A proximal approach for signal recovery based on information measures

Abstract : Recently, methods based on Non-Local Total Variation (NLTV) minimization have become popular in image processing. They play a prominent role in a variety of applications such as denoising, compressive sensing, and inverse problems in general. In this work, we extend the NLTV framework by using some information divergences to build new sparsity measures for signal recovery. This leads to a general convex formulation of optimization problems involving information divergences. We address these problems by means of fast parallel proximal algorithms. In denoising and deconvolution examples, our approach is compared with '2- NLTV based approaches. The proposed approach applies to a variety of other inverse problems.
Type de document :
Communication dans un congrès
EUSIPCO 2013, Sep 2013, Marrakech, Morocco. pp.xx-xx, 2013
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00842713
Contributeur : Mireille El Gheche <>
Soumis le : mardi 9 juillet 2013 - 16:38:06
Dernière modification le : jeudi 11 juillet 2013 - 01:13:41
Document(s) archivé(s) le : jeudi 10 octobre 2013 - 04:09:14

Fichier

EUSIPCO_2013.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00842713, version 1

Citation

Mireille El Gheche, Anna Jezierska, Jean-Christophe Pesquet, Joumana Farah. A proximal approach for signal recovery based on information measures. EUSIPCO 2013, Sep 2013, Marrakech, Morocco. pp.xx-xx, 2013. <hal-00842713>

Partager

Métriques

Consultations de
la notice

273

Téléchargements du document

202