then set g(̺′) = (gij(̺
′))0≤i,j,≤m−1 and g̃(̺′) = (g̃ij(̺

′))0≤i,j,≤m−1 with

g̃(̺′) = χ̃(̺′)g(̺′) + (1− χ̃(̺′))Im.

As B is positive definite we have Re (g(̺′′, xn = 0+)z, z) ≥ C |z|2
Cm

with C > 0 for ̺′′ = (x′, ξ′, τ) ∈ W

with λt sufficiently large. Thus we have Re (g̃(̺′′, xn = 0+)z, z) ≥ C ′ |z|2
Cm

with C ′ > 0 for ̺′′ ∈
R
n−1 × R

n−1 × R+ with λt sufficiently large.
For a function v we define the m-tuple functions V = (v0, . . . , vm−1) by

vk = Λm+σ−1−k
T

Dk
nv|xn=0+ , k = 0, . . . ,m− 1.

We then have, for N ∈ Z,

|V |2N,τ =
m−1∑
k=0

|vk|2N,τ =
m−1∑
k=0

∣∣Λm+σ−1−k
T

Dk
nv|xn=0+

∣∣2
N,τ

(3.8)

≍
m−1∑
k=0

∣∣Λσ+N
T

Dk
nv

∣∣2
m−1−k,τ

= |tr(v)|2m−1,σ+N,τ .

We set u = Op(χ)u and introduce U = (u0, . . . , um−1) and U = (u0, . . . , um−1) as above:

uk = Λm+σ−1−k
T

Dk
nu|xn=0+ , uk = Λm+σ−1−k

T
Dk
nu|xn=0+ , k = 0, . . . ,m− 1.

We have

B(u) =
m−1∑
j,k=0

(
Gjk|xn=0+uj , uk

)
∂
.

Writing gij = g̃ij + rij with rij = (gij − δij)(1− χ̃), with δij = 1 if i = j and 0 otherwise, we find

B(u) =
m−1∑
j,k=0

(
Op(g̃ij |xn=0+)uj , uk

)
∂
+

m−1∑
j,k=0

(
Op(rij |xn=0+)uj , uk

)
∂

As the supports of 1 − χ̃ and χ are disjoint, with the pseudo-differential calculus and with the Gårding
inequality in the transverse direction, for any N ∈ N we find C > 0 and CN > 0 such that

ReB(u) ≥ C |U |20,τ − CN |U |2−N,τ ,
for τ sufficiently large. Combined with (3.8) this yields the conclusion. �
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Lemma 3.10. Let hk(ζ), k = 0, . . . ,m′− 1, be a set of polynomials of degree less than or equal to (m− 1)

with m′ ≥ m. Consider the following bilinear form ΣB(z, z′) =
∑m

k=0Σhk(z)Σhk(z
′), for z, z′ ∈ C

m.

Then the following statements are equivalent:

(1) the set of polynomials is complete;

(2) the quadratic form given by ΣB(z, z) is definite positive: there exists C > 0 such that

ΣB(z, z) ≥ C |z|2
Cm

, z = (z0, . . . , zm−1) ∈ C
m.

Proof. Writing hk(ζ) =
∑m−1

j=0 hkjζ
j , the completeness of the set of polynomials means that the matrix

H = (hkj) 0≤k≤m′−1

0≤j≤m−1

,

is of maximal rank, that is of rank m. As we have rank tHH = rankH and

ΣB(z, z) = |Hz|2
Cm

′ =
(
tHHz, z

)
Cm

,

the conclusion follows. �

3.3. Bézout matrices.

Definition 3.11. Given two univariate polynomials a(ζ) =
m∑
j=0

ajζ
j , b(ζ) =

m∑
j=0

bjζ
j of degree less than or

equal to m (note that any coefficient could be zero), we build the following bivariate polynomial

Ba,b(ζ, ζ̃) =
a(ζ)b(ζ̃)− a(ζ̃)b(ζ)

ζ − ζ̃
=

m−1∑
j,k=0

gj,k ζ
j ζ̃k,

called the Bézoutian of a and b, and the corresponding symmetric matrix ga,b = (gj,k) of size m ×m with

entries gj,k, bilinear in the coefficients of a and b, is called the Bézout matrix and given by (see [15]):

(3.9) gj,k =
min(j,k)∑
ℓ=0

(bℓaj+k−ℓ+1 − bj+k−ℓ+1aℓ) ,

upon letting ak = bk := 0 for k > m and k < 0. With this Bézout matrix we associate the following bilinear

form

ΣBa,b(z, z
′) =

m−1∑
j,k=0

gj,kzjz
′
k, z = (z0, . . . , zm−1), z

′ = (z′0, . . . , z
′
m−1) ∈ C

m.

Lemma 3.12. Given two univariate polynomials a(ζ) =
m∑
j=0

ajζ
j , b(ζ) =

m∑
j=0

bjζ
j of degree less than or

equal to m, we have the following identity

(3.10) ΣBa,b(z, z
′) = − ∑

j<k

k−j−1∑
r=0

g′j,kzj+rz
′
k−1−r, z, z′ ∈ C

m,

where

(3.11) g′j,k = (ajbk − akbj) = −g′k,j .
Moreover if a = a1a2 and b = a we have the following property

(3.12) Ba,b(ζ, ζ̃) = a2(ζ)a2(ζ̃)Ba1,a1(ζ, ζ̃) + a1(ζ)a1(ζ̃)Ba2,a2(ζ, ζ̃).

Remark that this expression is not symmetric in a1 and a2.
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Proof. For t, s ∈ R, we write

a(t)b(s)− a(s)b(t) =
m∑

k,j=0

(ajbk − akbj) t
jsk =

m∑
j,k=0

g′j,kt
jsk,

and using the anti-symmetry of g′, viz. g′k,j = −g′j,k, we find

a(t)b(s)− a(s)b(t) =
∑
j<k

g′j,k
(
tjsk − tksj

)
= (s− t)

∑
j<k

g′j,k

k−j−1∑
r=0

tj+rsk−1−r.

By continuity we then obtain the following identities

(3.13) Ba,b(t, s) = B′
a,b(t, s) := − ∑

j<k

g′j,k

k−j−1∑
r=0

tj+rsk−1−r.

With the matrix g′ = (g′j,k) we associate the following bilinear form

ΣB′
a,b
(z, z′) = − ∑

j<k

k−j−1∑
r=0

g′j,kzj+rz
′
k−1−r, z, z′ ∈ C

m.

To prove the first result, i.e., ΣB′
a,b

= ΣBa,b , it is sufficient to have ΣB′
a,b
(vp,vq) = ΣBa,b(vp,vq), p, q ∈

{1, . . . ,m}, for any basis (v1, . . . ,vm) of Cm.
Let then ω1, . . . , ωm ∈ C be such that ωi 6= ωj for i 6= j. Setting vj = (1, ωj , . . . , ω

m−1
j ), j = 1, . . . ,m,

yields a basis of Cm, as we have the Vandermonde determinant

det(v1, . . . ,vm) =
∏

1≤i<j≤m
(ωj − ωi) 6= 0.

Observe then that we have

ΣBa,b(vp,vq) = Ba,b(ωp, ωq), ΣB′
a,b
(vp,vq) = B′

a,b(ωp, ωq).

We then deduce the first result from (3.13).
Finally the proof of (3.12) is a simple algebraic manipulation that is left to the reader. �

The following Hermite Theorem provides a relation between the position of the roots of a polynomial and
the Bézout matrix associated with the real and imaginary parts of the polynomial. We give an elementary
proof in Appendix A.3.

Proposition 3.13 (Hermite Theorem). Let h(ζ) = a(ζ)+ib(ζ) be a polynomial of degree k ≥ 1, where a(ζ)
and b(ζ) are polynomials with real coefficients. Assume that all the roots of h(ζ) are in the lower complex

half-plane {Im ζ < 0}. Then the roots of a(ζ) and b(ζ) are real and distinct. Moreover, the bilinear form

ΣBa,b(z, z
′) is positive, i.e., there exists C > 0 such that

ΣBa,b(z, z) ≥ C |z|2 , z ∈ C
k.

3.4. A generalized Green formula. Consider two symbols of a ∈ Sm,0τ,cl and b ∈ Sm−1,1
τ,cl ⊂ Sm,0τ ,

(3.14) a(̺) =
m∑
j=0

aj(̺
′)ξjn, b(̺) =

m−1∑
j=0

bj(̺
′)ξkn, aj ∈ Sm−j

T,τ,cl, bj ∈ Sm−k
T,τ,cl,

with ̺ = (̺′, ξn) and ̺′ = (x, ξ′, τ). Considering them as polynomials in ξn, we introduce a quadratic form
(Bézout form)

Ba,b(ξn, ξ̃n) =
a(̺′, ξn)b(̺

′, ξ̃n)− a(̺′, ξ̃n)b(̺
′, ξn)

ξn − ξ̃n
=

m−1∑
j,k=1

gj,k(̺
′)ξjnξ̃

k
n,
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where according to (3.9)

gj,k =
min(j,k)∑
ℓ=0

(bℓaj+k−ℓ+1 − bj+k−ℓ+1aℓ) ∈ S
2m−1−(j+k)
T,τ,cl .

With a and b we associate the following boundary quadratic form

(3.15) Ba,b(u) =
m−1∑
j,k=0

(
Gj,kD

j
nu|xn=0+ , D

k
nu|xn=0+

)
∂

where Gj,k = Op(gj,k). By Lemma 3.12 we deduce that

Ba,b(u) = − ∑
j<k

k−j−1∑
ℓ=0

(
Op(g′j,k)D

j+ℓ
n u|xn=0+ , D

k−1−ℓ
n u|xn=0+

)
∂

where

g′j,k(̺
′) = (ajbk − akbj)(̺

′) ∈ S2m−j−k
T,τ,cl .

For any a and b as given by (3.14), we introduce

sub(a, b) =
∑

|α|=1

∂αx (b∂
α
ξ a− a∂αξ b)(3.16)

= {a, b}+ ∑
|α|=1

(
b∂αξ ∂

α
x a− a∂αξ ∂

α
x b

)
∈ S2m−1,0

τ .

We have the following lemma.

Lemma 3.14. We have

sub(a, b)(̺) = −
m∑

j,k=0

hjk(̺
′)ξj+kn − 1

2

m∑
j,k=0

∂n(g
′
jk)(̺

′)(k − j)ξk+j−1
n ∈ S2m−1,0

τ .

where ̺ = (̺′, ξn) and

hj,k =
∑

|β|=1

∂βx′
(
aj∂

β
ξ′bk − bj∂

β
ξ′ak

)
∈ S2m−1−j−k

T,τ,cl .

We refer to Appendix A.4 for a proof.
We shall now prove the following proposition.

Proposition 3.15 (Generalized Green’s formula). Consider two smooth and real symbols a ∈ Sm,0τ,cl and

b ∈ Sm−1,1
τ,cl . The following identity holds true

(3.17) 2Re (Au, iBu)+ = Ha,b(u) + Ba,b(u) +R(u), A = a(x,D, τ), B = b(x,D, τ),

for any u ∈ S (R
n
+). Here, Ba,b is the boundary quadratic form of type (m − 1, 1/2) given by (3.15) and

Ha,b is an interior quadratic form of type (m,−1/2) with real symbol

ha,b(̺) = sub(a, b)(̺).

Finally, the remainder term R(u) is a quadratic form that satisfies

|R(u)| ≤ C ‖u‖2m,−1,τ .
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Proof. We write the first term in the l.h.s. of (3.17) as the following interior quadratic form of type (m, 0)

Q(u) = 2Re (Au, iBu)+ = −i
(
(Au,Bu)+ − (Bu,Au)+

)
=

m∑
j,k=0

Ijk(u),

where the Ijk(u) are given by

Ijk(u) = −i
(
(AjD

j
nu,BkD

k
nu)+ − (BjD

j
nu,AkD

k
nu)+

)
,

with the tangential operators Aj = Op(aj), Bj = Op(bj), j = 1, . . . ,m. We write the interior quadratic
form Ijk in the form

Ijk(u) = −i
(
(B∗

k ◦Aj −A∗
k ◦Bj)Dj

nu,D
k
nu

)
+
.

From symbolic calculus (Proposition 2.5) we have

B∗
k ◦Aj −A∗

k ◦Bj = G′
j,k − iHj,k +Rj,k,

with G′
j,k = Op(g′jk), Hj,k = Op(hjk), where

g′j,k = ajbk − akbj = −g′k,j ∈ S2m−j−k
T,τ,cl , hj,k =

∑
|β|=1

∂βx′(aj∂
β
ξ′bk − bj∂

β
ξ′ak) ∈ S2m−1−j−k

T,τ,cl ,

and the remainder term Rj,k ∈ Ψ2m−2−j−k
T,τ,cl . We thus have

Ijk(u) = −i
(
G′
j,kD

j
nu,D

k
nu

)
+︸ ︷︷ ︸

=:Jj,k(u)

−
(
Hj,kD

j
nu,D

k
nu

)
+
+Rj,k(u), |Rj,k(u)| ≤ C ‖u‖2m,−1,τ .

We consider the term Jj,k for j < k. With an integration by parts, we obtain

Jj,k(u) = −i
(
Op(Dng

′
j,k)D

j
nu,D

k−1
n u

)
+
− i

(
G′
j,kD

j+1
n u,Dk−1

n u
)
+

−
(
G′
j,kD

j
nu|xn=0+ , D

k−1
n u|xn=0+

)
∂
.

Therefore, by induction, we find

Jj,k(u) = −i
k−j−1∑
ℓ=0

(
Op(Dng

′
j,k)D

j+ℓ
n u,Dk−1−ℓ

n u
)
+

=−Jk,j(u)︷ ︸︸ ︷
−i

(
G′
j,kD

k
nu,D

j
nu

)
+
.

−
k−j−1∑
ℓ=0

(
G′
j,kD

j+ℓ
n u|xn=0+ , D

k−1−ℓ
n u|xn=0+

)
∂
.

We thus obtain
m∑

j,k=0

Jj,k(u) =
∑
j<k

Jj,k(u) +
∑
j<k

Jk,j(u)

= −i ∑
j<k

k−j−1∑
ℓ=0

(
Op(Dng

′
j,k)D

j+ℓ
n u,Dk−1−ℓ

n u
)
+

− ∑
j<k

k−j−1∑
ℓ=0

(
G′
j,kD

j+ℓ
n u|xn=0+ , D

k−1−ℓ
n u|xn=0+

)
∂
.

Using Lemma 3.12, we find

m∑
j,k=0

Jj,k(u) = Ba,b(u)−
∑
j<k

k−j−1∑
ℓ=0

(
Op(∂ng

′
j,k)D

j+ℓ
n u,Dk−1−ℓ

n u
)
+
.
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We then obtain

Q(u) = Ba,b(u) +Ha,b(u) +R(u), R(u) =
m∑

j,k=0

Rj,k(u),

where

Ha,b(u) = −
m∑

j,k=0

(
Hj,kD

j
nu,D

k
nu

)
+
− ∑
j<k

k−j−1∑
ℓ=0

(
Op(∂ng

′
j,k)D

j+ℓ
n u,Dk−1−ℓ

n u
)
+
,

with symbol, in the sense of Definition 3.1, given by

ha,b(̺) = −
m∑

j,k=0

hjk(̺
′)ξj+kn − 1

2

m∑
j,k=0

(∂ng
′
jk)(̺

′)(k − j)ξk+j−1
n = sub(a, b),

using Lemma 3.14. �

4. PROOF OF THE CARLEMAN ESTIMATE

As is usual in the proof of Carleman estimates we consider the following conjugated operator

Pϕ = eτϕPe−τϕ.

As eτϕDje
−τϕ = Dj + iτ∂jϕ we see that Pϕ ∈ Ψ2m,0

τ,cl . Its principal symbol is given by pϕ(̺) = p(x, ξ +

iτϕ′(x)) ∈ S2m,0
τ,cl .

Similarly we set

Bk
ϕ = eτϕBke−τϕ ∈ Ψβk,0

τ,cl ,

with principal symbol bkϕ(̺) = bk(x, ξ + iτϕ′(x)) ∈ Sβk,0τ,cl .
We start the proof of the main theorem with a microlocal elliptic estimate that will be exploited below

through the strong Lopatinskii condition.

4.1. Elliptic estimate. Here we consider a polynomial function with roots with negative imaginary parts in
a microlocal region. Then, we can obtain a perfect microlocal elliptic estimate.

Lemma 4.1. Let ℓ(̺′, ξn) ∈ Sk,0τ , ̺′ = (x, ξ′, τ), with k ≥ 1, be polynomial in ξn with homogeneous

coefficients in (ξ′, τ) and L = ℓ(x,D, τ). When viewed as a polynomial in ξn the leading coefficient is 1.

Let U be a conic open subset of V+ × R
n−1 × R+. We assume that all the roots of ℓ(̺′, ξn) = 0 have

negative imaginary part for ̺′ = (x, ξ′, τ) ∈ U . Letting χ(̺′) ∈ S0
T,τ be homogeneous of degree 0 and

such that supp(χ) ⊂ U , and N ∈ N, there exist C > 0, CN > 0, and τ∗ > 0 such that

‖Op(χ)w‖2k,τ + |tr(Op(χ)w)|2k−1,1/2,τ ≤ C ‖LOp(χ)w‖2+ + CN
(
‖w‖2k,−N,τ + |tr(w)|2k−1,−N,τ

)
,

for w ∈ S (R
n
+) and τ ≥ τ∗.

Here we recall that V+ is bounded (see Section 1.6).

Proof. Let V be a conic open set of V+ × R
n−1 × R+ such that V ⊂ U and supp(χ) ⊂ V .

We write ℓ(̺) = a(̺) + ib(̺), where a and b are both real and homogeneous, with a ∈ Sk,0τ and
b ∈ Sk−1,1

τ . We set A = Op(a) and B = Op(b) and we introduce the following quadratic form of type
(k, 0) Q(v) = ‖Av‖2+ + ‖Bv‖2+ with symbol

q(̺) = |a(̺)|2 + |b(̺)|2 ∈ S2k,0
τ .
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The Hermite theorem (Proposition 3.13) implies that a(̺′, ξn) and b(̺′, ξn) have distinct real roots for all
̺′ ∈ U . Thus, on the compact set K = {̺ = (x, ξ, τ); ̺′ = (x, ξ′, τ) ∈ V , ξn ∈ R, |ξ|2 + τ2 = 1}, we
have q 6= 0 yielding by homogeneity

q(̺) ≥ C |(ξ, τ)|2k , ̺′ ∈ V , ξn ∈ R.

Setting w = Op(χ)w, the Gårding inequality of Proposition 3.5 gives, for any N ∈ N,

(4.1) Q(w) ≥ C ‖w‖2k,τ − C ′ |tr(w)|2k−1,1/2,τ − C ′′
N ‖w‖2k,−N,τ .

Next, by the generalized Green formula of Proposition 3.15 we obtain

|2Re (Aw, iBw)− Ba,b(w)| ≤ |Ha,b(w)|+ C ‖w‖2k,−1,τ ≤ C ′ ‖w‖2k,−1/2,τ ,

by Lemma 3.3 as here Ha,b is an interior quadratic form of type (k,−1/2). Here Ba,b(w) is a boundary
quadratic form of type (k − 1, 1/2). Then we deduce

2Re (Aw, iBw)+ ≥ Ba,b(w)− C ‖w‖2k,−1/2,τ .

By the Hermite theorem (Proposition 3.13) the bilinear Bézout form4 ΣBa,b
is positive. With the homogene-

ity we find

ΣBa,b
(̺′, z, z) ≥ C

k−1∑
j=0

λ
2(k−1−j+ 1

2
)

T
|zj |2, ̺′ ∈ V , z = (z0, . . . , zm−1) ∈ C

m, λT = |(ξ′, τ)|.

Then the Gårding inequality of Lemma 3.9 gives, for any N ∈ N,

(4.2) 2Re (Aw, iBw)+ ≥ C |tr(w)|2k−1,1/2,τ − C ′ ‖w‖2k,−1/2,τ − C ′′
N |tr(w)|2k−1,−N,τ

Then from (4.1) and (4.2) we have

‖Lw‖2+ = Q(w) + 2Re (Aw, iBw)+(4.3)

≥ C ‖w‖2k,τ − C ′ |tr(w)|2k−1,1/2,τ − CN
(
‖w‖2k,−N,τ + |tr(w)|2k−1,−N,τ

)
,

for τ chosen sufficiently large.
Note however that with (4.2) we also find, as Q(w) ≥ 0,

(4.4) ‖Lw‖2+ ≥ C |tr(w)|2k−1,1/2,τ − C ′ ‖w‖2k,−1/2,τ − C ′′
N |tr(w)|2k−1,−N,τ .

Combining (4.3) and (4.4) and taking τ sufficiently large we obtain the sought result. �

4.2. Estimate with the strong Lopatinskii condition. Here, we consider a point in the cotangent bundle,
at the boundary, where the strong Lopatinskii condition holds. We then obtain an estimate of a boundary
norm.

Lemma 4.2. Assume that the strong Lopatinskii condition is satisfied at ̺′0 = (x0, ξ
′
0, τ0) ∈ S

∗
T,τ (V ) with

x0 ∈ ∂Ω ∩ V . Then there exists U a conic open neighborhood of ̺′0 in V+ × R
n−1 × R+ such that for

χ ∈ S0
T,τ , homogeneous of degree 0, with supp(χ) ⊂ U , there exist C > 0 and τ∗ > 0 such that

C |tr(Op(χ)v)|2m−1,1/2,τ ≤
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−1/2−βk,τ

+ ‖Pϕv‖2+ + ‖v‖2m,−1,τ + |tr(v)|2m−1,−1/2,τ ,

for τ ≥ τ∗, v ∈ S (R
n
+).

4In the notation of Sections 3.3 and 3.4 we have ΣBa,b
= ΣBa,b

.
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Proof. We consider the factorization of pϕ(̺′, ξn) in a conic open set U0 neighborhood of ̺′0 in V+×R
n−1×

R+ introduced in Section 1.6 by means of Lemma A.2 in Appendix A.2:

pϕ(̺) = p+ϕ (̺)p
−
ϕ (̺)p

0
ϕ(̺), ̺ = (̺′, ξn) ̺′ ∈ U0, ξn ∈ R,

and we set κϕ = p+ϕp
0
ϕ. The polynomials (in ξn) p−ϕ (̺

′, ξn) and κϕ(̺
′, ξn) are of constant degree for

̺′ ∈ U0. We have m− = d◦p−ϕ (̺
′, ξn) = d◦p−ϕ (̺

′
0, ξn).

As in Section 1.6 we introduce the following polynomial functions in ξn (with ̺′ as a smooth parameter)

ekϕ(̺
′, ξn) =

{
bkϕ(̺

′, ξn) k = 1, . . . , µ,

κϕ(̺
′, ξn)ξ

k−(µ+1)
n k = µ+ 1, . . . ,m′ = m− + µ.

With the strong Lopatinskii condition holding at ̺′0, by Proposition 1.8 we have m′ ≥ m and condi-
tion (1.15) is valid in a conic open neighborhood U1 of ̺′0 with U1 ⊂ U0. Precisely, this means that
the set of polynomials (ekϕ(̺

′, ξn))1≤k≤m′ is complete in the class of polynomials in ξn of degree less than

or equal to m− 1 for ̺′ ∈ U1. Observe that K = U1 ∩ S∗
T,τ (V ) is compact, recalling that V+ is bounded.

By Lemma 3.10, for ̺′1 ∈ K we have (using the notation of Section 3.2)

m′∑
k=0

|Σekϕ(̺
′
1, z)|2 & |z|2

Cm
, z = (z0, . . . , zm−1) ∈ C

m.

By continuity this inequality remains true in a small neighborhood of ̺′1 in K. Using the compactness of K
we thus find that there exists C > 0 such that

µ∑
k=0

|Σbkϕ(̺
′, z)|2+

m′∑
k=µ+1

|Σekϕ(̺
′, z)|2 =

m′∑
k=0

|Σekϕ(̺
′, z)|2 ≥ C |z|2

Cm
, z = (z0, . . . , zm−1) ∈ C

m, ̺′ ∈ K.

Introducing the map

Mt̺
′ = (x, tη), ̺′ = (x, η) ∈ R

n
+ × R

n−1 × R+, t > 0,

as we have U1 = {Mt̺
′; t > 0, ̺′ ∈ K}, we find

µ∑
k=0

|Σbkϕ(Mt̺
′, z′)|2 +

m′∑
k=µ+1

|Σekϕ(Mt̺
′, z′)|2 &

∣∣z′
∣∣2
Cm

, ̺′ ∈ U1,

where t = λ−1
T

= |(ξ′, τ)|−1 and z
′ = (z′0, . . . , z

′
m−1) ∈ C

m with z′j = t−m+1/2+jzj , yielding

µ∑
k=0

λ
2(m−1/2−βk)
T

|Σbkϕ(̺
′, z)|2 +

m′∑
k=µ+1

λ
2(m−−1/2−k+µ+1)
T

|Σekϕ(̺
′, z)|2 &

m−1∑
j=0

λ
2(m−1/2−j)
T

|zj |2,

for all z = (z0, . . . , zm−1) ∈ C
m and ̺′ ∈ U1, using the homogeneity of the symbols.

We now choose U a conic open subset, neighborhood of ̺′0, such that U ⊂ U1. We let χ be as in the
statement of the lemma. We also choose χ̃ ∈ S0

T,τ , homogeneous of degree 0, with supp(χ̃) ⊂ U1 and
χ̃ = 1 in a neighborhood of U . Then,
(4.5)

µ∑
k=0

λ
2(m−1/2−βk)
T

|Σbkϕ(̺
′, z)|2 +

m′∑
k=µ+1

λ
2(m−−1/2−k+µ+1)
T

|χ̃(̺′)Σekϕ(̺
′, z)|2 &

m−1∑
j=0

λ
2(m−1/2−j)
T

|zj |2,

for all z = (z0, . . . , zm−1) ∈ C
m and ̺′ ∈ U .
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As bkϕ is the principal symbol of the conjugated operator Bk
ϕ, according to the Gårding inequality of

Lemma 3.9 for a boundary quadratic forms of type (m− 1, 1/2), there exists τ∗ > 0 such that

(4.6)
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−1/2−βk,τ

+
m′∑

k=µ+1

∣∣Ekϕv|xn=0+
∣∣2
m−−1/2−k+µ+1,τ

≥ C |tr(v)|2m−1,1/2,τ − CN |tr(v)|2m−1,−N,τ ,

with v = Op(χ)v and N ∈ N, for τ ≥ τ∗, with Ekϕ = Op(χ̃ekϕ). The introduction of χ̃ is made so that χ̃ekϕ
is defined on the whole tangential phase-space.

The function p−ϕ (̺
′, ξn) is polynomial in ξn with homogeneous coefficients in ̺′ ∈ U and leading

coefficient equal to 1. Its degree is constant and equal to m− for ̺′ ∈ U . We smoothly extend p−ϕ (̺
′, ξn)

for ̺′ outside of U keeping the leading coefficient equal to 1 and we denote this extension by p−
ϕ

. In fact

we have χpϕ = χκϕp
−
ϕ = χχ̃κϕp

−
ϕ

. We thus obtain Op(χ)Pϕ = Op(p−
ϕ
)Op(χ)Op(χ̃κϕ) + R with R in

Ψm,−1
τ by the last point of Proposition 2.7. Observe that χ̃κϕ is a well defined symbol.
Applying Lemma 4.1 to Op(p−

ϕ
) and w = Op(χ̃κϕ)v we obtain

‖Op(χ)w‖2m−,τ + |tr(Op(χ)w)|2m−−1,1/2,τ

.
∥∥Op(p−

ϕ
)Op(χ)w

∥∥2
+
+ ‖w‖2m−,−N,τ + |tr(w)|2m−−1,−N,τ

. ‖Op(χ)Pϕv‖2+ + ‖v‖2m,−1,τ + ‖v‖2m,−N,τ + |tr(v)|2m−1,−N,τ

. ‖Pϕv‖2+ + ‖v‖2m,−1,τ + |tr(v)|2m−1,−N,τ ,

yielding

m−−1∑
j=0

∣∣Dj
nOp(χ)w|xn=0+

∣∣2
m−−1/2−j,τ

. ‖Pϕv‖2+ + ‖v‖2m,−1,τ + |tr(v)|2m−1,−N,τ .

Recalling that ej+µ+1
ϕ = κϕξ

j
n, j = 0, . . . ,m−−1 in U1 we haveDj

nOp(χ)Op(χ̃κϕ)v = Ej+µ+1
ϕ v+Rjv

with Rj ∈ Ψm−m−+j,−1
τ by the last point of Proposition 2.7. We then obtain, for τ sufficiently large

(4.7)
m−−1∑
j=0

∣∣Ej+µ+1
ϕ v|xn=0+

∣∣2
m−−1/2−j,τ

. ‖Pϕv‖2+ + ‖v‖2m,−1,τ + |tr(v)|2m−1,−1/2,τ .

Observing that
∣∣Bk

ϕv|xn=0+
∣∣
m−1/2−βk,τ

.
∣∣Bk

ϕv|xn=0+
∣∣
m−1/2−βk,τ

+ |tr(v)|βk,m−1/2−βk−1,τ

.
∣∣Bk

ϕv|xn=0+
∣∣
m−1/2−βk,τ

+ |tr(v)|m−1,−1/2,τ .

we obtain the result of Lemma 4.2 by collecting estimates (4.6) and (4.7). �

4.3. Estimate with a positive Poisson bracket on the characteristic set. Here we consider the case of
two symbols a, b such that their Poisson bracket {a, b} is positive of the characterisitic set {a = b = 0}.
This allows us to derive an estimate with the control of a volume norm.

Lemma 4.3. Let U be an open set of V+. Let a ∈ Sm,0τ and b ∈ Sm−1,1
τ be real symbols homogeneous of

degree m in (τ, ξ), and set

Qa,b(v) = 2Re (Av, iBv)+ , A = a(x,D, τ), B = b(x,D, τ).

We assume that

a(̺) = b(̺) = 0 ⇒ {a, b} > 0, ̺ = (x, ξ, τ),
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for x ∈ U , (ξ, τ) 6= (0, 0). Then there exist C > 0, C ′ > 0, and τ∗ > 0 such that

C ‖v‖2m,τ ≤ C ′
(
‖Av‖2+ + ‖Bv‖2+ + |tr(v)|2m−1,1/2,τ

)
+ τ

(
Qa,b(v)− ReBa,b(v)

)
,

for τ > τ∗ and for v ∈ S (R
n
+) with supp(v) ⊂ U .

Proof. Note that with the definition of ha,b(̺) = sub(a, b)(̺) in Section 3.4 we have

a(̺) = b(̺) = 0 ⇒ sub(a, b)(̺) > 0, ̺ = (x, ξ, τ),

Observe that ha,b(̺) is homogeneous of degree 2m− 1 in (ξ, τ). On the compact S∗
T,τ

(
U
)

we have

τha,b + ν
(
|a|2 + |b|2

)
≥ C0 > 0,

for ν > 0 sufficiently large. Then by homogeneity we obtain

τha,b(̺) + ν
(
|a|2 + |b|2

)
(̺) ≥ C0|(ξ, τ)|2m, ̺ = (x, ξ, τ), x ∈ U, ξ ∈ R

n, τ ≥ 0,

By the Gårding inequality of Proposition 3.5 for interior quadratic forms of type (m, 0) and Remark 3.6 we
have

τ ReHa,b(v) + ν(‖Av‖2+ + ‖Bv‖2+) + C ′ |tr(v)|2m−1,1/2,τ ≥ C ‖v‖2m,τ ,
where Ha,b is a quadratic form of type (m, 0) with symbol ha,b. Such a form is for instance given in the
proof of Proposition 3.15.

The generalized Green formula of Proposition 3.15 gives

Qa,b(v)− ReBa,b(v) + C ‖v‖2m,−1,τ ≥ ReHa,b(v),

yielding

τ
(
Qa,b(v)− ReBa,b(v)

)
+ ν(‖Av‖2+ + ‖Bv‖2+) + Cτ ‖v‖2m,−1,τ + C ′ |tr(v)|2m−1,1/2,τ ≥ C ′′ ‖v‖2m,τ ,

which gives the result by choosing τ sufficiently large. �

4.4. A microlocal Carleman estimate. With the previous results if the strong Lopatinskii condition holds
at one point of the cotangent bundle at the boundary we can then derive a Carleman estimate that holds
microlocally, that is, with a cut-off in phase-space applied through a tangential pseudo-differential operator.

Theorem 4.4. Let x0 ∈ ∂Ω∩V . Assume that {P, ϕ} satisfies the sub-ellipticity condition on a neighborhood

of x0 in V+. Assume moreover that {P,Bk, ϕ, k = 1, . . . , µ} satisfies the strong Lopatinskii condition at

̺′0 = (x0, ξ
′
0, τ0) ∈ S

∗
T,τ (V+). Then there exists U a conic open neighborhood of ̺′0 in V+ × R

n−1 × R+

such that for χ ∈ S0
T,τ , homogeneous of degree 0, with supp(χ) ⊂ U , there exist C > 0 and τ∗ > 0 such

that

(4.8) ‖Pϕv‖2+ +
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−βk−1/2,τ

+ ‖v‖2m,−1,τ + |tr(v)|2m−1,−1/2,τ ≥ C
(
τ−1 ‖Op(χ)v‖2m,τ + |tr(Op(χ)v)|2m−1,1/2,τ

)
,

for τ ≥ τ∗, v ∈ S (R
n
+).

Note that there are remainder terms, viz.

‖v‖2m,−1,τ + |tr(v)|2m−1,−1/2,τ

that concern the unknown function v everywhere and not only in the microlocal region U we consider here.
The norms of these remainder terms are weaker that those in the r.h.s. of the estimates. When patching
microlocal estimates of the form of (4.8) together these remainder terms can be dealt with; see Section 4.5
below.
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Proof. Let U0 be a open neighborhood of x0 in V+ with the sub-ellipticity condition holding in U0.
In the local coordinates we have chosen we have

P = P (x,D) =
m∑
j=1

Pj(x,D
′)Dj

n,

with Pm = 1 (see Section 1.6). We decompose the conjugated operator Pϕ = eτϕPe−τϕ as

Pϕ = P2 + iP1, P2 =
1

2
(Pϕ + P ∗

ϕ), P1 =
1

2i
(Pϕ − P ∗

ϕ).

The operators P2 and P1 are thus formally self-adjoint. Their respective principal symbols a(x, ξ, τ) ∈ Sm,0τ

and b(x, ξ, τ) ∈ Sm−1,1
τ are both real and homogeneous. We set pϕ = a+ib. We then consider the following

interior quadratic form of type (m, 0)

Qa,b(v) = 2Re(Av, iBv)+, A = Op(a), B = Op(b).

Note that we have

(4.9) Pϕ = A+ iB +R, R ∈ Ψm,−1
τ .

The sub-ellipticity condition of Definition 1.1 reads

pϕ(x, ξ, τ) = 0 ⇒ {a, b}(x, ξ, τ) > 0,

for x ∈ U0 and (ξ, τ) 6= (0, 0). Note that the case τ = 0 is achieved because of the ellipticity of P (see
Definition 1.1 and Remark 1.2).

Let now U be as given by Lemma 4.2, possibly reduced so that U ⊂ U0 × R
n−1 × R+, and let χ be as

in the statement of the theorem. By Lemma 4.3 we then have, for v = Op(χ)v,

(4.10)
(
Qa,b(v)− ReBa,b(v)

)
≥ Cτ−1 ‖v‖2m,τ − C ′τ−1

(
‖Av‖2+ + ‖Bv‖2+ + |tr(v)|2m−1,1/2,τ

)
,

for τ chosen sufficiently large, with Ba,b(v) given by (3.15). As Ba,b is of type (m− 1, 1/2) we have

|Ba,b(v)| . |tr(v)|2m−1,1/2,τ .

With Lemma 4.2, making use of the strong Lopatinskii condition, we obtain for M chosen sufficiently large

(4.11) ReBa,b(v) +M
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−βk−1/2,τ

≥ C |tr(v)|2m−1,1/2,τ − C ′
(
‖v‖2m,−1,τ + |tr(v)|2m−1,−1/2,τ + ‖Pϕv‖2+

)
.

for τ chosen sufficiently large. Summing (4.10) and (4.11) we find, by taking τ sufficiently large,

Qa,b(v) + ‖Pϕv‖2+ + τ−1(‖Av‖2+ + ‖Bv‖2+) +
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−βk−1/2,τ

+ ‖v‖2m,−1,τ + |tr(v)|2m−1,−1/2,τ & τ−1 ‖v‖2m,τ + |tr(v)|2m−1,1/2,τ .

Finally, noting that

‖Av‖2+ + ‖Bv‖2+ +Qa,b(v) = ‖(A+ iB)v‖2+ . ‖Pϕv‖2+ + ‖v‖2m,−1,τ

. ‖Pϕv‖2+ + ‖v‖2m,−1,τ ,

by (4.9) and pseudo-differential calculus (last point of Proposition 2.7), we obtain the sought microlocal
estimate. �
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4.5. Proof of Theorem 1.6. We shall patch together estimates of the form given in Theorem 4.4.
With x0 as in the statement of Theorem 1.6 the strong Lopatinskii condition holds for all boundary

quadruples ω = (x0, Y,N, τ) with Y ∈ T ∗
x0(∂Ω), N ∈ N∗

x0(∂Ω), τ ≥ 0. In the local coordinates that
we use here this means that this property is satisfied for N equal to the unit conormal to {xn = 0} and all
̺′ = (x0, ξ

′, τ) with ξ′ ∈ R
n−1 and τ ≥ 0. (See Section 1.6.) It is fact sufficient to consider (ξ′, τ) ∈

S
n−1
+ = {(ξ′, τ) ∈ R

n, τ ≥ 0, |(ξ′, τ)| = 1}.
By Theorem 4.4 for all (ξ′0, τ0) ∈ S

n−1
+ there exists a conic open neighborhood U̺′

0
of ̺′0 = (x0, ξ

′
0, τ0) in

V+×R
n−1×R+ such that the estimate (4.8) holds. In fact by reducing U̺′

0
we can choose U̺′

0
= O̺′

0
×Γ̺′

0

where O̺′
0

is an open set in V+ and Γ̺′
0

is a conic open set in R
n−1 × R+. With the compactness of Sn−1

+

we can thus find finitely many such open sets Uj = Oj ×Γj , j ∈ J , such that Sn−1
+ ⊂ ∪j∈JΓj . We then set

O = ∩j∈JOj that is an open neighborhood of x0 in V+ and we set Vj = O × Γj ⊂ Uj . We also choose an
open neighborhood W of x0 in R

n such that W+ =W ∩ V+ ⋐ O.
We then choose a partition of unity, χj ∈ S0

T,τ , j ∈ J , onW+×R
n−1×R+ subordinated by the covering

by the open sets Vj :
∑
j∈J

χj(̺
′) = 1, for ̺′ = (x, ξ′, τ) ∈W+ × R

n−1 ×R+ and |(ξ′, τ)| ≥ r0 > 0, supp(χj) ⊂ Vj .

The symbols χj are chosen homogeneous of degree 0 for |(ξ′, τ)| ≥ r0 > 0. We set χ = 1−∑
j∈J χj and

have χ ∈ ∩N∈NS
−N
T,τ .

As supp(χj) ⊂ Uj , we can apply the microlocal estimate of Theorem 4.4:

(4.12) ‖Pϕv‖2+ +
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−βk−1/2,τ

+ ‖v‖2m,−1,τ + |tr(v)|2m−1,−1/2,τ & τ−1 ‖Op(χj)v‖2m,τ + |tr(Op(χj)v)|2m−1,1/2,τ ,

for τ chosen sufficiently large and for v = eτϕu with u = w|R
n
+

with w ∈ C∞
c (W ).

Observe then that, for any N ∈ N,

‖v‖m,τ ≤ ∑
j∈J

‖Op(χj)v‖m,τ +
∥∥Op(χ)v

∥∥
m,τ

.
∑
j∈J

‖Op(χj)v‖m,τ + ‖v‖m,−N,τ ,

and

|tr(v)|m−1,1/2,τ ≤ ∑
j∈J

|tr(Op(χj)v)|m−1,1/2,τ +
∣∣tr(Op(χ)v)

∣∣
m−1,1/2,τ

.
∑
j∈J

|tr(Op(χj)v)|m−1,1/2,τ + |tr(v)|m−1,−N,τ .

Summing estimates (4.12) for each χj we thus obtain

‖Pϕv‖2+ +
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−βk−1/2,τ

+ ‖v‖2m,−1,τ + |tr(v)|2m−1,−1/2,τ & τ−1 ‖v‖2m,τ + |tr(v)|2m−1,1/2,τ .

Choosing now τ sufficiently large we obtain

‖Pϕv‖2+ +
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−βk−1/2,τ

& τ−1 ‖v‖2m,τ + |tr(v)|2m−1,1/2,τ .(4.13)

Setting v = eτϕu the conclusion of the proof of Theorem 1.6 is then classical. �
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4.6. Shifted estimates. It may be interesting to consider shifted estimates in the Sobolev scales. Namely
we may wish to have an estimate of the following form.

Corollary 4.5. Let x0 ∈ ∂Ω and let ϕ ∈ C∞(Ω) be such that the pair {P, ϕ} has the sub-ellipticity property

of Definition 1.1 in a neighborhood of x0 in Ω. Moreover, assume that
{
P, ϕ,Bk, k = 1, . . . , µ

}
satisfies

the strong Lopatinskii condition at x0. Let ℓ ∈ N. Then there exist a neighborhood W of x0 in R
n and two

constants C and τ∗ > 0 such that

(4.14)

τ−1 ‖eτϕu‖2ℓ+m,τ+|eτϕ tr(u)|2ℓ+m−1,1/2,τ ≤ C
(
‖eτϕP (x,D)u‖2ℓ,τ+

µ∑
k=1

∣∣∣eτϕ tr(Bk(x,D)u)
∣∣∣
2

ℓ,m−1/2−βk,τ

)
,

for all u = w|Ω with w ∈ C∞
c (W ) and τ ≥ τ∗.

Proof. We proceed by induction on ℓ. As the result holds for ℓ = 0 we assume it holds for some ℓ ∈ N; we
then have the counterpart of (4.13):

‖Pϕv‖2ℓ,τ +
µ∑
k=1

∣∣ tr(Bk
ϕv)

∣∣2
ℓ,m−βk−1/2,τ

& τ−1 ‖v‖2ℓ+m,τ + |tr(v)|2ℓ+m−1,1/2,τ ,

which we shall apply to Dxnv and Dα
x′v for |α| = 1. We have

‖PϕDxnv‖ℓ,τ + ‖PϕDα
x′v‖ℓ,τ ≤ ‖Pϕv‖ℓ+1,τ + ‖[Pϕ, Dxn ]v‖ℓ,τ + ‖[Pϕ, Dα

x′ ]v‖ℓ,τ
. ‖Pϕv‖ℓ+1,τ + ‖v‖ℓ+m,τ .

We also have
∣∣ tr(Bk

ϕDxnv)
∣∣
ℓ,m−βk−1/2,τ

+
∣∣ tr(Bk

ϕD
α
x′v)

∣∣
ℓ,m−βk−1/2,τ

≤
∣∣ tr(DxnB

k
ϕv)

∣∣
ℓ,m−βk−1/2,τ

+
∣∣ tr(Dα

x′B
k
ϕv)

∣∣
ℓ,m−βk−1/2,τ

+
∣∣ tr(v)

∣∣
ℓ+βk,m−βk−1/2,τ

≤
∣∣ tr(Bk

ϕv)
∣∣
ℓ+1,m−βk−1/2,τ

+
∣∣ tr(v)

∣∣
ℓ+βk,m−βk−1/2,τ

.

We thus have

‖Pϕv‖ℓ+1,τ +
∣∣ tr(Bk

ϕv)
∣∣
ℓ+1,m−βk−1/2,τ

+ ‖v‖ℓ+m,τ +
∣∣ tr(v)

∣∣
ℓ+βk,m−βk−1/2,τ

& τ ‖Pϕv‖ℓ,τ + ‖PϕDxnv‖ℓ,τ + ‖PϕDα
x′v‖ℓ,τ

+ τ
∣∣ tr(Bk

ϕv)
∣∣
ℓ,m−βk−1/2,τ

+
∣∣ tr(Bk

ϕDxnv)
∣∣
ℓ,m−βk−1/2,τ

+
∣∣ tr(Bk

ϕD
α
x′v)

∣∣
ℓ,m−βk−1/2,τ

.

This yields, by induction,

‖Pϕv‖ℓ+1,τ +
∣∣ tr(Bk

ϕv)
∣∣
ℓ+1,m−βk−1/2,τ

+ ‖v‖ℓ+m,τ +
∣∣ tr(v)

∣∣
ℓ+βk,m−βk−1/2,τ

& τ
1

2 ‖v‖ℓ+m,τ + τ−
1

2

∑
1≤j≤n

∥∥Dxjv
∥∥
ℓ+m,τ

+ τ |tr(v)|ℓ+m−1,1/2,τ +
∑

1≤j≤n

∣∣tr(Dxjv)
∣∣
ℓ+m−1,1/2,τ

& τ−1/2 ‖v‖ℓ+m+1,τ + |tr(v)|ℓ+m,1/2,τ ,

which then implies the result. �

4.7. A Carleman estimate without prescribed boundary conditions. We conclude this section with an
additional result that can be handy in situations when no information on the traces of the solution of an ellip-
tic equation is a priori available. In other words, what type of estimate can one achieve without Lopatinskii
type conditions? Of course, one still needs to assume the necessary sub-ellipticity condition.
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Proposition 4.6. Let x0 ∈ ∂Ω and let ϕ ∈ C∞(Ω) be such that the pair {P, ϕ} has the sub-ellipticity

property of Definition 1.1 in a neighborhood of x0 in Ω.

Then there exist a neighborhood W of x0 in R
n and two constants C and τ∗ > 0 such that

(4.15) τ−1 ‖eτϕu‖2m,τ ≤ C
(
‖eτϕP (x,D)u‖2+ + |eτϕ tr(u)|2m−1,1/2,τ

)
,

for all u = w|Ω with w ∈ C∞
c (W ) and τ ≥ τ∗.

Proof. We follow the proof of Theorem 4.4 and write Pϕ = A + iB + R with R ∈ Ψm,−1
τ and we set

Qa,b(v) = 2Re(Av, iBv)+. As in (4.10) we have by Lemma 4.3
(
Qa,b(v)− ReBa,b(v)

)
≥ Cτ−1 ‖v‖2m,τ − C ′τ−1

(
‖Av‖2+ + ‖Bv‖2+ + |tr(v)|2m−1,1/2,τ

)
.

for τ chosen sufficiently large. As we have |Ba,b(v)| . |tr(v)|2m−1,1/2,τ we find

τ−1 ‖v‖2m,τ . ‖Av‖2+ + ‖Bv‖2+ +Qa,b(v) + |tr(v)|2m−1,1/2,τ .

As we have
‖Av‖2+ + ‖Bv‖2+ +Qa,b(v) = ‖(A+ iB)v‖2+ . ‖Pϕv‖2+ + ‖v‖2m,−1,τ ,

we conclude the proof by choosing τ sufficiently large. �

5. A PSEUDO-DIFFERENTIAL CALCULUS WITH TWO LARGE PARAMETERS

The weight function we shall consider below is of the form ϕ(x) = exp(γψ(x)). The function ψ is
assumed to be C∞ and to satisfy

(5.1) 0 < C ≤ ψ ≤ C ′,
∥∥ψ′

∥∥
L∞ <∞.

We take γ ≥ 1. The goal of what follows is to achieve estimates as in Theorem 1.6 with the explicit
dependency upon the additional parameter γ. This can be done by the introduction of an appropriate pseudo-
differential calculus. Assumption of the function ψ will be made in Section 6.1, namely, the strong pseudo-
convexity conditions, to obtain a Carleman estimate.

5.1. Metric, symbols, operators and Sobolev norms. Here, by ̺ and ̺′ we shall denote ̺ = (x, ξ, τ, γ) ∈
R
n × R

n × R+ × R+ and ̺′ = (x, ξ′, τ, γ) ∈ R
n
+ × R

n−1 × R+ × R+.
We set τ̃(x) = τγϕ(x). Following [30] we consider the metrics on phase-space

g = γ2|dx|2 + |dξ|2
µ2

, with µ2 = µ2(̺) = |(τ̃(x), ξ)|2 = τ̃(x)2 + |ξ|2,

and on tangent phase space

gT = γ2|dx|2 + |dξ′|2
µT

2
, with µT

2 = µT

2(̺′) = |(τ̃(x), ξ′)|2 = τ̃(x)2 + |ξ′|2,

for τ ≥ 1 and γ ≥ 1. Below, the explicit dependencies of µ and µT upon ̺ and ̺′ are dropped to ease
notation.

The metric g (resp. gT) along with the order function µ (resp. µT) generates a (resp. tangential) Weyl-
Hörmander pseudo-differential calculus as proven in [30, Proposition 2.2]. For a presentation of the Weyl-
Hörmander calculus we refer to [36], [19, Sections 18.4–6] and [18].

Let a(x, ξ, τ, γ) ∈ C∞(Rn × R
n), with τ, γ as parameter in [τmin,+∞) and [γmin,+∞), τmin > 0,

γmin > 0, and m ∈ R, be such that for all multi-indices α, β ∈ N
n we have

(5.2)
∣∣∣∂αx ∂

β
ξ a(̺)

∣∣∣ ≤ Cα,βγ
|α|µm−|β|, ̺ ∈ R

n × R
n × [τmin,+∞)× [γmin,+∞).
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With the notation of [19, Sections 18.4-18.6] we then have a(̺) ∈ S(µm, g)(Rn × R
n). For simplicity we

shall write a ∈ Smτ̃ .

The associated class of pseudo-differential operators, as given by (2.3), is denoted by Ψm
τ̃ . If a is polyno-

mial in ξ, τ , γ and ϕ(x) then we write Op(a) ∈ Dm
τ̃ .

Similarly, let a(x, ξ′, τ, γ) ∈ C∞(R
n
+ × R

n−1) and m ∈ R, be such that for all multi-indices α, β ∈ N
n

we have

(5.3)
∣∣∣∂αx ∂

β
ξ′a(̺

′)
∣∣∣ ≤ Cα,βγ

|α|µT

m−|β|, ̺′ ∈ R
n
+ × R

n−1 × [τmin,+∞)× [γmin,+∞).

We then have a(̺′) ∈ Sm
T,τ̃ = S(µT

m, gT)(R
n
+ × R

n−1).

The associated class of pseudo-differential operators, as given by (2.4), is denoted by Ψm
T,τ̃ .

With ̺ = (x, ξ, τ, γ) ∈ R
n × R

n × R+ × R+ (resp. ̺′ = (x, ξ′, τ, γ) ∈ R
n
+ × R

n−1 × R+ × R+) we
shall associate ˜̺ = (x, ξ, τ̃(x)) ∈ R

n × R
n × R+ (resp. ˜̺′ = (x, ξ′, τ̃(x)) ∈ R

n
+ × R

n−1 × R+).
Note that if â(x, ξ, τ̂) ∈ Smτ , with the notation of Section 2.1, satisfying moreover, for all multi-indices

α, β′, β′′ ∈ N
n, with β = β′ + β′′,

(5.4)
∣∣∣∂αx ∂

β′

ξ ∂
β′′

τ̂ â(x, ξ, τ̂)
∣∣∣ ≤ Cα,β′,β′′ |(ξ, τ̂)|m−|β| , x ∈ R

n, ξ ∈ R
n, τ̂ ∈ [τmin,+∞),

i.e., differentiation w.r.t. τ̂ yields the same additional decay as a differentiation w.r.t. ξ, then

a(x, ξ, τ, γ) = â(x, ξ, τ̃(x)) ∈ Smτ̃ ,

which we shall write a(̺) = â(˜̺). Similarly if â(x, ξ′, τ̂) ∈ Sm
T,τ with the same additional property regard-

ing differentiation w.r.t. τ̂ we have a(̺′) = â(˜̺′) ∈ Sm
T,τ̃ .

In what follows we shall assume that symbols in Smτ and Sm
T,τ have this additional regularity property.

We then say that a ∈ Smτ̃ (resp. Sm
T,τ̃ ) is homogeneous of degree m with respect to (ξ, τ̃) (resp. (ξ′, τ̃)) if we

have a(̺) = â(˜̺)) (resp. a(̺′) = â(˜̺′) ) with â(x, ξ, τ̂) ∈ Smτ (resp. â(x, ξ′, τ̂) ∈ Sm
T,τ ) homogeneous of

degree m in (ξ, τ̂) (resp. (ξ′, τ̂)).

We shall also use the following classes of symbols S(τ̃ rµT
m, gT) = τ̃ rSm

T,τ̃ on R
n
+×R

n−1, for r,m ∈ R.
The associated class of tangential pseudo-differential operators is denoted by τ̃ rΨ(µT

m, gT) = τ̃ rΨm
T,τ̃ .

We shall say that a(̺) ∈ τ̃ rSm,στ̃ if

a(̺) =
m∑
j=0

aj(̺
′)ξjn, with aj ∈ τ̃ rSm−j+σ

T,τ̃ .

The principal part is given by
∑m

j=0 σ(aj)(̺
′)ξjn. The associated class of pseudo-differential operators is

denoted by τ̃ rΨm,σ
τ̃ .

We have the following lemma whose proof is similar to that of Lemma 2.7 in [30].

Lemma 5.1. Let r,m ∈ R and a ∈ τ̃ rSm
T,τ̃ . There exists C > 0 such that for τ sufficiently large

| (Op(a)u, v)+ | ≤ C
∥∥Op(τ̃ r

′
µT

m′
)u
∥∥
+

∥∥Op(τ̃ r
′′
µT

m′′
)v
∥∥
+
, u, v ∈ S (R

n
+).

for r = r′ + r′′, m = m′ +m′′.

This contains the estimate
∥∥Op(τ̃ sµT

p)Op(a)u
∥∥
+
≤ C

∥∥Op(τ̃ s+rµT

p+m)u
∥∥
+
, u ∈ S (R

n
+),

for s, p ∈ R.
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Note also that we have
∥∥Op(τ̃ rµT

m)u
∥∥
+
≍

∥∥Op(µT

m)τ̃ ru
∥∥
+
, u ∈ S (R

n
+),(5.5)

for τ chosen sufficiently large.

Next we say that a(x, ξ′, τ, γ) ∈ τ̃ rSm
T,τ̃ ,cl if there exists a(j) ∈ γj τ̃ rSm−j

T,τ̃ , with γ−ja(j) homogeneous
of degree m+ r − j in (ξ′, τ̃) for |(ξ′, τ̃)| ≥ r0, with r0 ≥ 0, such that

(5.6) a ∼ ∑
j≥0

a(j), in the sense that a−
N∑
j=0

a(j) ∈ γN+1τ̃ rSm−N−1
T,τ̃ .

A representative of the principal part, denoted by σ(a), is then given by the first term in the expansion.
Then, we shall say that a(̺) ∈ τ̃ rSm,στ̃ ,cl if

a(̺) =
m∑
j=0

aj(̺
′)ξjn, with aj ∈ τ̃ rSm−j+σ

T,τ̃ ,cl .

The principal part is given by
∑m

j=0 σ(aj)(̺
′)ξjn.

With these symbol classes we associate classes of pseudo-differential operators, τ̃ rΨm
T,τ̃ ,cl and τ̃ rΨm,σ

τ̃ ,cl ,
as is done in Section 2.2.

We define the following semi-classical interior norm

|u|2m,τ̃ = |Op(µT

m)u|2∂ , u ∈ S (Rn−1),

‖u‖2m,τ̃ =
m∑
j=0

∥∥Op(µT

m−j)Dj
nu

∥∥2
+
, m ∈ N, u ∈ S (R

n
+),

We also set, for m ∈ N and σ ∈ R,

‖u‖2m,σ,τ̃ =
∥∥Op(µT

σ)u
∥∥2
m,τ̃

∼
m∑
j=0

∥∥Op(µT

m−j+σ)Dj
nu

∥∥2
+
, u ∈ S (R

n
+).

At the boundary {xn = 0+} we define the following norms, for m ∈ N and σ ∈ R,

|tr(u)|2m,σ,τ̃ =
m∑
j=0

∣∣Op(µT

m−j+σ) trj(u)
∣∣2
∂
, u ∈ S (R

n
+).

Proposition 5.2. Let r,m ∈ R, and a ∈ τ̃ rSm
T,τ̃ . Then, for r′,m′ ∈ R, there exists C > 0 such that

∣∣∣τ̃ r′ Op(a)u|xn=0+

∣∣∣
m′,τ̃

≤ C
∣∣∣τ̃ r+r′u|xn=0+

∣∣∣
m+m′,τ̃

, u ∈ S (R
n
+).

Proposition 5.3. Let r, σ ∈ R, m ∈ N, and a ∈ τ̃ rSm,στ̃ . Then, for r′, σ′ ∈ R and m′ ∈ N, there exists

C > 0 such that
∥∥∥τ̃ r′ Op(a)u

∥∥∥
m′,σ′,τ̃

≤ C
∥∥∥τ̃ r+r′u

∥∥∥
m+m′,σ+σ′,τ̃

, u ∈ S (R
n
+).

5.2. Differential forms.
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5.2.1. Interior quadratic forms.

Definition 5.4. Let u ∈ S (R
n
+). We say that

(5.7) Q(u) =
N∑
s=1

(Asu,Bsu)+ , As = as(x,D, τ, γ), Bs = bs(x,D, τ, γ),

is a quadratic form of type (r,m, σ) with C∞ coefficients, if for each s = 1, . . . N , we have as(̺) ∈
τ̃ r

′
Sm,σ

′

τ̃ ,cl , bs(̺) ∈ τ̃ r
′′
Sm,σ

′′

τ̃ ,cl , with r′ + r′′ = 2r and σ′ + σ′′ = 2σ.

The symbol of the quadratic form Q is defined by

(5.8) q(̺) =
N∑
s=1

as(̺)bs(̺) ∈ τ̃2rS2m,2σ
τ̃ ,cl .

As in Section 3.1 an interior quadratic from can be written in the form

Q(u) =
m∑
j=0

m∑
k=0

(
Cj,kD

j
nu,D

k
nu

)
+
,

where Cj,k are tangential operators with symbol cjk(̺′) ∈ τ̃2rS
2(m+σ)−(j+k)
T,τ̃ .

Lemma 3.3 is then changed into the following lemma.

Lemma 5.5. We consider the interior quadratic form of type (r,m, σ) as above. We have

|Q(u)| ≤ C ‖τ̃ ru‖2m,σ,τ , u ∈ S (R
n
+).

Lemma 3.4 is changed into the following lemma.

Lemma 5.6. We consider the interior quadratic form of type (r,m, σ) as above and we further assume that

the principal part of its symbol vanishes, that is,
∑

1≤j,k≤m
j+k=ℓ

cj,k(̺
′) ≡ 0 mod γτ̃2rS

2(m+σ)−ℓ−1
T,τ̃ , ∀ℓ ∈ {0, . . . , 2m} .

Then, for τ sufficiently large, the following estimate holds

|Q(u)| ≤ C
(
γ ‖τ̃ ru‖2m,σ−1/2,τ +

∣∣τ̃2r tr(u)
∣∣2
m−1,σ+1/2,τ

)
, u ∈ S (R

n
+).

Proof. We only point out differences from the proof of Lemma 3.4. Estimate (3.3) is modified. As here
Dncℓ−k,k ∈ γτ̃2rS

2(m+σ)−ℓ
T,τ̃ , with Lemma 5.1 and (5.5) (and additional commutator arguments) we write

∣∣(Op(Dncℓ−k,k)D
ℓ−k+s−1
n u,Dk−s

n u
)
+

∣∣

≤ Cγ
∥∥Op(τ̃ rµT

m+σ+k−ℓ−s+ 1

2 )Dℓ−k+s−1
n u

∥∥
+

∥∥Op(τ̃ rµT

m+σ−k+s− 1

2 )Dk−s
n u

∥∥
+

≤ Cγ ‖τ̃ ru‖ℓ−k+s−1,m+σ+k−ℓ−s+ 1

2
,τ̃ ‖τ̃ ru‖k−s,m+σ−k+s− 1

2
,τ̃

≤ Cγ ‖τ̃ ru‖2m−1,σ+ 1

2
,τ̃ ,

for τ sufficiently large, as m+ k − ℓ− s ≥ 0 and m− 1− k + s ≥ 0. Using also that
βℓ∑

k=αℓ

Cℓ−k,k =
∑

1≤j,k≤m
j+k=ℓ

Cℓ−k,k ∈ γτ̃2rΨ
2(m+σ)−ℓ−1
T,τ̃ ,

estimate (3.4) then becomes

|Iℓ| ≤ C
(
γ ‖τ̃ ru‖2m,σ− 1

2
,τ̃ + |τ̃ r tr(u)|2m−1,σ+ 1

2
,τ̃

)
,

and the result follows. �
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The Gårding inequality for interior quadratic forms reads as follows.

Proposition 5.7 (Gårding inequality). Let U be an open conic set in R
n
+ × R

n−1 × R+ and let Q be an

interior quadratic form of type (r,m, 0) with its symbol q(x, ξ, τ, γ) ∈ τ̃2rS2m,0
τ̃ ,cl satisfying, for some C > 0

and R0 > 0,

Re q(̺) ≥ Cτ̃2rµ2m, for ˜̺′ = (x, ξ′, τ̃(x)) ∈ U and µ = |(ξ, τ̃(x))| ≥ R0,

with ̺ = (̺′, ξn), ̺
′ = (x, ξ′, τ, γ), and ξn ∈ R. Let then χ̂ ∈ S0

T,τ , homogeneous of degree 0, be such that

supp(χ̂) ⊂ U and set χ(̺′) = χ̂(˜̺′) ∈ S0
T,τ̃ . For 0 < C0 < C and N ∈ N there exist τ∗, C ′ > 0, and

C ′′
N > 0 such that the following inequality holds

ReQ(Op(χ)u) ≥ C0 ‖τ̃ r Op(χ)u‖2m,τ̃ − C ′ |tr(τ̃ r Op(χ)u)|2m−1,1/2,τ̃ − C ′′
N ‖u‖2m,−N,τ̃ ,

for u ∈ S (R
n
+) and τ ≥ τ∗.

Remark 5.8. With the same proof as Remark 3.6 if U = U0 × R
n × R+ then

ReQ(u) ≥ C0 ‖τ̃ ru‖2m,τ̃ − C ′ |tr(τ̃ ru)|2m−1,1/2,τ̃ ,

for u ∈ S (R
n
+) with supp(u) ⊂ U0.

Proof. The proof follows that of Proposition 3.5. Here homogeneity of the symbols is to be understood with
respect to (τ̃ , ξ) or (τ̃ , ξ′) (as presented in Section 5.1).

We let ˆ̃χ ∈ S0
T,τ have the same properties as χ̂ with moreover 0 ≤ ˆ̃χ ≤ 1 and ˆ̃χ = 1 on supp(χ̂). We

then set χ̃(̺′) = ˆ̃χ(˜̺′) ∈ S0
T,τ̃ .

We define q0 as the principal part of τ̃−2rq. It is homogeneous of degree 2m in (τ̃ , ξ). We have q0(̺) =
q̂0(˜̺) with q̂0(x, ξ, τ̂) homogeneous of degree 2m in (ξ, τ̂) with moreover

q̂0(x, ξ, τ̂) ≥ C1|(ξ, τ̂)|2m, for C0 < C1 < C.

Similarly to (3.6), for C0 < C2 < C1, we have

ˆ̃χ2(x, ξ′, τ̂)
(
q̂0(x, ξ, τ̂)− C2|(ξ, τ̂)|2m

)
= ˆ̃χ2(x, ξ′, τ̂)|f̂ |2(x, ξ, τ̂), f̂ ∈ Sm,0

T,τ ,

leading to

χ̃2(̺′)
(
q0(̺)− C2µ

2m
)
= χ̃2(̺′)|f |2(̺),

with f(̺) = f̂(˜̺) ∈ Sm,0
T,τ̃ , polynomial in ξn and with smooth homogeneous coefficients.

With Lemma 5.6 estimate (3.7) becomes
∣∣ReQ(Op(χ̃)v)− C2 ‖τ̃ r Op(χ̃)v‖2m,τ̃ − ‖Op(τ̃ rχ̃f)v‖2+

∣∣

≤ C
(
γ ‖τ̃ rv‖2m,−1/2,τ̃ + |τ̃ r tr(v)|2m−1,1/2,τ̃

)
,

for v ∈ S (R
n
+) and we conclude the proof by setting v = Op(χ)u and by taking τ sufficiently large. �

5.2.2. Boundary quadratic forms and generalized Green formula. Boundary quadratic forms can be intro-
duced as in Section 3.2

Definition 5.9. Let u ∈ S (R
n
+). We say that

B(u) =
N∑
s=1

(
Asu|xn=0+ , B

su|xn=0+
)
∂
, As = as(x,D, τ, γ), Bs = bs(x,D, τ, γ),

is a boundary quadratic form of type (r,m− 1, σ) with C∞ coefficients, if for each s = 1, . . . N , we have

as(̺) ∈ τ̃ r
′
Sm−1,σ′

τ̃ ,cl (R
n
+ × R

n), bs(̺) ∈ τ̃ r
′′
Sm−1,σ′′

τ̃ ,cl (R
n
+ × R

n), with r′ + r′′ = 2r and σ′ + σ′′ = σ.
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The symbol of the boundary quadratic form B is defined by

B(̺′, ξn, ξ̃n) =
N∑
s=1

as(̺′, ξn)bs(̺
′, ξ̃n), ̺′ = (x, ξ′, τ, γ).

As in Section 3.2 we associate to B a bilinear symbol ΣB(̺′, z, z′).
We let W be an open conic set in R

n−1 × R
n−1 × R+.

Definition 5.10. Let B be a boundary quadratic form of type (0,m − 1, σ) associated with the bilinear

symbol ΣB(̺′, z, z′). We say that B is positive definite in W if there exist C > 0 and R > 0 such that

ΣB(̺′′, xn = 0+, z, z) ≥ C
m−1∑
j=0

µT

2(m−1−j+σ)
|xn=0+

|zj |2, ˜̺′′ ∈ V , z = (z0, . . . , zm−1) ∈ C
m,

for µT ≥ R, ̺′′ = (x′, ξ′, τ, γ), and ˜̺′′ = (x′, ξ′, τ̃(x′, xn = 0+)).

Lemma 5.11. Let B be a boundary quadratic form of type (0,m−1, σ) with bilinear symbol ΣB(̺′, z, z′).
If B is positive definite in W , an open subset of Rn−1 ×R

n−1 ×R+, and χ̂ ∈ S0
T,τ homogeneous of degree

0, with supp(χ̂|xn=0+) ⊂ W . Let N ∈ N. Then there exist τ∗ ≥ 1, γ∗ ≥ 1, C > 0, CN > 0 such that

B(Op(χ)u) ≥ C |tr(Op(χ)u)|2m−1,σ,τ̃ − CN |tr(u)|2m−1,σ−N,τ̃ ,

for u ∈ S (R
n
+), τ ≥ τ∗, γ ≥ γ∗, and χ(̺′) = χ̂(˜̺′) ∈ S0

T,τ̃ , with ̺′ = (x, ξ′, τ, γ) and ˜̺′ = (x, ξ′, τ̃(x)).

Proof. We highlight modifications from the arguments in the proof of Lemma 3.9. Here Op(µT
s) is not

simply invertible (as it is not a Fourier multiplier). Yet, by Lemma 2.4 in [30], there exists vj ∈ L2(Rn−1)
such that

Dj
nu|xn=0+ = Op(µT

−(m+σ−1−j))vj .

Then the boundary quadratic form can be written as

B(u) =
m−1∑
j,k=0

(
Op(gjk |xn=0+)vj , vk

)
∂
,

with gjk ∈ S0
T,τ̃ ,cl and we have (gjk |xn=0+) ≥ C > 0. The Gårding inequality in the tangential directions

then yields the conclusion as in the proof of Lemma 3.9. �

The generalized Green formula, counterpart of that of Proposition 3.15, with a similar proof, reads as
follows.

Proposition 5.12 (Generalized Green’s formula). Consider two smooth and real symbols a ∈ Sm,0τ̃ ,cl and

b ∈ Sm−1,1
τ̃ ,cl . The following identity holds true

(5.9) 2Re (Au, iBu)+ = Ha,b(u) + Ba,b(u) +R(u), A = a(x,D, τ, γ), B = b(x,D, τ, γ),

for any u ∈ S (R
n
+). Here, Ba,b is the boundary quadratic form of type (0,m− 1, 1/2) given by

Ba,b(u) =
m−1∑
j,k=0

(
Gj,kD

j
nu|xn=0+ , D

k
nu|xn=0+

)
∂

where Gj,k = Op(gj,k) with

gj,k =
min(j,k)∑
ℓ=0

(bℓaj+k−ℓ+1 − bj+k−ℓ+1aℓ) ∈ S
2m−1−(j+k)
T,τ̃ ,cl ,

and γ−1Ha,b is an interior quadratic form of type (0,m,−1/2) with real symbol

γ−1ha,b(x, ξ, τ, γ) = γ−1 sub(a, b)(x, ξ, τ, γ) ∈ S2m−1,0
τ̃ ,cl
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Finally, the remainder term R(u) is a quadratic form that satisfies

|R(u)| ≤ Cγ2 ‖u‖2m,−1,τ̃ .

6. CARLEMAN ESTIMATE WITH TWO LARGE PARAMETERS

With a weight function of the form ϕ(x) = exp(γψ(x)), some condition on ψ can yield ϕ to fulfill the
sub-ellipticity condition of Definition 1.1. Those are the strong pseudo-convexity conditions introduced by
L. Hörmander (see [16], [17, Section 8.6] and [20, Section 28.3]). We shall see that along with the strong
Lopatinskii condition they are sufficient to derive Carleman estimates with an explicit dependency upon the
additional parameter γ. In fact the strong pseudo-convexity condition is also necessary if one considers a
weight function of this form; for such question we refer to [30].

6.1. Strong pseudo-convexity. In the present article, we restrict ourselves to elliptic operators. The notion
of strong pseudo-convexity then reduces to the following one (the reader can compare with Section 28.3 in
[20]).

Definition 6.1 (strong pseudo-convexity up to a boundary). We say that a smooth function ψ is strongly

pseudo-convex at x ∈ Ω w.r.t. p if ψ′(x) 6= 0 and if for all ξ ∈ R
n and τ̂ > 0,

(s-Ψc) p(x, ξ + iτ̂ψ′(x)) = 0 and
{
p, ψ

}
(x, ξ + iτ̂ψ′(x)) = 0

⇒ 1

2i

{
p(x, ξ − iτ̂ψ′(x)), p(x, ξ + iτ̂ψ′(x))

}
> 0.

Let U be an open subset of Ω. The function ψ is said to be strongly pseudo-convex w.r.t. p in U up to the
boundary if (s-Ψc) is valid for all x ∈ U .

Proposition 28.3.3 in [20] shows that this property imply the sub-ellipticity condition for ϕ for γ chosen
sufficiently large, which in turn yields a Carleman estimate in an open set away from the boundary. In this
section our goal is to derive a Carleman estimate at the boundary that keeps track of the dependency of the
two large parameters, τ and γ, as is done in [30] away from the boundary.

Setting â = Re p(x, ξ + iτ̂ψ′(x)) and b̂ = Im p(x, ξ + iτ̂ψ′(x)) we have

1

2i

{
p(x, ξ − iτ̂ψ′(x)), p(x, ξ + iτ̂ψ′(x))

}
= {â, b̂}.

In fact we recall that we have (see (3.16))

1

2i
sub

(
p(x, ξ − iτ̂ψ′(x)), p(x, ξ + iτ̂ψ′(x))

)
= sub(â, b̂) =

∑
|α|=1

∂αx (b̂∂
α
ξ â− â∂αξ b̂)

= {â, b̂}+
∑

|α|=1

(
b̂∂αξ ∂

α
x â− â∂αξ ∂

α
x b̂

)
.

Property (s-Ψc) may thus be written

(6.1) p(x, ξ + iτ̂ψ′(x)) = 0 and
{
p, ψ

}
(x, ξ + iτ̂ψ′(x)) = 0

⇒ 1

2i
sub

(
p(x, ξ − iτ̂ψ′(x)), p(x, ξ + iτ̂ψ′(x))

)
> 0,

for all ξ ∈ R
n, τ̂ > 0, and x ∈ U .
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We set

Θp,ψ(x, ξ, τ̂) = τ̂
∑
j,k

∂2xjxkψ(x)
(
∂ξjp(x, ζ) ∂ξkp(x, ζ)− Re p(x, ζ)∂2ξjξkp(x, ζ)

)

+ Im
∑
j

(
(∂xjp)(x, ζ) ∂ξjp(x, ζ) + p(x, ζ)(∂2xjξjp)(x, ζ)

)
,

where ζ = ξ + iτ̂ψ′. Observe that Θp,ψ(x, ξ, τ̂) is homogeneous of degree 2m − 1 in (ξ, τ̂) and that we
have

1

2i
sub

(
p(x, ξ − iτ̂ψ′(x)), p(x, ξ + iτ̂ψ′(x))

)
= Θp,ψ(x, ξ, τ̂).

We set pϕ(x, ξ, τ, γ) = p(x, ξ + iτϕ′) ∈ Sm,0τ̃ . We write Pϕ = A+ iB + R, with A = Op(a) ∈ Ψm,0
τ̃ ,

B = Op(b) ∈ Ψm−1,1
τ̃ , where a = Re pϕ and b = Im pϕ, and with R ∈ γΨm,−1

τ̃ . As in Section 4, part of
the analysis relies on the properties of the symbol sub (a, b). Here ϕ = exp(γψ).

We compute

sub (a, b) = Θp,ϕ(x, ξ, τ)(6.2)

= τ̃(x)
∑
j,k

∂2xjxkψ(x)
(
∂ξjp(x, ζ) ∂ξkp(x, ζ)− Re p(x, ζ)∂2ξjξkp(x, ζ)

)

+ γτ̃(x)
( ∣∣〈p′ξ(x, ζ), ψ′(x)〉

∣∣2 − Re p(x, ζ)
∑
j,k

∂xjψ(x)∂xkψ(x)∂
2
ξjξk

p(x, ζ)
)

+ Im
∑
j

(
(∂xjp)(x, ζ) ∂ξjp(x, ζ) + p(x, η)(∂2xjξjp)(x, ζ)

)
,

= Θp,ψ(x, ξ, τ̃(x)) + γτ̃(x)
( ∣∣〈p′ξ(x, ζ), ψ′(x)〉

∣∣2

− Re p(x, ζ)
∑
j,k

∂xjψ(x)∂xkψ(x)∂
2
ξjξk

p(x, ζ)
)
.

where here τ̃(x) = τγϕ(x) and ζ = ξ+ iτϕ′(x) = ξ+ iτ̃(x)ψ′(x). Note that the first term is homogeneous
of degree 2m−1 in (ξ, τ̃) and that the two other terms do not satisfy this homogeneity. In the present article,
our positivity arguments rely on the classical Gårding inequality for homogeneous polynomial symbols. In
what follows some adjusting will be performed on the symbol level to obtain the desired homogeneity.

We start with the following symbol inequality.

Proposition 6.2. Let P be elliptic on Ω and let ψ have the strong pseudo-convexity property of Defini-

tion 6.1) in U up to the boundary of U , with U an open subset of Ω. We set ϕ = eγψ and

ζ = ζ(x, ξ, τ, γ) = ξ + iτϕ′(x) = ξ + iτ̃(x)ψ′(x), τ̃(x) = τγϕ(x).

There exist C > 0, τ∗ ≥ 1, γ∗ ≥ 1, and ν > 0 such that

Cµ2m ≤ ν|p(x, ζ)|2 + τ̃(x)Θp,ψ(x, ξ, τ̃(x)) + ντ̃(x)2|〈p′ξ(x, ζ), ψ′(x)〉|2,
τ ≥ τ∗, γ ≥ γ∗, (x, ξ) ∈ U × R

n.

Note that symbol on the r.h.s. of (6.3) is homogeneous of degree 2m in (ξ, τ̃).

Proof. We shall in fact prove that there exist C > 0, ν > 0, and τ̂0 > 0 such that

C|(τ̂ , ξ)|2m ≤ ν|p(x, ξ + iτ̂ψ′(x)|2 + τ̂Θp,ψ(x, ξ, τ̂) + ντ̂2|〈p′ξ(x, ξ + iτ̂ψ′(x)), ψ′(x)〉|2,

for τ̂ ≥ τ̂0 and (x, ξ) ∈ U × R
n. Then, substituting τ̃(x) for τ̂ and letting γ and τ be sufficiently large

yields the result.
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Because of homogeneity it suffices the prove

(6.3) 0 < C ≤ ν|p(x, ξ + iτ̂ψ′(x)|2 + τ̂Θp,ψ(x, ξ, τ̂) + ντ̂2|〈p′ξ(x, ξ + iτ̂ψ′(x)), ψ′(x)〉|2,

on the compact set K = {(x, ξ, τ̂);x ∈ U, ξ ∈ R
n, τ̂ ≥ 0, |(ξ, τ̂)| = 1}. The ellipticity of P reads

|p(x, ξ)| ≥ C|ξ|2, for some C > 0. By continuity we see that (6.3) holds for τ̂ ≪ |ξ| and some ν0 > 0.
Moreover it remains true for ν ≥ ν0.

We now treat the case |ξ| ≤ δτ̂ , that is we consider the compact set

Kδ = {(x, ξ, τ̂);x ∈ U, ξ ∈ R
n, τ̂ ≥ 0, |(ξ, τ̂)| = 1, |ξ| ≤ δτ̂}.

We have Θp,ψ(x, ξ, τ̂) =
1
2i sub

(
p(x, ξ − iτ̂ψ′(x)), p(x, ξ + iτ̂ψ′(x))

)
. Hence condition (6.1) that follows

from the strong pseudo-convexity condition reads, for τ̂ > 0,

p(x, ξ + iτ̂ψ′(x)) = 0 and
{
p, ψ

}
(x, ξ + iτ̂ψ′(x)) = 0 ⇒ Θp,ψ(x, ξ, τ̂) > 0.(6.4)

Then on the compact set Kδ the result follows from Lemma 6.3 below, by choosing ν sufficiently large. �

Lemma 6.3. Consider two continuous functions, f and g, defined in a compact set K, and assume that

f ≥ 0 and f(y) = 0 ⇒ g(y) > 0. Setting hν = νf + g we have hν ≥ C > 0 for ν > 0 chosen sufficiently

large.

The proof is left to the reader.

6.2. Conjugated operators and strong Lopatinskii condition. The principal symbol ofPϕ = eτϕPe−τϕ ∈
Ψm,0
τ̃ ,cl in the present calculus is

pϕ(x, ξ, τ) = p(x, ξ + iτϕ′(x)) = p(x, ξ + iτ̃(x)ψ′(x)) = pψ(x, ξ, τ̃) ∈ Sm,0τ̃ ,cl ,

Similarly, the principal symbol of Bk
ϕ = eτϕBke−τϕ ∈ Ψβk,0

τ̃ ,cl , k = 1, . . . , µ, is

bkϕ(x, ξ, τ) = bk(x, ξ + iτϕ′(x)) = bk(x, ξ + iτ̃ψ′(x)) = bkψ(x, ξ, τ̃) ∈ Sβk,0τ̃ ,cl .

Above the dependency upon γ is hidden either in ϕ or in τ̃ . By abuse of notation we shall write pϕ(̺) (resp.
pψ(̺)) and bkϕ(̺) (resp. bkψ(̺)) with ̺ = (x, ξ, τ, γ).

Recalling the notation of Section 1.3 for the boundary quadruplet ω = (x, Y,N, τ) we set ω̃ = (x, Y,N, τ̃),
where τ̃ = τγϕ(x). Observe then that p̃ϕ(ω, λ) = p̃ψ(ω̃, λ).

Setting κ̃ϕ = p̃+ϕ p̃
0
ϕ and κ̃ψ = p̃+ψ p̃

0
ψ, we then find

κ̃ϕ(ω, λ) = κ̃ψ(ω̃, λ).

Similarly, for B =
{
Bk

}
k=1,...,µ

the set of boundary operators and bk(x, ξ) their principal symbols, we
have

b̃kϕ(ω, λ) = b̃kψ(ω̃, λ).

From these simple observations we thus conclude that {P,Bk, ϕ, k = 1, . . . , µ} satisfies the strong Lopatin-
skii condition at the boundary quadruple ω = (x, Y,N, τ) if and only if {P,Bk, ψ, k = 1, . . . , µ} satisfies
the strong Lopatinskii condition at the boundary quadruple ω̃ = (x, Y,N, τ̃).
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6.3. Statement of the Carleman estimate with two large parameters. We shall prove the following theo-
rem, counterpart of Theorem 1.6 in the case of a weight function of the form ϕ = exp(γψ), with an explicit
dependency with respect to the second large parameter γ.

Theorem 6.4. Let x0 ∈ ∂Ω and let ψ ∈ C∞(Ω) satisfying (5.1) have the strong pseudo-convexity property

of Definition 6.1 with respect to P in a neighborhood of x0 in Ω up to the boundary. Moreover, assume that{
P, ψ,Bk, k = 1, . . . , µ

}
satisfies the strong Lopatinskii condition at x0. Then there exist a neighborhood

W of x0 in R
n and three constants C, τ∗ > 0, and γ∗ > 0 such that for ϕ = exp(γψ) and τ̃ = τγϕ:

(6.5)
∥∥τ̃− 1

2 eτϕu
∥∥2
m,τ̃

+ |eτϕ tr(u)|2m−1,1/2,τ̃ ≤ C
(
‖eτϕP (x,D)u‖2L2(Ω) +

µ∑
k=1

|eτϕBk(x,D)u|∂Ω|2m−1/2−βk,τ̃

)
,

for all u = w|Ω with w ∈ C∞
c (W ), τ ≥ τ∗ and γ ≥ γ∗.

6.4. Preliminary estimates. The following lemma is the counterpart of Lemma 4.1, that is, an elliptic
estimate.

As above with ̺′ = (x, ξ′, τ, γ) ∈ R
n
+ × R

n−1 × R+ × R+ we shall associate ˜̺′ = (x, ξ′, τ̃(x)) ∈
R
n
+ × R

n−1 × R+.

Lemma 6.5. Let ℓ(̺) ∈ Sk,0τ̃ , with ̺ = (x, ξ, τ, γ) and k ≥ 1, be polynomial in ξn with homogeneous

coefficients in (ξ′, τ̃) and L = ℓ(x,D, τ, γ). When viewed as a polynomial in ξn the leading coefficient is 1.

Let U be a conic open subset of V+ ×R
n−1 ×R+. We assume that all roots of ℓ(̺′, ξn) = 0 have negative

imaginary part for ˜̺′ ∈ U . Letting χ̂(ˆ̺′) ∈ S0
T,τ , ˆ̺′ = (x, ξ′, τ̂), be homogeneous of degree 0 and such

that supp(χ̂) ⊂ U , and N ∈ N, there exist C > 0, CN > 0, τ∗ > 0 and γ∗, such that

‖Op(χ)w‖2k,τ̃ + |tr(Op(χ)w)|2k−1,1/2,τ̃ ≤ C ‖LOp(χ)w‖2+ + CN
(
‖w‖2k,−N,τ̃ + |tr(w)|2k−1,−N,τ̃

)
,

for w ∈ S (R
n
+) and τ ≥ τ∗, γ ≥ γ∗ and χ(̺′) = χ̂(˜̺′) ∈ S0

T,τ̃ .

Proof. The proof is very similar to that of Lemma 4.1. We highlight differences that mainly involve factors
γ and norm indices. We write ℓ(̺) = a(̺) + ib(̺), where a and b are both real and homogeneous in (ξ, τ̃),
with a ∈ Sk,0τ̃ and b ∈ Sk−1,1

τ̃ . We setA = Op(a) andB = Op(b) and we introduce the following quadratic
form, of type (0, k, 0), Q(w) = ‖Aw‖2+ + ‖Bw‖2+ with symbol

q(̺) = |a(̺)|2 + |b(̺)|2 ∈ S2k,0
τ̃ .

Setting w = Op(χ)w, the Hermite theorem and the Gårding inequality of Proposition 5.7 give

Q(w) ≥ C ‖w‖2k,τ̃ − C ′ |tr(w)|2k−1,1/2,τ̃ ,−C ′′
N ‖w‖2k,−N,τ̃ ,

and the generalized Green formula of Proposition 5.12 gives
∣∣2Re (Aw, iBw)+ − Ba,b(w)

∣∣ ≤ |Ha,b(w)|+ Cγ2 ‖w‖2k,−1,τ̃ ≤ C ′γ ‖w‖2k,−1/2,τ̃ ,

for τ ≥ 1. Note that Lemma 5.5 is used as γ−1Ha,b is an interior quadratic form of type (0, k,−1/2). Here
Ba,b(w) is a boundary quadratic form of type (0, k − 1, 1/2). Then we deduce

2Re (Aw, iBw)+ ≥ Ba,b(w)− Cγ ‖w‖2k,−1/2,τ .

With the Gårding inequality of Lemma 5.11 we obtain

2Re (Aw, iBw)+ ≥ C |tr(w)|2k−1,1/2,τ̃ − C ′γ ‖w‖2k,−1/2,τ̃ − C ′′
N |tr(w)|2k−1,−N,τ̃ .

Arguing as in the end of the proof of Lemma 4.1 the result follows by choosing τ and γ sufficiently large. �
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The following lemma is the counterpart of Lemma 4.2, that is, an estimate exploiting the strong Lopatin-
skii condition, yielding an estimate of a boundary norm.

Lemma 6.6. Assume that {P,Bk, ψ, k = 1, . . . , µ} satisfies the strong Lopatinskii condition at (x0, ξ
′
0, τ̂0) ∈

S
∗
T,τ (V+) with x0 ∈ ∂Ω∩V . Then there exists U a conic open neighborhood of (x0, ξ

′
0, τ̂0) in V+×R

n−1×
R+ such that for χ̂ ∈ S0

T,τ , homogeneous of degree 0, with supp(χ̂) ⊂ U , there exist C > 0, τ∗ > 0 and

γ∗ > 0 such that

C |tr(Op(χ)v)|2m−1,1/2,τ̃ ≤
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−1/2−βk,τ̃

+‖Pϕv‖2++γ2 ‖v‖2m,−1,τ̃+γ
2 |tr(v)|2m−1,−1/2,τ̃ ,

for v ∈ S (R
n
+), τ ≥ τ∗, γ ≥ γ∗ and χ(̺′) = χ̂(˜̺′) ∈ S0

T,τ̃ , with ̺′ = (x, ξ′, τ, γ) and ˜̺′ = (x, ξ′, τ̃(x)).

Proof. The beginning of the proof is nearly identical to that of Lemma 4.2. Inequality (4.5) becomes (using
the notation of Section 3.2)

µ∑
k=0

λ
2(m−1/2−βk)
T

|Σbk
ψ
(ˆ̺′, z)|2 +

m′∑
k=µ+1

λ
2(m−−1/2−k+µ+1)
T

| ˆ̃χ(ˆ̺′)Σek
ψ
(ˆ̺′, z)|2 &

m−1∑
j=0

λ
2(m−1/2−j)
T

|zj |2,

for all z = (z0, . . . , zm−1) ∈ C
m and ˆ̺′ = (x, ξ′, τ̂) ∈ U , with λ2

T
= |ξ|′2 + τ̂2 and

ekψ(ˆ̺
′, ξn) = κψ(ˆ̺

′, ξn)ξ
k−(µ+1)
n , k = µ+ 1, . . . ,m′ = m− + µ.

Here, ˆ̃χ ∈ S0
T,τ is homogeneous of degree 0 and such that ˆ̃χ = 1 in a neighborhood of U .

We then obtain, taking ˆ̺′ = ˜̺′ = (x, ξ′, τ̃(x)),

µ∑
k=0

µT

2(m−1/2−βk)|Σbkϕ(̺
′, z)|2 +

m′∑
k=µ+1

µT

2(m−−1/2−k+µ+1)|χ̃(̺′)Σekϕ(̺
′, z)|2

&
m−1∑
j=0

µT

2(m−1/2−j)|zj |2,

for all z = (z0, . . . , zm−1) ∈ C
m and ̺′ = (x, ξ′, τ, γ) such that ˜̺′ ∈ U . Here χ̃(̺′) = ˆ̃χ(˜̺′) ∈ S0

T,τ̃ .
Then, according to Gårding inequality of Lemma 5.11 for a boundary quadratic forms of type (0,m −

1, 1/2), there exists τ∗ > 0 and γ∗ such that

(6.6)
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−1/2−βk,τ̃

+
m′∑

k=µ+1

∣∣Ekϕv|xn=0+
∣∣2
m−−1/2−k+µ+1,τ̃

& |tr(v)|2m−1,1/2,τ̃ − CN |tr(v)|2m−1,−N,τ̃ ,

with v = Op(χ)v and N ∈ N, for τ ≥ τ∗ and γ ≥ γ∗, with Bk
ϕ = Op(bkϕ) and Ekϕ = Op(χ̃ekϕ).

Arguing as in the proof of Lemma 4.2 we write χpϕ = χκϕp
−
ϕ = χχ̃κϕp

−
ϕ

where p−
ϕ
(̺′, ξn) denotes an

extension of p−ϕ (̺
′, ξn) to the whole phase space. Then Op(χ)Pϕ = Op(p−

ϕ
)Op(χ)Op(χ̃κϕ) + R with

R ∈ γΨm,−1
τ̃ . Applying Lemma 6.5 to Op(p−

ϕ
) and w = Op(χ̃κϕ)v we obtain

‖Op(χ)w‖2m−,τ̃ + |tr(Op(χ)w)|2m−−1,1/2,τ̃ . ‖Pϕv‖2+ + γ2 ‖v‖2m,−1,τ̃ + |tr(v)|2m−1,−N,τ̃ ,

yielding

m−−1∑
j=0

∣∣Dj
nOp(χ)w|xn=0+

∣∣2
m−−1/2−j,τ̃

. ‖Pϕv‖2+ + γ2 ‖v‖2m,−1,τ̃ + |tr(v)|2m−1,−N,τ̃ .
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Recalling that ej+µ+1
ϕ = κϕξ

j
n, j = 0, . . . ,m− − 1 we have Dj

nOp(χ)Op(χ̃κϕ)v = Ej+µ+1
ϕ v+Rjv with

Rj ∈ γΨm−m−+j,−1
τ̃ . We then obtain

(6.7)
m−−1∑
j=0

∣∣Ej+µ+1
ϕ v|xn=0+

∣∣2
m−−1/2−j,τ̃

. ‖Pϕv‖2+ + γ2 ‖v‖2m,−1,τ̃ + γ2 |tr(v)|2m−1,−1/2,τ̃ .

Collecting (6.6) and (6.7) we obtain the result of Lemma 6.6, for τ and γ chosen sufficiently large. �

6.5. Proof of the Carleman estimate with two-large parameters. We prove a microlocal result, counter-
part of that of Theorem 4.4. Patching microlocal estimates of this type, arguing as in Section 4.5 we can
then obtain the local Carleman estimate of Theorem 6.4, which proof is left to the reader. Remainder terms
are absorbed using that, for N ∈ N we have γN ≪ τ̃(x) = γτ exp(γψ) for γ large since ψ ≥ C > 0.

Theorem 6.7. Let x0 ∈ ∂Ω ∩ V and let ψ satisfying (5.1) have the strong pseudo-convexity property of

Definition 6.1 with respect to P in a neighborhood of x0 in V+ up to the boundary. Moreover, assume that

{P,Bk, ψ, k = 1, . . . , µ} satisfies the strong Lopatinskii condition at (x0, ξ
′
0, τ̂0) ∈ S

∗
T,τ (V+). Then there

exists U a conic open neighborhood of (x0, ξ
′
0, τ̂0) in V+×R

n−1×R+ such that for χ̂ ∈ S0
T,τ , homogeneous

of degree 0, with supp(χ̂) ⊂ U , there exist C > 0, τ∗ > 0, and γ∗ > 0 such that

(6.8) ‖Pϕv‖2+ +
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−βk−1/2,τ̃

+ γ2 ‖v‖2m,−1,τ̃ + γ2 |tr(v)|2m−1,−1/2,τ̃ ≥ C
(∥∥τ̃− 1

2 Op(χ)v
∥∥2
m,τ̃

+ |tr(Op(χ)v)|2m−1,1/2,τ̃

)
,

for τ ≥ τ∗, γ ≥ γ∗, v ∈ S (R
n
+), and χ(̺′) = χ̂(˜̺′) ∈ S0

T,τ̃ .

The main argument lays in (the proof of) the following lemma.

Lemma 6.8. Under the assumptions of Theorem 6.7 there exists U a conic open neighborhood of (x0, ξ
′
0, τ̂0)

in V+×R
n−1×R+ such that for χ̂ ∈ S0

T,τ , homogeneous of degree 0, with supp(χ̂) ⊂ U , there existC > 0,

τ∗ > 0, and γ∗ > 0 such that

(6.9) C
∥∥Pϕv

∥∥2
+
− ReBa,b(Op(χ)v) ≥ C ′

∥∥τ̃− 1

2 Op(χ)v
∥∥2
m,τ̃

− C ′′
(
γ2 ‖v‖2m,−1,τ̃ +

∣∣τ̃− 1

2 tr(Op(χ)v)
∣∣2
m−1,1/2,τ̃

+ γ |tr(Op(χ)v)|2m−1,0,τ̃

)
,

for τ ≥ τ∗, γ ≥ γ∗, v ∈ S (R
n
+), and χ(̺′) = χ̂(˜̺′) ∈ S0

T,τ̃ .

Proof. Let U0 be an open neighborhood of x0 in V+ where the result of Proposition 6.2 holds.
Similarly to Section 4.5, we write

Pϕ = A+ iB +R, R ∈ γΨm,−1
τ̃ .

where A = Op(a) and B = Op(a), with a = Re pϕ ∈ Sm,0τ̃ and b = Im pϕ ∈ Sm−1,1
τ̃ . We set

e(x, ξ, τ, γ) = γ
1

2 τ̃(x)
1

2 〈p′ξ(x, ζ), ψ′(x)〉 ∈ γ
1

2 τ̃
1

2Sm−1,0
τ̃ ,

f(x, ξ, τ, γ) = γ−1Θp,ψ(x, ξ, τ̃(x)) + τ̃(x)|〈p′ξ(x, ζ), ψ′(x)〉|2 ∈ S2m−1,0
τ̃ ,

g(x, ξ, τ, γ) = γτ̃(x)
∑
j,k

∂xjψ(x)∂xkψ(x)∂
2
ξjξk

p(x, ζ) ∈ γτ̃Sm−2,0
τ̃ ,

with ζ = ξ + iτϕ′(x) = ξ + iτ̃(x)ψ′(x). We let F (v) be an interior quadratic form of type (0,m,−1
2))

with symbol f . With ν as given by Proposition 6.2 and γ and τ large so that γ−1ν ≤ 1 and τ̃(x)−1ν ≤ 1,
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we have

ν
(∥∥τ̃− 1

2Av
∥∥2
+
+
∥∥τ̃− 1

2Bv
∥∥2
+

)
+ γ ReF (v)

≥ ν
(∥∥τ̃− 1

2Av
∥∥2
+
+

∥∥τ̃− 1

2Bv
∥∥2
+

)
+ γ ReF (v) + (νγ−1 − 1) ‖Op(e)v‖2+ .

Observe that the interior quadratic form in the r.h.s., of type (−1
2 ,m, 0), is of symbol

ντ̃−1|pϕ|2 +Θp,ψ(x, ξ, τ̃(x)) + ντ̃(x)|〈p′ξ(x, ζ), ψ′(x)〉|2 ≥ Cτ̃−1µ2m,

for x ∈ U0 and (ξ, τ, γ) ∈ R
n × R+ × R+, with τ and γ sufficiently large by Proposition 6.2. This

symbol is polynomial in ξ and homogeneous of degree 2m − 1 in (ξ, τ̃). We let U , possibly reduced so
that U ⊂ U0 × R

n−1 × R+, be as given by Lemma 6.6. We then let χ be as in the statement. The Gårding
inequality of Proposition 5.7 and Remark 5.8 then yields

ν
(∥∥τ̃− 1

2Av
∥∥2
+
+
∥∥τ̃− 1

2Bv
∥∥2
+

)
+ γ ReF (v) ≥ C

∥∥τ̃− 1

2 v
∥∥2
m,τ̃

− C ′
∣∣τ̃− 1

2 tr(v)
∣∣2
m−1,1/2,τ̃

,(6.10)

with v = Op(χ)v. Recall that γ−1Ha,b is an interior quadratic form of type (0,m,−1
2) with symbol equal

to γ−1 sub(a, b). Since by (6.2) the interior quadratic form, of type (0,m,−1
2),

γ−1Ha,b(w)− F (w) + γ−1Re (Pϕw,Op(g)w)+

has a vanishing symbol, by Lemma 5.6 we obtain

Re
(
Ha,b(v)− γF (v)− Re (Pϕv,Op(g)v)+

)
≥ −C

(
γ2 ‖v‖2m,−1,τ + γ |tr(v)|2m−1,0,τ

)
.(6.11)

We also have,

Re (Pϕv,Op(g)v)+ ≥ −C
∥∥Pϕv

∥∥2
+
− Cγ2

∥∥τ̃ v
∥∥2
m−2,τ̃

.(6.12)

The sum of (6.10), (6.11), and (6.12) yields, for τ and γ sufficiently large,

(6.13) C
∥∥Pϕv

∥∥2
+
+ ν

(∥∥τ̃− 1

2Av
∥∥2
+
+

∥∥τ̃− 1

2Bv
∥∥2
+

)
+ReHa,b(v)

≥ C ′
∥∥τ̃− 1

2 v
∥∥2
m,τ̃

− C ′′
(∣∣τ̃− 1

2 tr(v)
∣∣2
m−1,1/2,τ̃

+ γ |tr(v)|2m−1,0,τ̃

)
.

Next, the generalized Green formula of Proposition 5.12 gives

(6.14) 2Re (Av, iBv)+ − ReBa,b(v) + Cγ2 ‖v‖2m,−1,τ̃ ≥ ReHa,b(v).

The sum of (6.13) and (6.14) yields the counterpart of Lemma 4.3, for τ and γ sufficiently large,

C
∥∥Pϕv

∥∥2
+
+ ν

(∥∥τ̃− 1

2Av
∥∥2
+
+
∥∥τ̃− 1

2Bv
∥∥2
+

)
+ 2Re (Av, iBv)+ − ReBa,b(v)

≥ C ′
∥∥τ̃− 1

2 v
∥∥2
m,τ̃

− C ′′
(∣∣τ̃− 1

2 tr(v)
∣∣2
m−1,1/2,τ̃

+ γ |tr(v)|2m−1,0,τ̃

)
.

We have

ν
(∥∥τ̃− 1

2Av
∥∥2
+
+
∥∥τ̃− 1

2Bv
∥∥2
+

)
+ 2Re (Av, iBv)+ ≤ ‖(A+ iB)v‖2+ . ‖Pϕv‖2+ + γ2 ‖v‖2m,−1,τ̃ ,

which gives, for τ and γ chosen sufficiently large,

C
∥∥Pϕv

∥∥2
+
− ReBa,b(v) ≥ C ′

∥∥τ̃− 1

2 v
∥∥2
m,τ̃

− C ′′
(∣∣τ̃− 1

2 tr(v)
∣∣2
m−1,1/2,τ̃

+ γ |tr(v)|2m−1,0,τ̃

)
.

Since [Pϕ,Op(χ)] ∈ γΨm,−1
τ̃ we obtain estimate (6.9). �
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Proof of Theorem 6.7. We write v = Op(χ)v. As Ba,b is of type (0,m− 1, 1/2) we have

|Ba,b(v)| . |tr(v)|2m−1,1/2,τ̃ .

With Lemma 6.6, making use of the strong Lopatinskii condition, we obtain for M chosen sufficiently large

(6.15) ReBa,b(v) +M
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−βk−1/2,τ̃

≥ C |tr(v)|2m−1,1/2,τ̃

− C ′
(
‖Pϕv‖2+ + γ2 ‖v‖2m,−1,τ̃ + γ2 |tr(v)|2m−1,−1/2,τ̃

)
.

Summing (6.9) and (6.15) we find the result, by taking τ and γ sufficiently large. �

6.6. Estimate for operators with the simple characterisitic property. A stronger estimate with two pa-
rameters can be achieved if one assumes that the operator P and the weight function ψ fulfills the so-called
simple characterisitic property. This is proven in [30] for estimates away from a boundary. Here we show
that this can be extended at the boundary if the strong Lopatinskii condition is also assumed.

6.6.1. The simple characterisitic property. We introduce the map

ρx,ξ : R
+ → C,

τ̂ 7→ p(x, ξ + iτ̂ψ′(x)),
(6.16)

where x ∈ Ω and ξ ∈ R
n.

Definition 6.9. Let U be an open subset of Ω. Given a weight function ψ and an operator P we say that

the simple-characteristic property is satisfied in U up to the boundary if, for all x ∈ U , we have ξ = 0 and

τ̂ = 0 when the map ρx,ξ has a double root.

Note that the case ξ = 0 is particular, as the root τ̂ = 0 has of course multiplicity m. Note also that we
have

ρ′x,ξ(τ̂) = i〈p′ξ(x, ξ + iτ̂ψ′(x)), ψ′(x)〉 = i{p, ψ}(x, ξ + iτ̂ψ′(x)).(6.17)

We can thus formulate the condition of Definition 6.9 as

p(x, ξ + iτ̂ψ′(x)) = {p, ψ}(x, ξ + iτ̂ψ′(x)) = 0 ⇒ ξ = 0, τ̂ = 0.

or equivalently

p(x, ξ + iτ̂ψ′(x)) = 0 and (ξ, τ̂) 6= (0, 0) ⇒ {p, ψ}(x, ξ + iτ̂ψ′(x)) 6= 0.(6.18)

Observe that the simple-characteristic property (6.18) in Ω up to the boundary implies that ψ is strongly
pseudo-convex P in Ω up to the boundary.

We have the following lemma.

Lemma 6.10. Assume that P and ψ satisfy the simple characteristic property in U up to the boundary. Then

there exist C > 0, τ∗ ≥ 1, γ∗ ≥ 1, and ν > 0 such that

Cµ2m ≤ ν |p(x, ζ)|2 + τ̃(x)2|〈p′ξ(x, ζ), ψ′(x)〉|2, τ ≥ τ∗, γ ≥ γ∗, (x, ξ) ∈ U × R
n.

The proof follows from Lemma 6.3, the simple characteristic property and homogeneity.
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6.6.2. Carleman estimate for operators with the simple characteristic property.

Theorem 6.11. Let x0 ∈ ∂Ω and let ψ ∈ C∞(Ω) satisfying (5.1) be such that P and ψ have the simple

characteristic property of Definition 6.9 in a neighborhood of x0 in Ω up to the boundary. Moreover,

assume that
{
P, ψ,Bk, k = 1, . . . , µ

}
satisfies the strong Lopatinskii condition at x0. Then there exist a

neighborhood W of x0 in R
n and three constants C, τ∗ > 0, and γ∗ > 0 such that for ϕ = exp(γψ) and

τ̃ = τγϕ:

(6.19) γ
∥∥τ̃− 1

2 eτϕu
∥∥2
m,τ̃

+ |eτϕ tr(u)|2m−1,1/2,τ̃

≤ C
(
‖eτϕP (x,D)u‖2L2(Ω) +

µ∑
k=1

|eτϕBk(x,D)u|∂Ω|2m−1/2−βk,τ̃

)
,

for all u = w|Ω with w ∈ C∞
c (W ), τ ≥ τ∗, and γ ≥ γ∗.

Observe that the first norm in the l.h.s. bears an additional factor γ as compared to the estimate of The-
orem 6.4. Conversely, this additional factor implies that P and ψ have the simple characteristic property;
moreover one cannot expect to have an additional factor γθ with θ > 1 unless the conjugated operator is
elliptic, i.e., pψ(x, ξ, τ̂) = p(x, ξ + iτ̂ψ′(x)) 6= 0 for (ξ, τ̂) 6= (0, 0) [30, Section 5].

As above, we only prove a microlocal estimate and we leave to the reader the adaptation of Section 4.5
for the patching of those estimates to obtain estimate (6.19).

Theorem 6.12. Let x0 ∈ ∂Ω ∩ V and let ψ satisfying (5.1) be such that P and ψ have the simple charac-

teristic property of Definition 6.9 in a neighborhood of x0 in V+ up to the boundary. Moreover, assume that

{P,Bk, ψ, k = 1, . . . , µ} satisfies the strong Lopatinskii condition at (x0, ξ
′
0, τ̂0) ∈ S

∗
T,τ (V+). Then there

exists U a conic open neighborhood of (x0, ξ
′
0, τ̂0) in V+×R

n−1×R+ such that for χ̂ ∈ S0
T,τ , homogeneous

of degree 0, with supp(χ̂) ⊂ U , there exist C > 0, τ∗ > 0, and γ∗ > 0 such that

(6.20) ‖Pϕv‖2+ +
µ∑
k=1

∣∣Bk
ϕv|xn=0+

∣∣2
m−βk−1/2,τ̃

+ γ2 ‖v‖2m,−1,τ̃ + γ2 |tr(v)|2m−1,−1/2,τ̃ ≥ C
(
γ
∥∥τ̃− 1

2 Op(χ)v
∥∥2
m,τ̃

+ |tr(Op(χ)v)|2m−1,1/2,τ̃

)

for τ ≥ τ∗, γ ≥ γ∗, v ∈ S (R
n
+), and χ(̺′) = χ̂(˜̺′) ∈ S0

T,τ̃ .

The main argument lays in the following lemma which is the counterpart of Lemma 6.8.

Lemma 6.13. Under the assumptions of Theorem 6.12 there exists U a conic open neighborhood of

(x0, ξ
′
0, τ̂0) in V+×R

n−1×R+ such that for χ̂ ∈ S0
T,τ , homogeneous of degree 0, with supp(χ̂) ⊂ U , there

exist C > 0, τ∗ > 0, and γ∗ > 0 such that

(6.21) C
∥∥Pϕv

∥∥2
+
− ReBa,b(Op(χ)v)

≥ Cγ
∥∥τ̃− 1

2 Op(χ)v
∥∥2
m,τ̃

− C ′
(
γ2 ‖v‖2m,−1,τ̃ + γ

∣∣τ̃− 1

2 tr(Op(χ)v)
∣∣2
m−1,1/2,τ̃

)
,

for τ ≥ τ∗, γ ≥ γ∗, v ∈ S (R
n
+), and χ(̺′) = χ̂(˜̺′) ∈ S0

T,τ̃ .

Proof. Let U0 be an open neighborhood of x0 in V+ where the result of Lemma 6.10 holds.
Similarly to Section 4.5, we write

Pϕ = A+ iB +R, R ∈ γΨm,−1
τ̃ .
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where A = Op(a) and B = Op(a), with a = Re pϕ ∈ Sm,0τ̃ and b = Im pϕ ∈ Sm−1,1
τ̃ . We set

e(x, ξ, τ, γ) = τ̃(x)
1

2 〈p′ξ(x, ζ), ψ′(x)〉 ∈ τ̃
1

2Sm−1,0
τ̃ ,

f(x, ξ, τ, γ) = Θp,ψ(x, ξ, τ̃(x)) ∈ S2m−1,0
τ̃ ,

g(x, ξ, τ, γ) = γτ̃(x)
∑
j,k

∂xjψ(x)∂xkψ(x)∂
2
ξjξk

p(x, ζ) ∈ γτ̃Sm−2,0
τ̃ ,

with ζ = ξ + iτϕ′(x) = ξ + iτ̃(x)ψ′(x). We let U , possibly reduced so that U ⊂ U0 × R
n−1 × R+, be

as given by Lemma 6.6. We let χ be as in the statement. With ν as given by Proposition 6.10 and γ and τ
large so that τ̃(x)−1ν ≤ 1, we have by Propositon 5.7

ν
(∥∥τ̃− 1

2Av
∥∥2
+
+
∥∥τ̃− 1

2Bv
∥∥2
+

)
+ ‖Op(e)v‖2+ ≥ C

∥∥τ̃− 1

2 v
∥∥2
m,τ̃

− C ′
∣∣τ̃− 1

2 tr(v)
∣∣2
m−1,1/2,τ̃

,(6.22)

with v = Op(χ)v. In fact, the symbol of the interior quadratic form in the l.h.s., of type (−1
2 ,m, 0) satisfies

by Lemma 6.10

ντ̃−1|pϕ|2(̺′, ξn) + τ̃ |〈p′ξ(x, ζ), ψ′(x)〉|2(̺′, ξn) ≥ Cτ̃−1µ2m, ˜̺′ = (x, ξ′, τ̃(x)) ∈ U , ξn ∈ R.

This symbol is polynomial in ξ and homogeneous of degree 2m−1 in (ξ, τ̃). Hence, the Gårding inequality
of Proposition 5.7 applies.

Let F (w) be an interior quadratic form of type (0,m,−1
2)) with symbol f . We have by Lemma 5.5

ReF (v) ≥ −C ‖v‖2m,− 1

2
,τ(6.23)

Recall that γ−1Ha,b is an interior quadratic form of type (0,m,−1
2) with symbol equal to γ−1 sub(a, b).

Since by (6.2) the interior quadratic form, of type (0,m,−1
2),

γ−1Ha,b(w)− γ−1F (w)− ‖Op(e)w‖2+ + γ−1Re (Pϕw,Op(g)w)+

has a vanishing symbol, by Lemma 5.6 we obtain

(6.24) Re
(
Ha,b(v)− F (v)− γ ‖Op(e)v‖2+ +Re (Pϕv,Op(g)v)+

)

≥ −C
(
γ2 ‖v‖2m,−1,τ + γ |tr(v)|2m−1,0,τ

)
.

We also have

−Re (Pϕv,Op(g)v)+ ≥ −C
∥∥Pϕv

∥∥2
+
− Cγ2

∥∥τ̃ v
∥∥2
m−2,τ̃

.(6.25)

The sum γ(6.22) + (6.23) + (6.24) + (6.25) gives, taking τ and γ sufficiently large,

(6.26) C
∥∥Pϕv

∥∥2
+
+ ν

(∥∥(τϕ)− 1

2Av
∥∥2
+
+
∥∥(τϕ)− 1

2Bv
∥∥2
+

)
+ReHa,b(v)

≥ Cγ
∥∥τ̃− 1

2 v
∥∥2
m,τ̃

− C ′γ
∣∣τ̃− 1

2 tr(v)
∣∣2
m−1,1/2,τ̃

,

Summing (6.14) and (6.26) gives, for τ and γ sufficiently large,

C
∥∥Pϕv

∥∥2
+
+ ν

(∥∥(τϕ)− 1

2Av
∥∥2
+
+
∥∥(τϕ)− 1

2Bv
∥∥2
+

)
+ 2Re (Av, iBv)+ − ReBa,b(v)

≥ C ′γ
∥∥τ̃− 1

2 v
∥∥2
m,τ̃

− C ′′γ
∣∣τ̃− 1

2 tr(v)
∣∣2
m−1,1/2,τ̃

.

We have

ν
(∥∥(τϕ)− 1

2Av
∥∥2
+
+

∥∥(τϕ)− 1

2Bv
∥∥2
+

)
+ 2Re (Av, iBv)+

≤ ‖(A+ iB)v‖2+ . ‖Pϕv‖2+ + γ2 ‖v‖2m,−1,τ̃ ,
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which gives, for τ and γ sufficiently large,

C
∥∥Pϕv

∥∥2
+
− ReBa,b(v) ≥ Cγ

∥∥τ̃− 1

2 v
∥∥2
m,τ̃

− C ′γ
∣∣τ̃− 1

2 tr(v)
∣∣2
m−1,1/2,τ̃

,

Since [Pϕ,Op(χ)] ∈ γΨm,−1
τ̃ we obtain (6.21). �

Proof of Theorem 6.12. Summing (6.21) and (6.15) with v = Op(χ)v we find the result, by taking τ and γ
sufficiently large. �

6.7. Shifted estimates. As in Section 4.6 we can also derive shifted estimates. The result of Theorems 6.4
and 6.11 then read as follows.

Corollary 6.14 (Shifted estimate under strong pseudo-convexity). Let x0 ∈ ∂Ω and let ψ ∈ C∞(Ω) satisfy-

ing (5.1) have the strong pseudo-convexity property of Definition 6.1 with respect to P in a neighborhood of

x0 in Ω up to the boundary. Moreover, assume that
{
P, ψ,Bk, k = 1, . . . , µ

}
satisfies the strong Lopatin-

skii condition at x0. Let ℓ ∈ N and s ∈ R. Then there exist a neighborhood W of x0 in R
n and three

constants C, τ∗ > 0, and γ∗ > 0 such that for ϕ = exp(γψ) and τ̃ = τγϕ:

(6.27)
∥∥τ̃ s− 1

2 eτϕu
∥∥2
m+ℓ,τ̃

+ |τ̃ seτϕ tr(u)|2m+ℓ−1,1/2,τ̃

≤ C
(
‖τ̃ seτϕP (x,D)u‖2ℓ,τ̃ +

µ∑
k=1

∣∣∣τ̃ seτϕ tr(Bk(x,D)u)
∣∣∣
2

ℓ,m−1/2−βk,τ̃

)
,

for all u = w|Ω with w ∈ C∞
c (W ), τ ≥ τ∗ and γ ≥ γ∗.

Corollary 6.15. Let x0 ∈ ∂Ω and let ψ ∈ C∞(Ω) satisfying (5.1) be such that P and ψ have the simple

characteristic property of Definition 6.9 in a neighborhood of x0 in Ω up to the boundary. Moreover, assume

that
{
P, ψ,Bk, k = 1, . . . , µ

}
satisfies the strong Lopatinskii condition at x0. Let ℓ ∈ N and s ∈ R. Then

there exist a neighborhood W of x0 in R
n and three constants C, τ∗ > 0, and γ∗ > 0 such that for

ϕ = exp(γψ) and τ̃ = τγϕ:

(6.28) γ
∥∥τ̃ s− 1

2 eτϕu
∥∥2
m+ℓ,τ̃

+ |τ̃ seτϕ tr(u)|2m+ℓ−1,1/2,τ̃

≤ C
(
‖τ̃ seτϕP (x,D)u‖2ℓ,τ̃ +

µ∑
k=1

∣∣∣τ̃ seτϕBk(x,D)u|∂Ω

∣∣∣
2

ℓ,m−1/2−βk,τ̃

)
,

for all u = w|Ω with w ∈ C∞
c (W ), τ ≥ τ∗, and γ ≥ γ∗.

We provide the proof of Corollary 6.14 here. That of Corollary 6.15 can be written similarly.

Proof of Corollary 6.14. We first prove the result for ℓ = 0 and s ∈ R. We start from the following form of
the Carleman estimate:

∥∥τ̃− 1

2 v
∥∥2
m,τ̃

+ | tr(v)|2m−1,1/2,τ̃ .
(
‖Pϕv‖2+ +

µ∑
k=1

∣∣∣tr(Bk
ϕv)

∣∣∣
2

m−1/2−βk,τ̃

)
,

and we shall apply it to τ̃ sv in place of v. In fact

‖Pϕτ̃ sv‖+ ≤ ‖τ̃ sPϕv‖+ + ‖[Pϕ, τ̃ s]v‖+
. ‖τ̃ sPϕv‖+ + γ ‖τ̃ sv‖m−1,τ̃ ,

as [τ̃ s, Pϕ] ∈ γτ̃ sDm−1
τ̃ (see Section 5.1). Similarly

∣∣Bk
ϕτ̃

sv
∣∣
m−βk−1/2,τ̃

≤
∣∣τ̃ sBk

ϕv
∣∣
m−βk−1/2,τ̃

+ γ
∣∣τ̃ s tr(v)

∣∣
βk−1,m−βk−1/2,τ̃

,
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as [τ̃ s, Bk
ϕ] ∈ γτ̃ sDβk−1

τ̃ . We thus find

‖τ̃ sPϕv‖+ +
∣∣τ̃ sBk

ϕv
∣∣
m−βk−1/2,τ̃

+ γ ‖τ̃ sv‖m−1,τ̃ + γ
∣∣τ̃ s tr(v)

∣∣
βk−1,m−βk−1/2,τ̃

&
∥∥τ̃ s− 1

2 v
∥∥
m,τ̃

+ | tr(τ̃ sv)|m−1,1/2,τ̃ .

As [Dj
xn , τ̃

s]v ∈ γτ̃ sD j−1
τ̃ we have

|τ̃ s tr(v)|m−1,1/2,τ̃ . | tr(τ̃ sv)|m−1,1/2,τ̃ + γ|τ̃ s tr(v)|m−2,1/2,τ̃ ,

yielding for τ large

|τ̃ s tr(v)|m−1,1/2,τ̃ . | tr(τ̃ sv)|m−1,1/2,τ̃ .

We thus find

‖τ̃ sPϕv‖+ +
∣∣τ̃ sBk

ϕv
∣∣
m−βk−1/2,τ̃

+ γ ‖τ̃ sv‖m−1,τ̃ + γ
∣∣τ̃ s tr(v)

∣∣
βk−1,m−βk−1/2,τ̃

&
∥∥τ̃ s− 1

2 v
∥∥
m,τ̃

+ |τ̃ s tr(v)|m−1,1/2,τ̃ .

For τ chosen sufficiently large we obtain

‖τ̃ sPϕv‖+ +
∣∣τ̃ sBk

ϕv
∣∣
m−βk−1/2,τ̃

&
∥∥τ̃ s− 1

2 v
∥∥
m,τ̃

+ |τ̃ s tr(v)|m−1,1/2,τ̃ ,

that is, the result for ℓ = 0.
Next, we proceed by induction on ℓ. As the result holds for ℓ = 0 we assume it holds for some ℓ ∈ N; we

then have
∥∥τ̃ s− 1

2 v
∥∥2
m+ℓ,τ̃

+ |τ̃ s tr(v)|2m+ℓ−1,1/2,τ̃ .
(
τ̃ s ‖Pϕv‖2ℓ,τ̃ +

µ∑
k=1

∣∣∣τ̃ s tr(Bk
ϕv)

∣∣∣
2

ℓ,m−1/2−βk,τ̃

)
,

which we shall apply to Dxnv and Dα
x′v for |α| = 1. We have

‖τ̃ sPϕDxnv‖ℓ,τ̃ + ‖τ̃ sPϕDα
x′v‖ℓ,τ̃ . ‖τ̃ sPϕv‖ℓ+1,τ̃ + ‖τ̃ s[Pϕ, Dxn ]v‖ℓ,τ̃ + ‖τ̃ s[Pϕ, Dα

x′ ]v‖ℓ,τ̃
. ‖τ̃ sPϕv‖ℓ+1,τ̃ + γ ‖τ̃ sv‖m+ℓ,τ̃ ,

as τ̃ s[Pϕ, Dxj ] ∈ γτ̃ sDm
τ̃ . We also have

∣∣τ̃ s tr(Bk
ϕDxnv)

∣∣
ℓ,m−βk−1/2,τ̃

+
∣∣τ̃ s tr(Bk

ϕD
α
x′v)

∣∣
ℓ,m−βk−1/2,τ̃

≤
∣∣τ̃ s tr(DxnB

k
ϕv)

∣∣
ℓ,m−βk−1/2,τ̃

+
∣∣τ̃ s tr(Dα

x′B
k
ϕv)

∣∣
ℓ,m−βk−1/2,τ̃

+ γ
∣∣τ̃ s tr(v)

∣∣
ℓ+βk,m−βk−1/2,τ̃

≤
∣∣τ̃ s tr(Bk

ϕv)
∣∣
ℓ+1,m−βk−1/2,τ̃

+ γ
∣∣τ̃ s tr(v)

∣∣
ℓ+βk,m−βk−1/2,τ̃

.

We thus have

‖τ̃ sPϕv‖ℓ+1,τ̃ +
∣∣τ̃ s tr(Bk

ϕv)
∣∣
ℓ+1,m−βk−1/2,τ̃

+ γ ‖τ̃ sv‖m+ℓ,τ̃ + γ
∣∣τ̃ s tr(v)

∣∣
ℓ+βk,m−βk−1/2,τ̃

&
∥∥τ̃ s+1Pϕv

∥∥
ℓ,τ̃

+ ‖τ̃ sPϕDxnv‖ℓ,τ̃ + ‖τ̃ sPϕDα
x′v‖ℓ,τ̃

+
∣∣τ̃ s+1 tr(Bk

ϕv)
∣∣
ℓ,m−βk−1/2,τ̃

+
∣∣τ̃ s tr(Bk

ϕDxnv)
∣∣
ℓ,m−βk−1/2,τ̃

+
∣∣τ̃ s tr(Bk

ϕD
α
x′v)

∣∣
ℓ,m−βk−1/2,τ̃

.

This yields, by induction,

‖τ̃ sPϕv‖ℓ+1,τ̃ +
∣∣τ̃ s tr(Bk

ϕv)
∣∣
ℓ+1,m−βk−1/2,τ̃

+ γ ‖τ̃ sv‖m+ℓ,τ̃ + γ
∣∣τ̃ s tr(v)

∣∣
ℓ+βk,m−βk−1/2,τ̃

&
∥∥∥τ̃ s+

1

2 v
∥∥∥
m+ℓ,τ̃

+
∑

1≤j≤n

∥∥∥τ̃ s−
1

2Dxjv
∥∥∥
m+ℓ,τ̃

+
∣∣τ̃ s+1 tr(v)

∣∣
ℓ+m−1,1/2,τ̃

+
∑

1≤j≤n

∣∣τ̃ s tr(Dxjv)
∣∣
ℓ+m−1,1/2,τ̃

.
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For τ sufficiently large, we thus obtain

‖τ̃ sPϕv‖ℓ+1,τ̃ +
∣∣τ̃ s tr(Bk

ϕv)
∣∣
ℓ+1,m−βk−1/2,τ̃

&
∥∥∥τ̃ s−

1

2 v
∥∥∥
m+ℓ+1,τ

+ |τ̃ s tr(v)|ℓ+m,1/2,τ ,

which then implies the result. �

7. APPLICATION TO UNIQUE CONTINUATION

With the Carleman estimates we have derived here we can obtain unique continuation results near a
boundary for high-order elliptic operators.

7.1. Uniqueness under strong pseudo-convexity and strong Lopatinskii conditions.

Theorem 7.1. Let P andBk, k = 1, . . . , µ = m/2 be given as in Section 1. Let x0 ∈ ∂Ω, f ∈ C∞(Ω), and

V be a neighborhood of x0 in Ω, be such that f has the strong pseudo-convexity property of Definition 6.1

with respect to P in V up to the boundary. Moreover, assume that
{
P, f,Bk, k = 1, . . . , µ

}
satisfies the

strong Lopatinskii condition at x0. Assume that u ∈ Hm(Ω) satisfies

•
|Pu(x)| ≤ C

∑
|α|≤m−1

|Dαu(x)|, a.e. in V ;(7.1)

• for k = 1, . . . , µ and |α| ≤ m− βk, with α ∈ N
n−1,

|Dα
T
Bku(x)| ≤ C

∑
|α′|≤|α|+βk−1

|Dα′
u(x)|, a.e. in V ∩ ∂Ω,(7.2)

• and u vanishes in {x ∈ V ; f(x) ≥ f(x0)}.

Then u vanishes in a neighborhood of x0.

Here Dα
T

denotes a familly of differential operators that act tangentially to the boundary ∂Ω and, in local
coordinates near x0, where ∂Ω = {xn = 0}, their principal symbol is ξ′α.

Proof. Strong pseudo-convexity is a stable notion in C 2 (see Proposition 28.3.2 in [20]). For ε chosen
sufficiently small, and C > 0 sufficiently large, there exists a neighborhood V ′ of x0 such that the function
ψ(x) = f(x)− ε|x− x0|2 +C satisfy (5.1) and has the strong pseudo-convexity property of Definition 6.1
with respect to P in V ′ up to the boundary. Similary we can see in Section 1.6, for example for the proof of
Proposition 1.8, that the strong Lopatinskii condition (or rather property (1.15)) is robust upon perturbation
of the weight function. Hence if ε is chosen sufficiently small

{
P, ψ,Bk, k = 1, . . . , µ

}
will also satisfy

this condition.
We set ϕ = exp(γψ). As shown in Proposition 28.3.3 in [20] the strong pseudo-convexity of the func-

tion ψ with respect to P implies the sub-ellipticity condition for ϕ and P for γ chosen sufficiently large.
Moreover, as seen in Section 6.2,

{
P, ϕ,Bk, k = 1, . . . , µ

}
also satisfies the strong Lopatinskii condition

at x0.
We call W the region {x ∈ V ; f(x) ≥ f(x0)} (region beneath {f(x) = f(x0)} in Figure 1) where u

vanishes by assumption. We choose V ′′ a neighborhood of x0 such that V ′′ ⋐ V ′. The geometrical situation
is illustrated in Figure 1.

We pick a function χ ∈ C∞
c (Rn) such that χ = 1 in V ′′ and supp(χ) ∩ V ⊂ V ′. We observe that the

Carleman estimate of Theorem 1.6 applies to χu by density (possibly by reducing the neighborhoods V and
V ′ of x0):

τ−1/2 ‖eτϕχu‖m,τ + |eτϕ tr(χu)|m−1,1/2,τ . ‖eτϕP (χu)‖L2(Ω) +
µ∑
k=1

∣∣eτϕBk(χu)|∂Ω
∣∣
m−1/2−βk,τ

.
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for τ ≥ τ0. We have

P (χu) = χPu+ [P, χ]u,

where the commutator is a differential operator of order m− 1. With (7.1) we have

‖eτϕP (χu)‖L2(Ω) .
∑

|α|≤m−1

‖eτϕχDαu‖L2(Ω) + ‖eτϕ[P, χ]u‖L2(Ω)

.
∑

|α|≤m−1

‖eτϕDα(χu)‖L2(Ω) +
∑
i∈I

‖eτϕMiu‖L2(Ω) ,

where I is finite and the operators Mi are commutators fo χ and differential operators. They are of order
m− 1 at most. We also write

∣∣eτϕBk(χu)|∂Ω
∣∣
m−1/2−βk,τ

≤
∣∣eτϕBk(χu)|∂Ω

∣∣
m−βk,τ

=
∑
r+|α|

=m−βk

∣∣τ rDα
T
eτϕBk(χu)|∂Ω

∣∣
L2(∂Ω)

.
∑
r+|α|

=m−βk

∣∣τ reτϕDα
T
Bk(χu)|∂Ω

∣∣
L2(∂Ω)

.

Next we write Dα
T
Bk(χu) = χDα

T
Bku+ [Dα

T
Bk, χ]u and with (7.2) we have

∣∣eτϕBk(χu)|∂Ω
∣∣
m−1/2−βk,τ

.
∑
r+|α|

=m−βk

∑
|α′|

≤|α|+βk−1

∣∣τ reτϕχDα′
u|∂Ω

∣∣
L2(∂Ω)

+
∑
r+|α|

=m−βk

∣∣τ reτϕ[Dα
T
Bk, χ]u|∂Ω

∣∣
L2(∂Ω)

.

Using commutators once more we obtain
∣∣eτϕBk(χu)|∂Ω

∣∣
m−1/2−βk,τ

.
∑
r+|α|

=m−βk

∑
|α′|

≤|α|+βk−1

∣∣τ rDα′
(eτϕχu)|∂Ω

∣∣
L2(∂Ω)

+
∑
r+|α|

=m−βk

∑
|α′|

≤|α|+βk−1

∣∣τ r[eτϕχ,Dα′
]u|∂Ω

∣∣
L2(∂Ω)

+
∑
r+|α|

=m−βk

∣∣τ reτϕ[Dα
T
Bk, χ]u|∂Ω

∣∣
L2(∂Ω)

yielding
µ∑
k=1

∣∣eτϕBk(χu)|∂Ω
∣∣
m−1/2−βk,τ

.
∑
r+|α|
≤m−1

∣∣τ rDα(eτϕχu)|∂Ω
∣∣
L2(∂Ω)

+
∑
j∈J

∣∣eτϕM̃ju|∂Ω
∣∣
L2(∂Ω)

,

where J is finite and M̃j is the commutator of χ with a differential operator. The operator M̃j is of order at
most m− 1 (w.r.t. to τ and ξ). We thus have

µ∑
k=1

∣∣eτϕBk(χu)|∂Ω
∣∣
m−1/2−βk,τ

.
∣∣ tr(eτϕχu)

∣∣
m−1,0,τ

+
∑
j∈J

∣∣eτϕM̃ju|∂Ω
∣∣
L2(∂Ω)

,

As

|eτϕ tr(χu)|m−1,1/2,τ ≥ τ
1

2 |eτϕ tr(χu)|m−1,0,τ ≥ τ
1

2 |tr(eτϕχu)|m−1,0,τ ,
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u = 0

S

V ′

V ′′

x0
B

{f(x) = f(x0)}

{ϕ(x) = ϕ(x0)}

{ϕ(x) = ϕ(x0)− δ/2}
{ϕ(x) = ϕ(x0)− δ}

W

∂Ω

FIGURE 1. Local geometry for the unique continuation problem. The shaded region con-
tains the supports of Miu and M̃ju.

for τ chosen sufficiently large we thus obtain

τ−1/2 ‖eτϕχu‖m,τ + |eτϕ tr(χu)|m−1,1/2,τ(7.3)

.
∑
i∈I

‖eτϕMiu‖L2(Ω) +
∑
j∈J

∣∣eτϕM̃ju|∂Ω
∣∣
L2(∂Ω)

.

We set S := V ′ \ (V ′′ ∪W ) (see the shaded region in Figure 1). We have

supp(Miu) ⊂ S, i ∈ I and supp(M̃ju) ⊂ S, j ∈ J,

as they are confined in the region where χ varies and u does not vanish.
We thus obtain

τ−1/2 ‖eτϕχu‖m,τ + |eτϕ tr(χu)|m−1,1/2,τ .
∑

|α|≤m−1

‖eτϕDαu‖L2(S)

+
∑

r+|α|≤m−1

∣∣eτϕτ rDαu|∂Ω
∣∣
L2(S∩∂Ω)

.

For all δ > 0, we set Vδ = {x ∈ V ; ϕ(x) ≤ ϕ(x0) − δ}. There exists δ > 0 such that S ⋐ Vδ. We then
choose B a neighborhood of x0 such that B ⊂ V ′′ \ Vδ/2 and obtain, as χ ≡ 1 on B,

eτ infB ϕ ‖u‖Hm(B) . eτ(supS ϕ+δ/2)
(
‖u‖Hm−1(S) +

∑
|α|≤m−1

∣∣Dαu|∂Ω
∣∣
L2(S∩∂Ω)

)
, τ ≥ τ1,

for some τ1 > 0. Since infB ϕ > supS ϕ+ δ/2, letting τ go to ∞, we obtain u = 0 in B. �

7.2. Uniqueness for product operators. If we consider two ellitpic operators P1 and P2 of order m1 and
m2, one may possibly wonder about unique continuation for the operator P = P1P2 of orderm = m1+m2,
in particular, in the case no Carleman estimate for P can be achieved.

Let us assume that for a function ψ and the weigth function ϕ = exp(γψ) we can derive Carleman
estimates for P1 and P2. The estimates we prove here are characterized by the (optimal) loss of a half
derivative. Applying such estimates one after another leads to an estimate with the loss of a full derivative.
This can be limiting for the treatment of unique continuation problems. Here we show that if one of the
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operators, say P1, satisfies the single characteristic properties (for the weight ψ) and the second one, P2,
satisfies the strong pseudo-convexity condition, and the strong Lopatinsky conditions holds for both, then
uniqueness can be proven. Note that this allows for the occurence of complex roots of order 3 for the
conjugated operators Pϕ with symbol p(x, ξ + iτϕ′(x)).

Theorem 7.2. Let P1 and P2 be elliptic of order m1 and m2 respectively, and let also Bk
1 be of order β1,k,

k = 1, . . . , µ1 = m1/2, and Bk
2 be of order β2,k, k = 1, . . . , µ2 = m2/2 be given as in Section 1. Let

x0 ∈ ∂Ω, f ∈ C∞(Ω), and V be a neighborhood of x0 in Ω be such that:

(1) f and P1 satisfy the simple characteristic property of of Definition 6.9 in V up to the boundary;

(2) f has the strong pseudo-convexity property of Definition 6.1 with respect to P2 in V up to the

boundary;

(3)
{
Pj , f, B

k
j , k = 1, . . . , µj

}
satisfies the strong Lopatinskii condition at x0, j = 1, 2.

Let m = m1 +m2 and assume that u ∈ Hm(Ω) satisfies

•
|P1P2u(x)| ≤ C

∑
|α|≤m−1

|Dαu(x)|, a.e. in V ;(7.4)

• for k = 1, . . . , µ1 and |α| ≤ m1 − β1,k, α ∈ N
n−1,

|Dα
T
Bk

1P2u(x)| ≤ C
∑

|α′|≤|α|+m2
+β1,k−1

|Dα′
u(x)|, a.e. in V ∩ ∂Ω;(7.5)

• for k = 1, . . . , µ2, |α1| ≤ m1, |α2| ≤ m2 − β2,k with α1 ∈ N
n and α2 ∈ N

n−1,

|Dα1Dα2

T
Bk

2u(x)| ≤ C
∑

|α′|≤|α1|+|α2|
+β2,k−1

|Dα′
u(x)|, a.e. in V ∩ ∂Ω,(7.6)

• and u vanishes in {x ∈ V ; f(x) ≥ f(x0)}.

Then u vanishes in a neighborhood of x0.

Here Dα
T

denotes a familly of differential operators that act tangentially to the boundary ∂Ω and, in local
coordinates near x0, where ∂Ω = {xn = 0}, their principal symbol is ξ′α.

Proof. The proof follows that of Theorem 7.1. We set ψ(x) = f(x)− ε|x−x0|2+C and conditions (1)-(3)
in the statement of the theorem are also satisfied by ψ alors with (5.1) for ε chosen sufficiently small in a
neighborhood V ′ ⊂ V of x0 and for C > 0 chosen sufficiently large. We then set ϕ = exp(γψ).

We derive an estimate for P = P1P2. For P1, by Theorem 6.11, there exists V1 neighborhood of x0 in
R
n such that V1 ∩ Ω ⊂ V ′ and

γ1/2
∥∥τ̃− 1

2 eτϕv
∥∥
m1,τ̃

+ |eτϕ tr(v)|m1−1,1/2,τ̃ . ‖eτϕP1v‖L2(Ω) +
µ1∑
k=1

∣∣eτϕBk
1v|∂Ω

∣∣
m1−1/2−β1,k,τ̃

,(7.7)

for all v = w|Ω with w ∈ C∞
c (V1), τ ≥ τ1, and γ ≥ γ1, for τ1 and γ1 chosen sufficiently large.

For P2, by Corollary 6.14, there exists V2 neighborhood of x0 in R
n such that V2 ∩ Ω ⊂ V ′ and

(7.8)
∥∥τ̃−1eτϕv

∥∥
m,τ̃

+
∣∣∣τ̃−

1

2 eτϕ tr(v)
∣∣∣
m−1,1/2,τ̃

.
∥∥τ̃− 1

2 eτϕP2v
∥∥
m1,τ̃

+
µ2∑
k=1

∣∣τ̃− 1

2 eτϕ tr(Bk
2v)

∣∣
m1,m2−1/2−β2,k,τ̃

,

with m = m1 + m2, for all v = w|Ω with w ∈ C∞
c (V2), τ ≥ τ2, and γ ≥ γ2, for τ2 and γ2 chosen

sufficiently large.
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Letting V3 = V1 ∩ V2 and w ∈ C∞
c (V3) for v = w|Ω with (7.7) and (7.8) we obtain

(7.9) γ1/2
∥∥τ̃−1eτϕv

∥∥
m,τ̃

+ γ1/2
∣∣∣τ̃−

1

2 eτϕ tr(v)
∣∣∣
m−1,1/2,τ̃

. ‖eτϕPv‖L2(Ω) +
µ1∑
k=1

∣∣eτϕBk
1P2v|∂Ω

∣∣
m1−1/2−β1,k,τ̃

+ γ1/2
µ2∑
k=1

∣∣τ̃− 1

2 eτϕ tr(Bk
2v)

∣∣
m1,m2−1/2−β2,k,τ̃

.

We choose χ as in the proof of Theorem 7.1 and we apply estimate (7.9) to v = χu as can be done by a
density argument. We now sketch how the remainder of the proof can be carried out.

We have P (χu) = χPu+ [P, χ]u. The term [P, χ]u is supported in the set S introduced in the proof of
Theorem 7.1 and can be handle as it is done there. For the first term, with (7.4) we have

‖eτϕχPu‖L2(Ω) .
∑

|α|≤m−1

‖eτϕχDαu‖L2(Ω) .
∑

|α|≤m−1

‖eτϕDα(χu)‖L2(Ω) +
∑

|α|≤m−1

‖eτϕ[χ,Dα]u‖L2(Ω) .

The second term in the r.h.s. concerns functions with support located in S and their treatment is done as in
the proof of Theorem 7.1. For the first term we have

∑
|α|≤m−1

‖eτϕDα(χu)‖L2(Ω) . ‖eτϕχu‖m−1,τ̃ .
∥∥τ̃−1eτϕχu

∥∥
m,τ̃

,

which can be absorbed by the first term in (7.9) by chosing γ sufficiently large.
Next we have
∣∣eτϕBk

1P2v|∂Ω
∣∣
m1−1/2−β1,k,τ̃

≤
∣∣eτϕBk

1P2v|∂Ω
∣∣
m1−β1,k,τ̃

=
∑
r+|α|

≤m1−β1,k

∣∣τ̃ rDα
T
eτϕBk

1P2v|∂Ω
∣∣
L2(∂Ω)

.
∑
r+|α|

≤m1−β1,k

∣∣τ̃ reτϕDα
T
Bk

1P2v|∂Ω
∣∣
L2(∂Ω)

.

Writing Dα
T
Bk

1P2χu = χDα
T
Bk

1P2u+ [Dα
T
Bk

1P2, χ]u we have
∣∣eτϕBk

1P2v|∂Ω
∣∣
m1−1/2−β1,k,τ̃

.
∑
r+|α|

≤m1−β1,k

∣∣τ̃ reτϕχDαBk
1P2u|∂Ω

∣∣
L2(∂Ω)

+
∑
r+|α|

≤m1−β1,k

∣∣τ̃ reτϕ[Dα
T
Bk

1P2, χ]u|∂Ω
∣∣
L2(∂Ω)

.

The term [DT
αBk

1P2, χ]u is supported in the set S and can be treated as in the proof of Theorem 7.1. For
the first term, with (7.5) we have

∣∣τ̃ reτϕχDαBk
1P2u|∂Ω

∣∣
L2(∂Ω)

.
∑

|α′|≤|α|
+m2+β1,k−1

∣∣τ̃ reτϕ(χDα′
u)|∂Ω

∣∣
L2(∂Ω)

.
∑

|α′|≤|α|
+m2+β1,k−1

(∣∣τ̃ rDα′
eτϕχu|∂Ω

∣∣
L2(∂Ω)

+
∣∣τ̃ r[eτϕχ,Dα′

]u|∂Ω
∣∣
L2(∂Ω)

)

The second term in the r.h.s. concerns functions with support located in S and their treatment is done as in
the proof of Theorem 7.1. For the first term we have r + |α| ≤ m1 − β1,k and |α′| ≤ |α|+m2 + β1,k − 1
and thus we write

∣∣τ̃ rDα′
(eτϕχu)|∂Ω

∣∣
L2(∂Ω)

.
∣∣ tr(eτϕχu)

∣∣
m−1,0,τ̃

.

As

γ1/2
∣∣τ̃−1/2eτϕ tr(χu)

∣∣
m−1,1/2,τ̃

≥ γ1/2
∣∣eτϕ tr(χu)

∣∣
m−1,0,τ̃

& γ1/2
∣∣ tr(eτϕχu)

∣∣
m−1,0,τ̃

,
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we see that the above terms can be absorbed by the second term in (7.9) by chosing γ sufficiently large.
We finally write

∣∣τ̃− 1

2 eτϕ tr(Bk
2χu)

∣∣
m1,m2−1/2−β2,k,τ̃

≤
∣∣τ̃− 1

2 eτϕBk
2χu

∣∣
m1,m2−β2,k,τ̃

.
∑

|α1|≤m1
|α2|≤m2−β2,k

r+|α1|+|α2|≤m−β2,k

∣∣τ̃ r− 1

2Dα1Dα2

T
eτϕBk

2χu
∣∣
L2(∂Ω)

,

which can be treated as above by using (7.6). We then conclude the proof as in that of Theorem 7.1. �

APPENDIX A. PROOFS OF SOME TECHNICAL RESULTS

A.1. Details on the examples of Section 1.9. We first consider p(x, ξ) = ξ2n + r(x, ξ′). We have

pϕ(x, ξ
′, τ) = (ξn + iτϕ′)2 + r(x, ξ′) = (ξn + iτϕ′ + iθ(x, ξ′))(ξn + iτϕ′ − iθ(x, ξ′)),

with θ(x, ξ′) ≥ C|ξ′| and θ(x, ξ′)2 = r(x, ξ′). The roots of the operators are thus given by α1 = −iτϕ′ −
iθ(x, ξ′) and α2 = −iτϕ′ + iθ(x, ξ′).

If ∂xnϕ = ϕ′ < 0 we may have simultaneously Imα1 > 0 and Imα2 > 0 yielding p−ϕ = 1 and
κϕ = pϕ, a situation that forbids the strong Lopatinskii condition (see Remark 1.5 and Proposition 1.8).
This explains the assumption ∂xnϕ = ϕ′ > 0. (In fact having ϕ′ vanishing prevents the Carleman estimate
to hold [17, 31, 30].) Then Imα1 < 0 and we see that d◦κϕ ≤ 1. If d◦κϕ = 0, i.e., both roots have negative
imaginary parts, then the strong Lopatinskii is trivially fulfilled independently of the boundary operators.
This includes the low frequency regime, |ξ′| ≤ δτ for δ sufficiently small.

If now d◦κϕ = 1, then κϕ = ξn + iτϕ′ − iθ(x, ξ′) and the strong Lopatinskii condition is satisfied if
(bϕ, κϕ) is a complete family in the space of polynomials of degree less than or equal to 1. In this second
case ξ′ 6= 0.

(1) In the case Bu = u, then b = bϕ = 1 and the result is clear.
(2) In the case Bu = Dxnu+ a(x)u we have bϕ = ξn + iτϕ′. Since ξ′ 6= 0 here, then bϕ and κϕ have

distinct roots and thus form a complete family.
(3) In the case Bu = Dxnu+ ia(x)Dx1u then bϕ = ξn+ iτϕ

′+ iaξ1. Assuming that bϕ and κϕ have a
common root this means aξ1 = −θ(x, ξ′), implying a2ξ21 = r(x, ξ′). Yet a2ξ21 ≤ a2|ξ′|2 < r(x, ξ′),
unless ξ′ = 0 which is excluded here. We thus see that bϕ and κϕ do not have a common root. They
thus generate polynomials of degree less than or equal to 1.

Finally, observe that all the above remains valid if we let ϕ also depend on x′ with a |∂x′ϕ| ≪ |∂xnϕ|.
We now consider p = ξ41 + ξ42 , with here n = 2, in V+ = {x2 > 0}. At first we take ϕ = ϕ(x2). Then

pϕ = ξ41 + (ξ2 + iτϕ′)4 that we write

pϕ =
4∏
j=1

(ξ2 − αj), with αj = −iτϕ′ − eiπ(2j−1)/4ξ1, j = 1, 2, 3, 4.

Here also we assume ϕ′ > 0 to forbid all the roots to be in the upper complex half plane. Then Imα1 < 0
and Imα2 < 0. We thus have d◦κϕ ≤ 2.

(1) If B1u = u, B2u = Dx2u then b1ϕ = 1 and b2ϕ = ξ2 + iτϕ′. As b1ϕ and b2ϕ generate the polynomials
of degree less than or equal to 1, the strong Lopatinskii condition is fulfilled.

(2) If B1u = u, B2u = ∆u then b1ϕ = 1 and

b2ϕ = (ξ2 + iτϕ′)2 + ξ21 = (ξ2 + iτϕ′ + iξ1)(ξ2 + iτϕ′ − iξ1).

As the roots of b1ϕ, b2ϕ and κϕ are all distinct we see that they generate the polynomials of degree
less than or equal to 2. The strong Lopatinskii condition thus holds.
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(3) If B1u = u, B2u = Dx2∆u then b1ϕ = 1 and

b2ϕ = (ξ2 + iτϕ′)(ξ2 + iτϕ′ + iξ1)(ξ2 + iτϕ′ − iξ1).

• If d◦κϕ = 0 then the strong Lopatinskii condition holds trivially.
• If d◦κϕ = 1 then the strong Lopatinskii condition holds as b1ϕ generates the constant polyno-

mials.
• If d◦κϕ = 2 then the polynomials b1ϕ, b2ϕ, κϕ, and ξ2κϕ are linearly independent. They thus

generates the polynomials of degree less than or equal to 3 meaning that the strong Lopatinskii
condition holds.

As above we observe that all the above remains valid if we let ϕ also depend on x1 with a |∂x1ϕ| ≪ |∂x2ϕ|.

A.2. Regularity of the decomposition pϕ = p−ϕp
+
ϕp

0
ϕ. For concision, we denote by ̺′ the variable (x, ξ′, τ) ∈

R
n
+ × R

n−1 × R+ as is sometimes done in the main text.
Homogeneity is always understood w.r.t. the variables η = (ξ′, τ) for |η| ≥ r0 for some r0 ≥ 0, leading

to the introduction of the map

Mλ̺
′ = (x, λη), ̺′ = (x, η) ∈ R

n
+ × R

n−1 × R+.

A function ̺′ 7→ f(̺′) is thus said to be homogeneous of degree k if

f ◦Mλ(̺
′) = λkf(̺′), ̺′ = (x, η), |η| ≥ r0, λ ≥ 1.

We start with a classical result stating the homogeneity of the roots of an homogeneous polynomial
function.

Lemma A.1. Let p(̺′, ζ) =
∑m

j=0 aj(̺
′)ζj be a polynomial function with C r coefficients aj . Assume that

the coefficients aj(̺
′) are homogeneous of degree m − j. Then the roots αj(̺

′) of the polynomial function

p(̺′, ζ) in ζ are homogeneous functions of degree one.

Proof. For any ̺′ = (x, η) ∈ R
n
+ × R

n−1 × R+, we factorize the polynomial function p(̺′, ζ) w.r.t. ζ

p(̺′, ζ) =
m∏
j=1

(
ζ − αj(̺

′)
)
,

where αj(̺′), j = 1, . . . ,m, denote the roots repeated with multiplicity. Let λ ≥ 1 and let η ∈ R
n, |η| ≥ r0.

For k = 1, . . . ,m, the roots of p(Mλ̺
′, ζ) are αk(Mλ̺

′) . We consider βk(λ, ̺′) = λ−1αk(Mλ̺
′). Then,

we have

p(̺′, ζ) = λ−mp(Mλ̺
′, λζ) = λ−m

m∏
j=1

(
λζ − αj(Mλ̺

′)
)
=

m∏
j=1

(
ζ − βj(λ, ̺

′)
)
.

That is for any k = 1, . . . ,m and any λ ≥ 1, βk(λ, ̺′) is a root of p(̺′, ζ). The roots of p(̺′, ζ) are
continuous w.r.t. ̺′, as it is a classical result that the roots depend continuously upon the coefficients (a
proof is in fact given in the beginning of the proof of Lemma A.2). Hence, λ → λ−1αk(Mλ̺

′) is a
continuous function. Above we saw that it can only take a finite number of values. It follows that it is a
constant function. This concludes the proof. �

Lemma A.2. Let p(̺′, ζ) =
m∑
j=0

am−j(̺
′)ζj be a polynomial function with C r homogeneous coefficients

am−j(̺
′) of degree m − j, the coefficient a0(̺

′) not vanishing. For a fixed point ̺′0 = (x0, η0) ∈ R
n
+ ×

R
n−1 × R+, with |η0| ≥ r0, we denote the roots of p(̺′0, ζ) by α1, . . . , αN , with respective multiplicities

µ1, . . . , µN satisfying µ1 + · · ·+ µN = m.
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There exist a small conic neighborhood U of ̺′0 in R
n
+ × R

n−1 × R+, and three polynomial functions

p+(̺′, ζ), p−(̺′, ζ) and p0(̺′, ζ) with C r homogeneous coefficients and of constant degrees in Ur0 =
U ∩ {|η| ≥ r0}, such that

p(̺′, ζ) = a0(̺
′)p+(̺′, ζ)p−(̺′, ζ)p0(̺′, ζ), ̺′ ∈ Ur0 , ζ ∈ R,

where the imaginary parts of the roots of p+(̺′, ζ) (resp. p−(̺′, ζ)) are all positive (resp. negative) and we

have

p±(̺′0, ζ) =
∏

± Imαj>0

(ζ − αj)
µj , p0(̺′0, ζ) =

∏
Imαj=0

(ζ − αj)
µj .(A.1)

Note that there is no constraint on the sign of the imaginary part of the roots of p0(̺′, ζ) for ̺′ 6= ̺′0.
The idea of this lemma is the following. At ̺′ = ̺′0 the roots can be split into three groups: those with
positive imaginary parts, those with negative imaginary part, and the real roots. This splitting is preserved if
̺′ remains in a small neighborhood of ̺′0, apart for the third group since real roots can become complex if
̺′ changes. Moreover the three groups of roots yield smooth polynomials even if the roots themselves may
not be smooth5. This last point is of great importance here as one needs to manipulate smooth symbols in
the present work. This cannot be done at the root level.

Proof. We denote by α0
j , j = 1, . . . ,M , the real roots with mj-multiplicity of the polynomial function

p(̺′0, ζ) where α0
i 6= α0

j for i 6= j. We shall consider ̺′ in a small neighborhood of ̺′0 in R
n
+ ×R

n−1 ×R+.
We consider a small closed circular curve γj : [0, 1] → C in C with center α0

j , such that α0
j is the only root

of the polynomial equation p(̺′0, ζ) = 0 in Dj , the interior disk of Cj = γj([0, 1]).
We set ǫj = 1

2 minζ∈Cj |p(̺′0, ζ)| > 0. Let z ∈ Cj . By continuity of p, there exists a neighborhood

U jz ⊂ C of z and a neighborhood Y j
z ⊂ R

n
+ × R

n−1 × R+ of ̺′0 such that
∣∣p(̺′, ζ)− p(̺′0, z)

∣∣ < ǫj , ζ ∈ U jz , ̺
′ ∈ Y j

z .

Since Cj ⊂ ∪z∈CjU
j
z , and Cj is compact, we can extract a finite covering with such neighborhoods, viz.,

there exists z1, . . . , zℓ ∈ Cj such that
Cj ⊂ ∪ℓk=1U

j
zk
.

Then Y j = ∩ℓk=1Y
j
zk ⊂ R

n
+ ×R

n−1 ×R+ defines also a neighborhood of ̺′0 such that for all ζ ∈ Cj and all
̺′ ∈ Y j ∣∣p(̺′, ζ)− p(̺′0, ζ)

∣∣ < 2ǫj ≤
∣∣p(̺′0, ζ)

∣∣ .
By Rouché’s Theorem, for each ̺′ ∈ Y j the equation p(̺′, ζ) = 0 has mj roots (counted with their
multiplicity) in the disc Dj , that we denote by αjk(̺′), k = 1, . . . ,mj . Since we can reduce the circle Cj to
the point α0

j , we get6 lim̺′→̺′
0
αjk(̺

′) = α0
j for all k. Invoking Lemma A.1 we extend the function αjk(̺′)

as an homogeneous continuous function of degree one in a small conic neighborhood U of ̺′0, for |η| ≥ r0.
We set Ur0 = U ∩ {|η| ≥ r0}. Let us consider the unitary polynomial

p(j)(̺′, ζ) =
mj∏
k=1

(
ζ − αjk(̺

′)
)
,

whose coefficients are continuous since the roots are continuous w.r.t. ̺′ as seen above. We have p(j)(̺′0, ζ) =
(ζ−α0

j )
mj . In a similar way, we can define the polynomials p±(̺′, ζ) and p0(̺′, ζ) in a small conic neighbor-

hood of ̺′0 as polynomials with continuous coefficients, constant degrees, and they moreover satisfy (A.1).
Now we prove that the coefficients are C r.

5Only continuity w.r.t. ̺′ is certain. Smoothness may fail if multiplicity varies.
6In particular at this point this prove the continuity of the roots with respect to the parameter ̺′.
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Recalling that the polynomial p(̺′, ζ) has exactly mj roots αjk(̺′), k = 1, . . . ,mj (counted with multi-
plicities) in the disc Dj , by the Residue theorem, we find

1

2iπ
∫
Cj

∂p(̺′, ζ)

∂ζ

1

p(̺′, ζ)
ζℓdζ =

mj∑
k=1

αℓjk(̺
′) =: sjℓ(̺

′), ℓ = 1, . . . ,mj .

Since the l.h.s. is a C r function w.r.t. ̺′, then the functions sj1(̺
′), . . . , sjmj (̺

′) are also of class C r. If we

write p(j)(̺′, ζ) =
∑mj

k=0 b
j
k(̺

′)ζk, with bjmj = 1, then we have

bjmj−1 = −sj1
2bjmj−2 = −(sj2 + bmj−1s

j
1)

3bmj−3 = −(sj3 + bmj−1s
j
2 + bmj−2s

j
1)

...
mjb

j
0 = −(sjmj + bjmj−1s

j
mj−1 + · · ·+ bj1s

j
1).

We deduce that the coefficients of p(j)(̺′, ζ) are in C r(Ur0).

Consider now the polynomial function, of degree m−mj ,

H(̺′, ζ) =
p(̺′, ζ)

p(j)(̺′, ζ)
, ̺′ ∈ Ur0 .

We have p(̺′0, ζ) = (ζ −α0
j )
mjH(̺′0, ζ) with H(̺′0, α

0
j ) 6= 0. Write H(̺′, ζ) =

∑m−mj
k=0 hk(̺

′)(ζ −α0
j )
k.

By the Cauchy formula, we obtain

hk(̺
′) =

1

2iπ
∫
Cj

p(̺′, ζ)

p(j)(̺′, ζ)

dζ

(ζ − α0
j )
k+1

, ̺′ ∈ Ur0 .

Since the coefficients of p(̺′, ζ) and p(j)(̺′, ζ) are of class C r then, the coefficients hk(̺′) is of class C r.
We may now repeat the previous arguments for the polynomial H(̺′, ζ) yielding the C r regularity of the
coefficients of p±(̺′, ζ) and p0(̺′, ζ) w.r.t. ̺′. The proof is complete. �

A.3. Proof of the Hermite theorem (Proposition 3.13). All the roots of h are assumed to be in the lower
complex half-plane {Im ζ < 0}. In particular h cannot have real coefficients. We claim that we have

∀ζ ∈ C, |h(ζ)| = |h(ζ)| ⇔ ζ ∈ R.(A.2)

Let f be the holomorphic function in {Im ζ > 0} given by f(ζ) = h(ζ)/h(ζ). Clearly if ζ ∈ R then
|f(ζ)| = 1. Observe that neither f nor |f | can be constant in {Im ζ > 0} since h has roots in this set.

We let R > 0 and consider the domain DR inside the contour γR formed by the interval [−R,R] on the
real axis and the following half circle in the upper complex half-plane {|ζ| = R; Im ζ > 0}.

0

Im(ζ)

Re(ζ)−R R

DR

γR
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Let ζ0 ∈ C be such that Im ζ0 > 0. Letting ε ≥ 0, we choose R > |ζ0| sufficiently large so that
maxγR |f | ≤ 1 + ε, observing that lim|ζ|→∞ |f(ζ)| = 1. Then the maximum modulus principle yields
|f(ζ0)| ≤ maxDR |f | = maxγR |f | ≤ 1 + ε. Since ε is arbitrary we obtain that |f(ζ0)| ≤ 1. Hence |f | ≤ 1

in the upper complex half-plane. This now yields maxγR |f | = 1 for any R > 0 since |f | = 1 on the real
axis. Considering again an arbitrary ζ0 ∈ C with Im ζ0 > 0 and R > |ζ0| we find |f(ζ0)| < 1 since the
maximum modulus cannot be reached in the interior of DR since f is not constant. We have thus obtained
that

(A.3) |f | < 1 in {Im ζ > 0}.
The same analysis can be carried out with the holomorphic function g(ζ) = h(ζ)/h(ζ) in the lower complex
half-plane since the roots of h have positive imaginary parts:

(A.4) |g| < 1 in {Im ζ < 0}.
Together (A.3) and (A.4) yield the claim (A.2), as the case h(ζ) = h(ζ) = 0 is to be excluded since it yields
both Im ζ < 0 and Im ζ > 0.

Let now ζ be a root of a. Then |h(ζ)| = |h(ζ)| implying that ζ is real. The same applies for the roots of
b. Moreover, if ζ is a root of a then b(ζ) 6= 0, as otherwise h(ζ) = h(ζ) = 0, which is excluded (see above).
The roots of a and b are thus distinct and real.

We denote the roots of h by αi, i = 1, . . . , k, and we introduce

hj(ζ) = (ζ − αj), h(ζ) = ν
k∏
j=1

hj(ζ), qj(ζ) =
k∏

i=j+1
hi(ζ), qk(ζ) = 1,

where ν ∈ C, ν 6= 0, is the leading-order coefficient of h. We observe that iBh,h(ζ, ζ̃) = 2Ba,b(ζ, ζ̃) and
by (3.12), we obtain

|ν|−2Bh,h(ζ, ζ̃) = Bh1q1,h1q1
(ζ, ζ̃)

= q1(ζ)q1(ζ̃)Bh1,h1(ζ, ζ̃) + h1(ζ)h1(ζ)Bq1,q1(ζ, ζ̃)

= 2i Im(α1)q1(ζ)q1(ζ̃) + h1(ζ)h1(ζ)Bq1,q1(ζ, ζ̃).

By induction we then find

|ν|−2Bh,h(ζ, ζ̃) = 2i
k∑
j=1

Im(αj)Rj(ζ)Rj(ζ̃)

where Rj is a polynomial of degree k − 1 given by

Rj = qj
j−1∏
i=1

hi.

Note that the roots of Rj are α1, . . . , αj−1 and αj+1, . . . , αk. Assuming the
∑k

j=1 λjRj(ζ) = 0, by suc-
cessively estimating this sum for ζ = α1, α2, . . . , αk we find λ1 = λ2 = · · · = λk = 0. The family of
polynomials Rj , j = 1, . . . , k is thus linearly independent.

We have

ΣBa,b
(z, z′) = −|ν|2

k∑
j=1

Im(αj)ΣRj (z)ΣRj (z
′),

with Imαj < 0. Lemma 3.10 yields the conclusion of Proposition 3.13. �
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A.4. Proof of Lemma 3.14. We write

sub(a, b) =
∑

|α|=1

∂αx (b∂
α
ξ a− a∂αξ b) =

∑
|α|=1

∂αx′(b∂
α
ξ′a− a∂αξ′b) + ∂xn(b∂ξna− a∂ξnb),

and we have on the one hand
∑

|α|=1

∂αx′(b∂
α
ξ′a− a∂αξ′b) =

m∑
j,k=0

∑
|α|=1

∂αx′(bj∂
α
ξ′ak − aj∂

α
ξ′bk)

︸ ︷︷ ︸
=−hj,k

ξj+kn ,

and on the other hand

∂xn(b∂ξna− a∂ξnb) =
m∑

j,k=0

∂xn(kbjakξ
j+k−1
n − jakbjξ

j+k−1
n )

=
m∑

j,k=0

(k − j)ξj+k−1
n ∂xn(bjak)

=
1

2

m∑
j,k=0

(k − j) ∂xn(bjak − bkaj)︸ ︷︷ ︸
−∂ng′j,k

ξj+k−1
n ,

which gives the result. �
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