A. D. Evans, Residual stress characterisation of peened aerospace materials, 2005.

P. J. Withers, Depth capabilities of neutron and synchrotron diffraction strain measurement instruments. II. Practical implications, Journal of Applied Crystallography, vol.37, issue.4, pp.607-612, 2004.
DOI : 10.1107/S0021889804012750

D. Neov, In Situ High-Resolution Neutron Diffraction Study of Stress Induced Martensitic Transformations in CuAlZnMn Shape Memory Alloy, Proc. of the 5th European Conference on Residual Stresses, Mat. Sci. For, pp.347-349, 2000.
DOI : 10.4028/www.scientific.net/MSF.347-349.334

P. ?ittner, Stress induced martensitic transformation in CuAlZnMn polycrystal investigated by two in situ neutron diffraction techniques, Mat. Sci. Eng. A, vol.324, pp.1-2, 2002.

P. ?ittner, Load partition in shape memory alloy polycrystals, Proc. of Immm, pp.35-46, 2001.

P. ?ittner, Characterization of stress induced martensitic transformation in shape memory alloys by in situ neutron diffraction techniques, Proc. of Adaptive Structures and Material Systems, pp.25-35, 2000.

S. Berveiller, In situ synchrotron analysis of lattice rotations in individual grains during stress-induced martensitic transformations in a polycrystalline CuAlBe shape memory alloy, Acta Materialia, vol.59, issue.9, pp.3636-3645, 2011.
DOI : 10.1016/j.actamat.2011.02.037

URL : https://hal.archives-ouvertes.fr/hal-01195642

B. Malard, Caractérisation multiéchelle par diffraction de neutrons et rayonnement synchrotron de la transformation martensitique sous contrainte dans un alliage à mémoire de forme CuAlBe, Thèse de doctorat de l'ENSAM (CER Metz), 2008.

B. Malard, Stress determination during the mechanically-induced martensite phase transformation in the superelastic alloy CuAlBe by neutron diffraction, Mat. Sci. Forum, vol.524, pp.905-910, 2006.

A. Tidu, Orthorhombic lattice deformation of CuAlBe shape-memory single crystals under cyclic strain, Journal of Applied Crystallography, vol.34, issue.6, pp.722-729, 2001.
DOI : 10.1107/S002188980101384X

G. K. Kannarpady, Phase quantification during pseudoelastic cycling of Cu???13.1Al???4.0Ni (wt.%) single-crystal shape memory alloys using neutron diffraction, Acta Materialia, vol.56, issue.17, pp.56-4724, 2008.
DOI : 10.1016/j.actamat.2008.05.028

P. ?ittner and V. Novák, Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals, International Journal of Plasticity, vol.16, issue.10-11, pp.1243-1268, 2000.
DOI : 10.1016/S0749-6419(00)00009-7

V. Novák and P. ?ittner, Micromechanics modelling of NiTi polycrystalline aggregates transforming under tension and compression stress, Materials Science and Engineering: A, vol.378, issue.1-2, pp.1-2, 2004.
DOI : 10.1016/j.msea.2003.10.370

P. ?ittner, In situ neutron diffraction studies of martensitic transformations in NiTi polycrystals under tension and compression stress, Materials Science and Engineering: A, vol.378, issue.1-2, pp.1-2, 2004.
DOI : 10.1016/j.msea.2003.09.112

B. Kaouache, Analyse multiéchelles de la transformation martensitique induite par contrainte dans les AMFs Corrélation contraintes-microstructure, 2006.

F. Moreau, Etude par diffraction des rayons X des effets du cyclage pseudoélastique de AMF CuAlBe, 1998.

I. Noyan and J. Cohen, Residual Stress Measurement by Diffraction and Interpretation, 1987.

J. R. Schneider, High energy synchrotron radiation. A new probe for condensed matter research, Le Journal de Physique IV, vol.04, issue.C9, pp.415-421, 1994.
DOI : 10.1051/jp4:1994969

URL : https://hal.archives-ouvertes.fr/jpa-00253532

H. F. Poulsen, Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics, 2005.
DOI : 10.1007/b97884

E. M. Lauridsen, Tracking: a method for structural characterization of grains in powders or polycrystals, Journal of Applied Crystallography, vol.34, issue.6, pp.744-750, 2001.
DOI : 10.1107/S0021889801014170

N. Tamura, High spatial resolution stress measurements using synchrotron based scanning X-ray microdiffraction with white or monochromatic beam, Materials Science and Engineering: A, vol.399, issue.1-2, pp.1-2, 2005.
DOI : 10.1016/j.msea.2005.02.033

Q. P. Sun, Micromechanics Constitutive Description of Thermoelastic Martensitic Transformations, Adv. Appl. Mech, pp.31-249, 1994.
DOI : 10.1016/S0065-2156(08)70257-6

M. Tokuda, Thermomechanical behavior of shape memory alloy under complex loading conditions, International Journal of Plasticity, vol.15, issue.2, pp.223-239, 1999.
DOI : 10.1016/S0749-6419(98)00066-7

R. Vaidyanathan, Phase fraction, texture and strain evolution in superelastic NiTi and NiTi???TiC composites investigated by neutron diffraction, Acta Materialia, vol.47, issue.12, pp.3353-3366, 1999.
DOI : 10.1016/S1359-6454(99)00214-1

S. Qiu, On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi, Acta Materialia, vol.59, issue.13, pp.5055-5066, 2011.
DOI : 10.1016/j.actamat.2011.04.018

M. L. Young, Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading, Acta Materialia, vol.58, issue.7, pp.2344-2354, 2010.
DOI : 10.1016/j.actamat.2009.12.021

A. Stebner, Neutron diffraction studies and multivariant simulations of shape memory alloys: Empirical texture development???mechanical response relations of martensitic nickel???titanium, Acta Materialia, vol.59, issue.7, pp.2841-2849, 2011.
DOI : 10.1016/j.actamat.2011.01.023

B. Ye, Texture development and strain hysteresis in a NiTi shape-memory alloy during thermal cycling under load, Acta Materialia, vol.57, issue.8, pp.2403-2417, 2009.
DOI : 10.1016/j.actamat.2009.01.032

S. L. Raghunathan, In situ observation of individual variant transformations in polycrystalline NiTi, Scripta Materialia, vol.59, issue.10, pp.1059-1062, 2008.
DOI : 10.1016/j.scriptamat.2008.07.014

M. Hasan, Hard X-ray studies of stress-induced phase transformations of superelastic NiTi shape memory alloys under uniaxial load, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482, 2008.
DOI : 10.1016/j.msea.2007.02.156

B. Malard, In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires, Acta Materialia, vol.59, issue.4, pp.1542-1556, 2011.
DOI : 10.1016/j.actamat.2010.11.018

URL : https://hal.archives-ouvertes.fr/hal-00602222