Vineyard leaf roughness characterization by computer vision and cloud computing technics

Abstract : In the context of vineyard leaf roughness analysis for precision spraying applications, this article deals with its characterization by computer vision and cloud computing techniques. The techniques merge feature extraction, linear or nonlinear dimensionality reduction techniques and several kinds of classification methods. Different combinations are processed and their performances compared in terms of classification error rate, in order to find the best association. However these combinations are hardly processed because of the lack of computing power and the prohibitive time consumption of the algorithms. To overcome these difficulties, we propose a solution: the use of cloud computing, which considerably improves computing power. We conclude on the well performance of vineyard leaf roughness characterization through the combination of features extraction, dimensionality reduction and classification processed in a cloud computing environment.
Type de document :
Communication dans un congrès
International Conference on Agricultural Engineering-AgEng 2010, Sep 2010, Clermont-Ferrand, France. pp.309, 2010
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00842218
Contributeur : Ludovic Journaux <>
Soumis le : mardi 9 juillet 2013 - 18:38:19
Dernière modification le : mardi 10 octobre 2017 - 13:49:46
Document(s) archivé(s) le : mercredi 5 avril 2017 - 08:08:42

Fichier

REF309_ageng2010_.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00842218, version 1

Collections

Citation

Thomas Decourselle, Ludovic Journaux, Jean-Claude Simon, Jean-Noël Paoli, Frédéric Cointault, et al.. Vineyard leaf roughness characterization by computer vision and cloud computing technics. International Conference on Agricultural Engineering-AgEng 2010, Sep 2010, Clermont-Ferrand, France. pp.309, 2010. 〈hal-00842218〉

Partager

Métriques

Consultations de
la notice

337

Téléchargements du document

156