Complexity Reduction of Rate-Equations Models for Two-Choice Decision-Making

Abstract : We are concerned with the complexity reduction of a stochastic system of di erential equations governing the dynamics of a neuronal circuit describing a decision-making task. This reduction is based on the slow-fast behavior of the problem and holds on the whole phase space and not only locally around the spontaneous state. Macroscopic quantities, such as performance and reaction times, computed applying this reduction are in agreement with previous works in which the complexity reduction is locally performed at the spontaneous point by means of a Taylor expansion.
Type de document :
Article dans une revue
PLoS ONE, Public Library of Science, 2013, pp.e80820. 〈10.1371/journal.pone.0080820〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00842779
Contributeur : Simona Mancini <>
Soumis le : mardi 9 juillet 2013 - 14:13:49
Dernière modification le : jeudi 7 février 2019 - 14:49:23
Document(s) archivé(s) le : mercredi 5 avril 2017 - 08:56:54

Fichiers

ccdm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

José Antonio Carrillo, Stéphane Cordier, Gustavo Deco, Simona Mancini. Complexity Reduction of Rate-Equations Models for Two-Choice Decision-Making. PLoS ONE, Public Library of Science, 2013, pp.e80820. 〈10.1371/journal.pone.0080820〉. 〈hal-00842779〉

Partager

Métriques

Consultations de la notice

311

Téléchargements de fichiers

85