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Abstract

Comparison exercises have been carried out figr@int research teams to study the sensitivity of
the natural convection occurring in a vertical asymmeliydaeated channel to four sets of open
boundary conditions. The dimensionless parameters haredi®sen so that a return flow exists
at the outlet. On the whole, results provided by the partasgsn good agreement; benchmark
solutions are then defined for each of the boundary conditiowhilst the local and average
Nusselt numbers based on the entrance temperature do restddeyuch on conditions applied in
the aperture sections, the net fluid flow rates crossing tharedl and the characteristics of the
recirculation cells are highly influenced. But we proved ti@se modifications of flow patterns
do not alter significantly the fluid flow rates leaving the ahalrthrough the exit section.
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Nomenclature

A aspect ratio of the channei,H/I

BC. boundary conditions

(o' width of the downward flow (Eq. 13)

d, width of the recirculation (Eq. 14)

(6. &) coordinate axes

Fr Froude numbet: o3/(g I®)

g gravitational acceleratiom)/s?

GB boundary conditions (Eqgs. 5¢ and 6c¢), see Tab. 1

GB-0 boundary conditions (Eqgs. 5¢ and 6d), see Tab. 1

H channel heightn

I channel widthm

LB boundary conditions (Egs. 5b and 6¢), see Tab. 1

LB-0 boundary conditions (Eqgs. 5b and 6d), see Tab. 1

ml; Nu;, inverse reduced temperature at the left wall; Nusselt nurobé¢he heated surface
based on the reference temperature (Eqg. 10)

Nw:; Nu, inverse reduced temperature between the left wall and tlke [dusselt
number on the heated surface based on the bulk temperatyré X

p difference between static and hydrostatic pressew&bs+ z/Fr

Pr Prandtl numbers vo/ag

gn(z=0) mass flow rate entering through= 0 (Eq. 7)

gn(z=A) mass flow rate entering through= A (Eqg. 8)

Ra Rayleigh numbers gBo®14/(1ovoao)

t time

T temperaturekK

T1,---, T8 participating teams, see Tab. 2

(u, w) velocity components) =v-&,w=V-§&,

v velocity vector

(X2 spatial coordinates
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Greek symbols

@ thermal difusivity, n?/s

B thermal expansion céigcient, I/K

0 reduced temperature, (T — Tg) X Ao/ (ID)
O bulk temperature (Eq. 9)

A thermal conductivity\v/(m - K)

u dynamic viscositykg/(m- s)

% kinematic viscositym?/s

IT static pressure

o density kg/m?

(0) heat flux,W/n?

W stream function (Eq. 4)

Subscripts

0 reference temperature

m median value (Eq. 16henchmark solutions (Fig. 9)
o standard deviation (Eq. 15)

Others

o spatial average on the heated wall (Eq. 12)
) ensemble average (Eq. 15)

1. Introduction

Heat transfer and fluid flows driven by natural convectionper channels have been exten-
sively studied over the last past decades, for verticaldmad configurations. This great interest
raised by this subject stems from its wide range of pracapalications such as solar chimney,
solar energy collectors, Trombe walls, or the cooling otetmic components and many others
[1-4].

Since the precursory experimental works performed by Easlin 1942 [5], who determined
the diferent flow regimes versus a modified Rayleigh number or Eslommber (Rayleigh
number calculated on the channel-chimney width dividedheyaspect ratio), natural and mixed
convections have been widely studied in open channels, tuatierically and experimentally.
Because the aim of this paper is to focus our attention onrtfheeince of the boundary condi-
tions applied in the apertures of the channel, and then taelenchmark solutions, the detailed
description of the numerous contributions dealing withuretor mixed convection in vertical
channels is transferred to few relevant and recent papeseahto provide complete reviews of
this topic (see [1, 6—13] and references thereidymong the first numerical simulations, we can
mention the contribution of Bodoia and Osterle [14] who stigated fluid flows and heat transfer
occurring through isothermal vertical plates. Their resulere in good agreement with the Elen-
baas experimental data [5]. Since then, and despite théypdénumerical studies, the choice of
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the boundary conditions for open cavities is still a dekassue.

For thermal natural convection, the distribution of theatdteat fluxes conveyed by the fluid
flow through the open boundaries depends on heat transfexealla but also on physical con-
ditions prevailing in the surroundings, on both sides ofdpertures. It results a close coupling
between the dynamic and thermodynamic variables insideocatglde the channel. Thus, the
thermal and kinematic inlgiutlet boundary conditions cannot be a priori prescribetthout ac-
counting for the surrounding conditions [6, 15, 16]. Figathe thermally driven channel behaves
as athermal engine by converting the thermal gradient ifitocaflow. This corresponds to the so-
called thermosyphorfiect. Although thermal natural convection was only consgddrere-above,
this applies for general mass transfer, whatever the oofjihe density variation may be.

To overcome the issue of choosing the boundary conditiondetoutlet sections, some au-
thors proposed to extend the computational domain, upstaalor downstream the channel.
Thus, the boundary conditions are pushed away from the iteautlet sections of the channel.
One of the ideas leading to the displacement of the open laoigsdfar from the channel limits
is to reduce, as much as possible, tife@ of an unawareness of the “real” boundary conditions.
St. Venant'’s principle, often invoked in solid mechanicgynalso be used in fluid mechanics:
if the artificial boundaries are placedfBaiently far away from the channel apertures, the veloc-
ity and temperature distributions at the entragags of the channel are no longeffected by the
applied boundary conditions [17]. The issue now raised 8 fav the artificial open extensions
must be placed in order that the physical quantities in the#/outlet sections become insensitive
to the conditions set at boundaries. Although this appreaems attractive, the increase in size
of the computational domain proves to be expensive, bothemary and in computational time.
For these reasons, the domain extensions are often eithgvety reduced or large but coarsely
discretized. The shapes of the walls at the entrance regitimsharp angles or smooth rounded
surfaces, fiiect also significantly the fluid flows and heat transfer. Uginggance walls with right
angles, Naylor et al. [18] predicted a fluid separation attrenel inlet which is approximatively
correlated with the dimensional flow rate. Their inlet boarydconditions were based onftiey-
Hamel flow which consists in a similarity solution of isothweal flow caused by the presence of a
source or sink at the point of intersection of two walls. Kdtbrough [17], with a parabolic ap-
proximation, and Nakamura et al. [19], with a full ellipticoehel, used boundary conditions which
physically correspond to fully developed flow entering aroied with a large sudden section re-
duction. They also found a separation of the boundary ldygat some distance from the leading
edge at the entry to the channel. This issue was reconsideeedecent paper by Boetcher and
Sparrow [20] who studied buoyancy-induced flow in an horiabopen-ended cavity. They ex-
amined the impact of the size of the extended domain, thedswyrconditions on its surfaces, and
the mesh density required to achieve high accurduagt as the upstream extensions may modify
the flow and heat transfer in the channel-chimney, the iseré@athe computational downstream
domain may lead to modifications in the draft height and tlemnansfer, for instance by adding
adiabatic extensions in order to enhance the sucking upeaftimney [21].

Another way to sidestep the question of choosing open bayrdaditions in the entrangexit
sections of the channel is to encapsulate it into a virtualasure [22, 23]. As a result, the
boundaries are solid walls on which it is easy to prescrib®adyical conditions. However, thermal
boundary conditions are not so easy to define since they nsayrdithe thermal field around the
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channel and produce spurious natural recirculation cells.

The diterent strategies described here-above rest on an increaseeiof the computational
domain, and therefore, in computational memory storageGi?id time. An alternative is to re-
strict simulations to the channel height only, and to motelthermal and dynamical boundary
conditions at the exact inletutlet sections. In comparison with numerical results byi@a and
Osterle [14], Aihara [15] proposed to link the pressure t® tass flow rate. This formulation
permits to substitute the unknown inlet velocity by a relatbased on pressures. This writing is
related to a simplified model of the upstream fluid flow suckegdhe pressure drop produced in
the channel aperture. In the upstream region, the fluid mosidhen assumed incompressible,
isothermal, inviscid and stationary. Dalbert et al. [L6yg&vamong the first to deal with this pres-
sure drop which corresponds physically to the energy pamelunit required to bring the fluid
from rest far upstream to the entrance section. Usifige}leHamel flow extension at the entrance,
Naylor et al. [18] confirmed the relationship between theskimenergy and the pressure drop in
the inlet section of the channel.

Since a long time, simulations performed by numericistg o&l reference solutions to check
both the validity of discretization schemes and their nucaémplementations. For laminar flows
and closed systems, such benchmark solutions are well dodech For example, one may men-
tion the lid driven cavity for isothermal fluid flows and theyReigh-Bénard problem or the filer-
entially heated cavity (window problem) for flows driven hydyancy. But to our best knowledge,
and despite very numerous numerical references, such aisvetitl lacking for free convection
flowing through open boundaries. This issue was alreadyeaddd by the French community
dealing with thermal sciences for a geometrical model ictstt to the channel height [24]. But
this first attempt to define reference solutions turned outeainsuccessful: the gaps between
results provided by the research teams were too large, anefex@nce solution was defined. A
possible explanation of these discrepancies was recertjyoped in [25]. For one particular set
of boundary conditions, Le Quéré showed that the use of Naaryge boundary conditions may
give one or several nontrivial combinations of velocitggsure fields which satisfy the homoge-
neous Stokes operator, in addition to the unavoidable aohgressure mode. This recognition
leads him to propose an algorithm in which the solution isgbd@as a combination of particular
solution of the inhomogeneous Stokes or unsteady Stokddgono plus a linear combination of
the modes of the Stokes kernel so as to satisfy the pressypdodtween the inlet and outlet.

Considering the previous works [24, 25] and the obvioug&sieof the numericists community
to have reference solutions for free convection with opamblaries, we reformulated the test case
problem [24] on the basis of four boundary conditions fredlyemet in such studies. This new
approach leads us to study the sensitivity of fluid flows arat transfer to the dierent prescribed
boundary conditions.

The purpose of this paper is then twofold. First, it aims atgbuting to the numerical study of
natural convection in vertical channel by considering seets of boundary conditions, but always
restricting the geometry to the physical domain, withow downstream or upstream domain
extensions. These boundary conditions are, for exampfdemented in some commercial codes
or free packages solving the Navier-Stokes and energy ieqsatThe second objective concerns
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the definition of reference solutions that could be very uisigf the community of numericists
for validating the numerical schemes in open systems, wiogvsfare driven by natural or even
mixed convection. In order to propose a numerical exerbisth relevant and numerically delicat,
and to emphasize théfect of boundary conditions on fluid flow and heat transfer, eaei$ed our
attention on a problem which gives rise to a recirculatiow fi the exit of the channel [26, 27].

The rest of the paper is organized into two main sectionsvi@t by a conclusion. Section
2 provides, first the mathematical model with the four setsamfndary conditions, and then de-
scribes the dierent variables used for comparisons. Section 3, whictsdeidh the results and
their discussions, is subdivided into three subsectiongudlitative description of the flow and
temperature fields is first given. Then, the results of thiedint research teams are synthesized
and commented; reference solutions are defined. Fina#yinfluence of the dierent boundary
conditions on heat and fluid flow is presented and analyzedonftlasion summing up the key
points of this contribution ends the paper.

2. Description of the test cases

2.1. Heat and fluid flow equations

A vertical parallel plate channel of widthand heightH is formed by two walls, one partially
heated at a constant and uniform heat fhon its half middle section and the remaining walls are
adiabatic (see fig. 1) [26]The fluid flow is assumed laminar and two-dimensional. Thentlag¢
radiations and the heat conduction inside the solid wadlsl@aregardedAccounting for the small
relative temperature fierence occurring between the heated wall and the aperhed\dvier-
Stokes and energy equations are expressed with the Bosgspperoximation. The problem to
be numerically solved is restricted to the channel heigtite governing flow and heat transfer
equations, written in dimensionless form, read:

H
V.-V=0 (1)
N = — 9 .
a.|_V.(\7®\7'):—Vp+PrV\7+RaPrt9eZ (2)
%+?.(\79) —v% (3)

with V = ue, + wé, the dimensionless velocity vectqr= I1+ z/Fr the dimensionless departure of
the static pressure from the hydrostatic pressuredando(T —Top)/(¢l) the reduced dimensionless
temperature. The reference temperaflyé set to the temperature of the surroundings. Thermal
conductivity, thermal and viscousftlisivity and thermal expansion dbeient are expressed at
To by Ao, ag, vo andpBy respectively. The length, velocity and pressure are sdadd o/l and
poa3/I2. The dimensionless parameters governing the fluid flow aat thensfer are the Prandt|
numberPr = vy/ap, the Rayleigh numbdRa = gBy¢l*/(1ovoao) and the aspect ratio of the channel
A = H/I. The dimensionless streamfunction is defined as usual by

a_w—u 8_w_

oz~ ax = W ()



2.2. Boundary conditions

Four sets of boundary conditions are referenced in thistpapeeach case, the conditions
at the solid walls are the same; only the boundary conditairibe inlet and outlet sections are
modified.

Boundary conditions at solid plates.
e Leftwall, x =0,
Yz €]0; Al v(0,2) = 0

Yz €]0; A/4[U]3A/4; Al, %(O, 2=0

Yz €]A/4; 3A/4], @(O, 2=-1
0X
e Rightwall,x=1,Vz€]0; A,
V(1,2 =0
06
a—x(l, Z) =0
Channelinlet, z= 0, ¥x €]0; 1],

u(x,0)=0

%—Vzv(x, 0)=0 (5a)

0(x,0)=0

Two pressure boundary conditions are studied. They resut Bernoulli’s theorems which
assume stationary, incompressible and inviscid fluid flows.

e Local Bernoulli relation I(B):

X0 P(0) = ~5(W(x O)) (5b)

e Global Bernoulli relation GB):
1 2
vx €]0; 1], mKO):—E@m@:o» (5¢)

whereqi,(z=0) = fol w(x, 0) dx denotes the dimensionless mean velocity or flow rate.

Channel outlet,z = A. Although the designation “outlet” (or “exit”) is somewhatiorrect in our
problem, since fluid partially enters through the top bouyndand creates a recirculation
flow, but for sake of simplicity, the use of this term is howekept. To establish the bound-
ary relations, it is then necessary to distinguish the dan corresponding to entering
(w(x, A) < 0) and exiting W(x, A) > 0) fluid flows. Furthermore, two pressure conditions
are studied when the fluid flows out of the channel.
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e Exiting fluid:

For all x €]0; 1[, such thatv(x, A) > O, 90 (6a)

e Entering fluid:

ux,A =0
For all x €]0; 1[, such thatv(x, A) < O, aa—vzv(x, A =0 (6b)
0(x,A) =0

with one of the two following pressure boundary conditions:
— Local relation

For all x €]0; 1[, such thatv(x, A) < O, p(x, A) = —%(W(X, A))2 (6¢)
— Uniform Pressure
For all x €]0; 1[, such thatv(x, A) < 0, p(x,A) =0 (6d)

The four sets of boundary conditions are synthesized withtroms (B, LB-0, GBandGB-0
according to the rule given in Tab. 1. From a mnemonic pointied, the notationdB (Local
Bernoulli, Eq. (5b)) andsB (Global Bernoulli, Eqg. (5¢)) designate the boundary cands at the
lower channel aperture. The addition of théfisu-0 indicates that the outlet pressure is uniformly
set to zero (see Eqgs. (6a) and (6d)), otherwise local expresare applied for the return flow
(Egs. (6a) and (6c¢)).It must be emphasized that the pressure boundary condit@icontinuous
function of the abscissa, even if a reversal flow occurs atlia@nel exit.

Before introducing the variables which will lead to quaatiite comparisons, let us perform
some remarks about thermal radiation. First, and as aneduacthe beginning of Sec. 2.1,
the thermal radiation has been neglected, since the aimegbdber is to focus the analysis on
pressure boundary conditions and the definition of bencks@utions in the scope of pure natural
convection. However, from a physical point of view, workwgh transparent fluids like air gas
makes the surface temperature sensitive to the surfaai@dphenomena. In that case, itis worth
pointing out that, despite small relative temperatufféedences, surface radiations may strongly
modify the flow characteristics, even if the emissivities gery small [28]. Consequently, the
radiation exchanges must always be taken into account imahgerical model if comparisons
with experimental data are planned (see the works by Li ¢24]).



2.3. Monitored variables

Comparisons have been carried out for mean and local quesrait diferent discrete vertical
coordinates located in the heated region and in the dovamstidiabatic domain, namely for
ze€ {3A/8; A/2; BA/8; 3A/4; TA/8; A}. These concern some

dynamic aspects:

¢ the mass flow rate entering the channel through the bottotioeec= 0

1
n(z=0)= [ w(x 0)dx ™)
0
¢ the mass flow rate entering into the channel through the tciose = A

nz=py = [ WAL ®

thermal variables:

¢ the bulk temperature

1 1
Op(2) = m fo W(X, 2)0(x, z) dx (9)

¢ the inverse of the temperature at the left wall

Ny (2) = (10)

0(0, 2
whose expression corresponds to the local Nusselt nudbgr) on the heated wall
only, with a reference temperature equal to the surroungahge;Nu,(z > 3A/4) = 0.

e the inverse of the dlierence between the temperature at the left wall and the bulk

temperature
1

6(0,2) - 6(2)
whose expression represents the local Nusselt nuibgr) on the heated wall only,
with the bulk temperature as reference temperatdtg(z > 3A/4) = 0.

Ntn(2) = (11)

¢ the average Nusselt numbers on the heated wall

9 34
u:—f NU©.2dz  ie(L2) (12)
A

/4

characterization of flow patterns:



e the length of the downward flow imsection. For given, if there exists & xy(2) < 1
such thaww(x,(2), 2) = 0, then

dw(2) = 1 - xu(2) (13)

e the recirculation length iz-section. Foz given, if there exists & x,(z) < 1 such that
W(%,(2),2) = ¥(1,2), then
dy(2=1-x(2 (14)

with the streamfunction defined in Eq. (4).

3. Results and discussions

The numerical exercise has been carried ouRfarE 5x 10°, A = 10 and air as working fluid
with Pr = 0.71.

Results were obtained by eight partners which are partsftdrdnt laboratories: CETHIL,
I2M-TREFLE, LAMA, LaSIE, LEME, LGCgE, LIMSI, MSME, PIMENT ad PPRIME. Five of
the numerical codes were developed by the research teamsyénree CFD software packages
(Aquilon®), FDS) and the last one is commercial (Flu@nt Table 2 indicates, for the fierent
partners, the name of the laboratories involved, and som@cteristics of the numerical schemes.
More details about the numerical method are provided in pipeeadix section.

3.1. Qualitative description of the fluid flow and temperatfield

The fluid flow and the temperature field, illustrated in Fig.a2 boundary condition&B
(Tab. 1), are qualitatively almost the same whatever thentary conditions considered in this
paper. The fluid is heated along the mid-height of the cesgetion of the left wall by a uniform
and constant heat fluk (Fig. 2(d)). Consequently, the fluid rises up due to the dgnsiriations
and creates a dynamic boundary layer along the left plate &c)). Due to too large head loss
in the upstream adiabatic part, the feeding of this dynamimbary layer cannot exclusively hap-
pen by an air supply coming from the lower aperture of the nehand then an incoming of fluid
through the top open section of the channel is created ovatth dy(z = A) (Fig. 2(c)). Therefore,

a recirculation flow occurs with a measured size at the cHamxited, (z = A) (Fig. 2(a)).

It must be underlined that the field of the horizontal compur{€ig. 2(b)) displays positive
and negative values in the vicinity of the left and right casnof the entrance region. These
patterns are typically met with BC. (5b), i.e. when the irdet¢ssure is set to the local dynamic
pressure. If the pressure boundary condition in the apersukept uniform BC. (5c¢), these local
variations in the horizontal velocity do not exist. The shflalid pocket, defined bw(x,z) > 0
and located near the center of the channel exit section, s identified by all the participants
working onLB problem. When other boundary conditions are applied, dgpears.
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3.2. Comparison of numerical contributions

Figures 3, 4, 5 and 6 providiw(2) (Eq. 10) andNw(2) (Eg. 11), viz the local Nusselt
numbersNu,(z2) andNw(2) whenA/4 < z < 3A/4, the local sizes of both the return flady(z)
(Eq. 13) and the recirculation flody,(2) (Eq. 14), the local bulk temperatuiig(z) (Eq. 9), and four
overall values defined by the mean Nusselt numbers on thedpkteNu, andNw, (Eq. 12), and
the flow rate penetrating the channel through the botig(@ = 0) (Eq. 7) and the tog,(z = A)
(Eq. 8) sections, for boundary conditio@8-0, LB-0, GB andLB. The results of each research
team have been collected and graphically represented agtmgrams with the corresponding
numerical values accurate within 4 significant digits, asygped by three statistical quantities, the
average (X)), the standard deviatiorx{) and median valuex(,) defined as follows:

1 n
N g — 2\ _ 2
<x>—n;>q, X = VO@) = (%) (15)
“ - X(n+1)/25 if nis odd, withx; <--- < X, (16)
T (X2 + Xn241)/2, i nis even, withx; < --- < X,

with x any of the recorded variables mentioned here-above. Wiseiitseare in excellent agree-
ment, the mean and median values are very close, and thesdateVviation is small in comparison
with the average value. In that case, the mean or medians/phogide very good approximations
of the reference solution. In contrast, if some results depgnificantly from the other contribu-
tions, the mean value canfliir substantially from the median value. This bias whichiuced
is related to the relative small number of partners involirethe comparison exercice. In that
case, the median value is proved to be better representdtilie results than the average value.
Therefore, the reference results are defined by the meaktive medianx,.

On the whole, the results provided by thdfeient teams are in quite good agreement. A
deeper insight is now proposed for the 4 sets of boundaryitons.

We first consider boundary conditio@-0and the associated results presented in Fig. 3. We
notice that the standard deviations are small/(x) < 0.6%) for the average Nusselt numbers
x = Nu; andNu, (Fig. 3(f)). This good agreement between thetent teams is confirmed when
we look at the local valueBiu,(2) (Fig. 3(a)) andNw(z < 3A/4) (Fig. 3(b)), since the average
discrepancy does not exceed%. Beyondz = 3A/4, the agreement between the participants
becomes all the more worse since one goes closer to the st /(N) ~ 7% forz = A.).

Let us recall thalNw,(2) is inversely proportional t6(0, 2) (Eq. 10), and therefore its dispersion
results necessary from disagreements in the temperatsirgbdtion along the left plate. The
second definitioN,(2) is inversely proportional to the fierence between the wall temperature
and the bulk temperatu&,(z) (Eq. 11). Thus, the more the temperature gap decreases, the
more this value will be sensitive to the computational utaieties. The variations of the bulk
temperatur@,(2) (Fig. 3(e)) are in good accordance, except for two famibieesults that were
provided by teams T1 and T6. This discrepancy shown on thetbuaiperature is found on the
dynamical variables as well. Indeed, their two flow raggéz = 0) andqgin(z = A) (Fig. 3(f)),

their sizes of the recirculation flod, (2) (Fig. 3(d)) and their lengths corresponding to the fluid
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flow penetrating the channel through the top sectig) (Fig. 3(c)) difer slightly from the data
provided by the other participants: whereas both the wifitherecirculatiord, (z) looks smaller
and the return flow seems to penetrate less deeply into tmmehior team T6, the perfect opposite
behavior is observed for results given by T1. Attempts of@xation for these departures are now
given.

The numerical method developed by T6 results from a receadysis of the discrete Stokes
problem based on a staggered grid formulation with a prigeaenethod to uncouple the veloc-
ity and pressure [25, 30, 31]. The usual homogeneous Neulmaunmdary conditions applied to
the pressure increment may lead to an increase of the kemeebkthe Stokes operator making
the solution of the full nonlinear equations indefinite. Fhrises in particular when Neumann
type boundary conditions are imposed on the velocity corapbnormal to the inlet and outlet
boundaries. The natural convection problem under cordiderfalls into this category. An ap-
propriate algorithm has been proposed that is derived flwerptinciple of superposition. The
final numerical solution is a linear combination of a pat@aesolution provided by a conventional
finite volume scheme and of the (velocity, pressure) modiEsgang to the Stokes kernel. These
novel works clearly raise the issue of the choice of the arifboundaries conditions but also of
their numerical implementation. As it has been shown in Bh,31] the numerical method used
by T6 leads to control two parameters in the linear combamatif the Stokes’s kernel modes. To
determine them, two specific constraints of the flow have tgpexified. The choice has been
made to impose the mean pressure in the outlet section egeatd and the mean pressure in the
inlet section equal te-(q(z = 0))?/2. The discrepancies observed®B-0results are then due to
the fact that T6 imposed mean pressures on the inlet and satgons and not uniform pressures
as requested by Eqgs. 5c and 6d. Thus, T6 solved a neighbdrysgcal problem which seems
less restrictive for the flow field tha@B-0does. Consequently, the comparison with the results
by T6 shows the great dependence of the problem on the pedssundary conditions.

The explanations for the departures of T1 results are unddeasome specific points can be
pointed out. First, the FDS software used by T1 rests on a lagHvhumber approximation, suit-
able for low speed thermally-driven flows with large tempera variations. However, this model
should provide results in accordance with those obtaineld Boussinesq approximation since
the maximal relative temperature never exceedg290 = 1.7%. Another remark can be drawn
about the accuracy of computations. Indeed, the mass fl@eashetws a slight increase of about
0.1% from the inlet to the outlet sections. Although this vlaoia may be considered as negligible,
the natural convection flows in open channel are proved toebg sensitive to numerical errors,
and specially to mass conservation. Thus, this lack of nisalesccuracy may explain the small
disagreements noticed on these results.

For boundary conditionsB-0 (Fig. 4), the data given by teams T2, T3 and T8 are overall in
good agreementx,./(X) is less or equal than 1% for= Nuy(2), NUy(z < 5A/8), dw(z > 3A/4),
dy(z > 3A/4), 6,(2) and also for the mean Nusselt numbers and mass flow rates4(@ig(f)).
Lastly, the ratio between the standard deviation and theageevalue is about 2% fat,(5A/8)
andd,(5A/8) and reaches up to 22% fdfu,(A)! This latter very large gap is due to both the
bulk temperature accuracy (1%) and the small temperaturefference between the wall and
bulk. To support this assertion, let us evaluate rougilg(z = A) from the bulk and wall
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temperatures at = A. The wall temperature at the channel exit is derived fromdagni-
tion of Nu, (Eg. 10), the mean valutNw(A)) = 1169 and the relative standard deviation
Nuy, (A)/(NU(A)) = 0.1%: 6(x = 0,z= A) = 1/11.69+ 0.1%. One gets(x = 0,z = A) — 6p(A) =
(0.08554+ 0.1%)— (0.08298+ 0.9%) = 2.56x 1073 + 8.3 x 1074, that is an error of 32%. Finally,
one hasNW(A) ~ 390+ 32%, namely an average value very close to that reportedgin 4b)
for z = A, but with an error about 45% larger than the correspondiagdstrd deviation value

(NUo (A) /(N U(A)) = 22%).

The results provided by teams T2, T3 and T8 @B boundary conditions (Fig. 5) as well as
those given by T2, T3, T7 and T8 faB boundary conditions (Fig. 6) are in excellent agreement,
both for the thermal and the dynamical quantities. The sdigtween the standard deviations and
the mean values are less, or even much less than 1%, exc€pf/4)/(dy(3A/4)) ~ 1.6% and
Oin, (z = A)/{(gin(z = @)) = 1.9% for GB (Fig. 5(c) and (f)) andl,_ (5A/8)/(d,(5A/8)) ~ 1.2% for
LB (Fig. 6(d)).

3.3. Hfect of boundary conditions on heat transfer and fluid flow

Figure 7 displays the vertical component of the velocityiiieslent horizontal sections of the
channel, for the pressure outlet condition Eq. (6¢) and tresgure inlet conditions Eq. (5b) and
Eqg. (5¢).

Major differences are shown in the entrance section. Indeed, whenl¢h@iessure is based
on the local kinetic energy per volume unit (Fig. 7(a)), tledoeity consists essentially of a flat
profile far from the solid walls and it turns out to be of paribshape when the pressure is
uniform in the entrance section (Fig. 7(b)). However, inhosituations, the velocity profiles
become almost parabolic at the entrance of the heated ragjios- A/4 (filled squares). The
occurrence of an already established isothermal flow in pfegtare section of the channel (see
Fig. 7(b)) is counterintuitive and somewhat questionaflthough the issue of choosing boundary
conditions capable to mimic theorrect physical conditions is out of the scope of the present
contribution, we can however notice that preliminary expental measurements [32] performed
on inlet velocity seem rather indicate uniform profiles imesment with Fig. 7(a) obtained with
BC. (5b). Substituting outlet BC. (6¢c) by BC. (6d) does nt¢athe inlet velocity profiles.

The development of the dynamic boundary layer along thenatft as well as the back flow
entering through the top sectionat A are clearly visible in Fig. 7 (open triangles). We can
also notice that the return flow penetrates deeper into thera forLB-boundary conditions: at
z = 3A/4 (filled circles), the magnitude of the downward fluid flow ligstly larger in Fig. 7(a)
than in Fig. 7(b). This qualitative observation is confirntigdthe accurate measurementsipfz)
andd, (2) which are reported in Fig. 9(c) and Fig. 9(d) and commentexhaards.

Figure 8 presents the pressure and vertical velocity psafilehe vertical median section be-
tween the parallel plates versus the vertical coordinatel.B, GB, LB-0 and GB-0 problems.
From Fig. 8(a), we see that the pressure is first decreasthg ilower adiabatic region because of
the head loss occurring in the channel for isothermal flumglorhen, beyond = A/4, the buoy-
ancy force becomes active and the slope of the pressuresgtaydits reversed. Additional features
are deduced from the spatial evolutions of these curves.|&d¥ely see that the pressuré8 and
GB-0are linearly decreasing in the lower adiabatic region wh€n(Bc) is applied in the aperture
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sections, what confirms the flow is dynamically establishgstneam the heated region (see also
Fig. 7(b)). Abovez = 7A/8, the pressure curves show a "S"-shape behavior, all the marked
than the pressures in the intattlet sections depend on the kinetic energy per volume ihié
occurrence of fully developed flows in the lower adiabatgioas forGB andGB-0cases are also
confirmed by the constant vertical velocity profiles (Figb)3( The increases iw(0.5, z), shown

in Fig. 8(b) forLB andLB-0 situations, are related to the dynamic boundary layer dgveénts
which slow down the flows close to the wall and accelerate thid fhotions at the center of the
channels. But once the heated regions are reached, thesoradéry layers along the left surfaces
grow and modify the kinetic boundary layers by increasing fthid velocities due to buoyancy
forces (see also Fig. 7). Since the flow rates must be corgsatuwesults some decreases in the
vertical velocities at the centers of the channel.

Figure 9 gathers the whole statistical results for boundanditionsLB-0, LB, GB-0andGB
together. Histograms and error bars stand for average andastd deviation values. Graphics are
then topped by the mean valués, plus the relative standard deviation ersax, /(X) reported
in parentheses and expressed in permill&yg)( To emphasize the agreement or disagreement
between participants, these values are colored in blxg/ifix) < 1% and in red otherwise. As
announced in the first paragraph of Sec. 3.2, the refereruéwsois set to the mediar,, and
its value, accurate within four significant digits, is refear below the corresponding histogram.
Before considering the results in details, we can noticexhg x) are rather small, what indicates
a good agreement between the results provided by tfereint partners.

Let us first analyze the thermal results. The comparisondmtwthe four studied cases-

0, LB, GB-0 and GB, for the average Nusselt numbliu, (Fig. 9(f)) andNw(2) (Fig. 9(a))
shows a maximal relative gap of286. However, when one considers the local Nusselt number
along the heated surface using the bulk temperature agneferthe relative fierence increases
significantly withz (Fig. 9(b)): Nw(2)[LB-0] /NWw(2)[GB] — 1 is approximatively equal to 8% at
z=A/2, 14% atz = 5A/8, 23% atz = 3A/4. In the adiabatic region, this relativefidirence
N (2)[LB-0/Nw,(2)[GB] - 1 grows dramatically from 114% at= 7A/8 to more than 1000%
atz = A. Nonetheless, the average Nusselt value on the heatedrsés remains weakly
affected by the boundary condition changes since the relatiVerehce does not exceed 8%.
The local bulk temperature is also very sensitive to the sstbpodel (Fig. 9(e)), but, contrary
to Nw(2), the relative diference is almost constant with 6,(2)[LB-0]/6,(2)[GB] — 1 ~ 43%.
This relative gap is easily explained by the following fastoSince the axial thermal félision

is essentially negligible with respect to the transversiusiion, it is easy to prove that the bulk
temperature increases linearly in the heated section wstbgee close to Agi,(z = 0) and then it
keeps constant in the adiabatic region. Therefore, thertlgpan the local bulk temperature is
given by the relative dierence obtained in the flow rate entering the channel-at0, namely
Oin(z = 0)[GB]/din(z = O)[LB-0] — 1 ~ 43% (Fig. 9(f)).

In the second step, let us focus on the dynamical aspectsstAnfsight shows that the flow pat-
terns generated by the natural convection as well as the #teg are very sensitive to conditions
imposed at the inlgbutlet of the channel sections (Figs. 9(c),(d) and (f)). hreximal relative
gaps recorded at= A lie from about 18% fod,(z = A) andd,(z = A) up to 140% forg,(z = A).

A thoroughly study shows that applying uniform boundaryditions in the inlet section, namely
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BC. (5¢), creates larger flow rateg(z = 0) than configurations where boundary conditions are
based on the local kinetic energy per volume unit (BC. 5B),qin(z = 0)[GB] > qin(z = 0)[LB]
andqgi,(z = 0)[GB-Q > qin(z = 0)[LB-0]. Furthermore, if we compare in Fig. 8(a) the mean pres-
sure drop in the entrance adiabatic region betw@BrandLB, and betweeiB-0andLB-0, we
note that its value is larger if the inlet pressure is defimedlly, what corresponds to the existence
of a dynamic entry zone where the fluid flow evolves from a flafife to a Poiseuille-like profile
(Fig. 7(a)). We then deduce that the reduction in flow Gi&z = 0) obtained with BC. (5b)
versus BC. (5c) is due to head losses induced by the fluid fleldement in the lower adiabatic
region. Let us now consider the flow rates induced by the mefiow for fixed inlet boundary
conditions. Fig. 9(f) indicates thaf,(z = A) is reduced when the outlet pressure boundary con-
ditions depend on the fluid flow direction (BC. 6c¢), ig.(z = A)[GB] < qin(z = A)[GB-( and
gn(z = A)[LB] < gin(z = A)[LB-0]. The decrease in this flow rate is also correlated with tlogtsh
ening of the return flovd,, (Fig. 9(c)) and of the recirculation ced), (Fig. 9(d)). These behaviors
are directly explained by the intensity of the pressure isggito the return flow, since it is smaller
with BC. (6¢) than BC. (6d) and consequently leS&ceent to create an inflow circulation through
the upper aperture. If we now compare the total flow rate tepthe channel, namely

Qout = Qin(z = O) + qm(Z = A) (17)

we notice thatgo[LB-0] < Qou[LB] < qoul GB-0 < ol GB], what is in accordance with the
behavior ofgi,(z = 0) (Fig. 9(f)). While the maximal relative fierence of the flow rate entering
into the channel a = 0 and defined by

Gn(z=0)[GB] _
Gn(z = O)[LB-0]

is about 43%, the value of expression (18) falls down to 10%,({z = 0) is substituted byjou
(Eqg. 17) instead. Therefore, the flow rate leaving the chiathneugh the top section is almost the
same whatever the boundary conditions are. This resulfpgkiged by the kind of flow crossing
the channel apertures. Indeed, this flow rate aims to feedythamic boundary layer created by
the wall heating and driven by the buoyancy foréed to do this, the fluid path fits to minimize
the total head loss as follows:

(18)

e the inflow rateqi,(z = 0) (resp.qin(z = A)) is maximal (resp. minimal) through the lower
(resp. upper) aperture when both

— the velocity is fully developed all along the upstream adtatregion (Eq. 5c¢), i.e. the
upstream head loss is minimal,

— the pressure at the outlet acts against the appearance aira fiew (Egq. 6c) by
producing a suction (negative pressure).

e the inflow rateqi,(z = 0) (resp.qin(z = A)) is minimal (resp. maximal) through the lower
(resp. upper) aperture when both

— an entry length exists in the upstream adiabatic region $Byj.i.e. the upstream head
loss is maximal,
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— the pressure at the outlet promotes the growth of a return(fimv 6d) by pushing the
fluid into the channel (positive pressure).

This flow rate analysis confirms that the modification in therpoundary conditions acts
significantly on the dynamic variables and less on the haatter on the heated section of the
left plate. On the other hand, the Nusselt numiies(z) clearly depends on the boundary condi-
tions in the downstream adiabatic region. This sensitiigtgiue to its dependency into the bulk
temperatur@,(2) (or gin(z = 0)), which, in turn, is highly linked both to the flow strucéuand its
intensity.

4. Conclusion

A comparison exercise concerning the fluid flow and heat feaus a vertical channel asym-
metrically heated at a constant heat flux has been initiaiddthe participation of eight teams
coming from dfferent laboratories. The dimensionless parameters werenhsp that a return
flow occurs through the top section of the channel and fows getonditions were proposed to
model the open boundaries.

Both local and overall quantities were extracted from thmerical results: two expressions of
the local Nusselt number along the heated plate, the longths of both the return flow and the
associated recirculation, the local bulk temperature anddverall values defined by the average
Nusselt numbers on the heated plate, the flow rate enterenghginnel through the bottom section
and through the top section of the channel. All data provigethe participants were illustrated
by histograms. The average, standard deviation and metditistisal quantities were computed
and reported on the figures. Comparisons show a relative ggaement between thefldirent
contributions.

For each of the four boundary conditions and the whole reamby@riables, reference solutions
have been defined. These numerical values have been gatdretexpied out on Fig. 9(a)-(f),
below their corresponding histograms. For benchmarkirrpgse, we recommend to compare at
least the flow ratesi,(z = 0) andgin(z = A), and the diferent lengths of the recirculatial),(z)
andd, (2) because these quantities are much sensitive to the boucaiaditions than the thermal
variables.

The dfects of boundary conditions on fluid flow and heat transfeeligen discussed. Whereas
the local and mean Nusselt numbers based on the inlet tetopedo not depend on the boundary
conditions, the Nusselt number constructed on the bulk ésatpre reveals to be much sensitive
to the conditions applied at the apertures. This large Beitygis related to changes in flow pat-
terns and flow rates. Just as a uniform zero pressure at tleg gpgtion of the channel promotes
the return flow and its intensity, a constant pressure bayrmtandition to the lower aperture im-
prove the inward flow rate. But whatever the air supply thiotlge open sections, the fluid flow
rates produced by the boundary layers along the heatedceusfe almost constant, what is in
good agreement with the weak influence of the boundary dongibn heat transfer. Finally, we
showed that the fluid flow is organized to minimize the totaldhoss.
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Even if the issue of finding theorrectboundaries is out of the scope of this paper, the fully
developed flow which appears in the lower adiabatic regioamdm uniform pressure is imposed
in the lower open section is somewhat questionable. Thexefocal pressure (BC. 5b) at the
lower aperture will be preferred to (BC. 5c) since it creaemn zero dynamic entry length.

Appendix

This exercise was originally organized in a french worksfmphe Thermal French Society
(SFT) in May 2004 by G. Desrayaud [24] and recently readeekby the French Research Group
AmeTH [33].

The main characteristics of the numerical schemes dewelapdor used by the dierent
teams are detailed below.

T1 The CFD code used by PPRIME is FDS [34]. The model solves nigallgr a form of
the Navier-Stokes equations appropriate for low-speestnthlly-driven flow. The patrtial
derivatives of the conservation equations of mass, momeatd energy are approximated
as finite diferences, and the solution is updated in time on a three-diimeal, rectilinear
grid. The core algorithm is an explicit predictor-correcdoheme that is second order accu-
rate in space and time. It approximates the governing egugbn one or more rectilinear
grids. The mesh used in this laminar 2D case is A&560 and the boundary conditions
are exactly those describes in the bench excepted at th¢pirtlet where FDS used the
"OPEN" boundary condition [34]. This condition assumeg tha pressure perturbatign
is zero at an outgoing boundary apd= —p..|ul?/2 at an incoming boundary. Notice that
these boundary conditions are closeGB-0 boundary conditions described in this paper.
The second dierence withGB-0is, as mentioned above, that the low Mach approximation
Is used instead of the Boussinesq approximation to solvgdiierning equations.

T2 Equations (1), (2) and (3) were solved either in their stdady for LB andLB-0 problems,
or in their transient form with a Crank-Nicolson scheme fasesGB and GB-0. Spatial
derivatives are expressed with a finite volume scheme witlabigs located at the center of
the control volumes. Centered approximations are usediforactive, advective and ftli-
sive fluxes. A coupling between the mass equation (Eq. 1) leegressure is enforced by
applying a penalization technique on a coarser grid. The embam nonlinear contribution
and the pressure gradient are discretized so that the giddrestic energy balance mim-
ics the behavior of its continuous counterpart; a similarditbon is required for thermal
equation. The discrete Navier-Stokes and energy equagopsessed in their stationnary
form or at the new time step, are solved simultaneously ingelaonlinear system by the
Newton-Raphson method. An under-relaxed procedure is wbet time derivatives are
dropped. Several meshes have been considered and the §xd 380 was finally retained.
Additional details upon the numerical scheme and valigdagipocedures can be found in
[35-37].

T3 The Navier-Stokes equations under the Boussinesq assumaie discretized by finite dif-
ference schemes. After time discretization, we obtain tegy®f Helmholtz equations. The
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velocity-pressure coupling is solved using a projectiorthod which leads to a Poisson
equation for the pressure correction. The variablesi(p, T) are located on a staggered
mesh and a spatial discretization scheme of second ordseds The Helmholtz and Pois-
son equations are solved respectively using TDMA and paliggonalization. Moreover,
the Poiseuille mode corresponding to the kernel of the Stalgerator is used to correct
velocity and pressure to satisfy the boundary conditgB+0 at the inlet of the channel
[25, 38]. To implementGB, LB, LB-0), at the projection step, we impose Dirichlet bound-
ary conditions on pressure at the inlet and outlet of the whlarNote thatGB-0is verified

at each time step ar@B, LB, LB-0 are verified only when the flow reaches the steady state
[38].

T4 The usual dimensionless Boussinesq 2D Navier-Stokesieqaatere used. The time deriva-
tives in the momentum and in the energy equations are peefibing a second-order back-
ward diferentiation. The convection terms are approximate usingcarsl-order Adams-
Bashford extrapolation method. Theffdision terms are implicitly treated. The resulting
Helmholtz systems are solved by a direct solver. Presseiaeity coupling is obtained by
an incremental rotational projection method. A collocdiade volume method has been
used. Details on numerical method can be found in [39]. GBeOcase has been computed
with a 48x 600 grid size. The numerical code has been developed thatiks environment
OpenFOAM [40].

T5 The structure and solver of the computational code Aqa@lare issued from previous works
[41], originally implemented with a Navier-Stokes finitelumes solver on the staggered
MAC mesh and using the Uzawa augmented Lagrangian [42] rdetihaleal with the
divergence-free constraint. The discretization methaith Wiscrete Operator Calculus is
an extension of the MAC (Marker And Cell) method with staggkgrids to unstructured
meshes. The method is similar to Discrete Exterior Calcbésed on dierential geometry.
The primal and dual meshes enable to express gradientgdiveg, curl operators as well
as Green, Gauss and Stokes theorems to obtain the contimayriiesV - (VA V) = 0
andV A (Vf) = 0 up to machine precision. The scheme is based on a node-eept@ach
avoiding interpolations, where the scalar or vector congpts unknowns are distributed
on nodes, faces and edges of the mesh stencils. The diati@tizs shown to locally and
globally conserve up to machine precision, mass, kinegeggnand vorticity in the absence
of viscosity. The spatial accuracy is found to be seconeiooth a structured or unstruc-
tured mesh including highly irregular meshes [43]. All tireelr algebraic systems for the
three methods, e.g. the prediction steps, are solved watitilov BICGS tab2 algorithm
preconditionned by the incomplete LU factorization of ardero ILU(0) [41-43]

T6 The code solves the unsteady two-dimensional Boussinasafiegs in their elliptic form
and has been developing at LIMSI. The temporal scheme adlaptader to discretize the
Boussinesq equations is based on the second-order backwubedscheme for time ad-
vance and on the Adams-Bashforth extrapolation for conxeterms. Thus, the fiusion
terms are treated implicitly and the convective ones eiylicThe continuous problem is
reduced to a discrete problem thanks to a finite volume methioel marker-and-cell (MAC)
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type staggered grid arrangement is used. All variableszagadly discretized with a sec-
ond order centered scheme. The pressure-velocity couptddemn is solved by using a
prediction-projection algorithm. The Poisson equatiogrivieed from the continuity equa-
tion, is associated to homogeneous Neumann boundary @mditthe whole boundaries
(walls and artificial boundaries) [44]. Helmholtz systems solved for the velocity fields
using a GMRES algorithm and the Poisson equation is solvédavwmulti-grid algorithm.
The governing equations have been integrated in time frachdlrest up to reach the steady
state. The size of the kernel for the unsteady Stokes opeddttained by a singular value
decomposition using the Lapack library, is equal to two. e modes associated are the
trivial (zero velocity, constant pressure) mode and a Rdisemode. The superposition
principle [25, 30, 31] has been used to obtain the numeratatisn as a linear combination
of a particular solution find with the finite volume scheme &uath modes of the Stokes
operator kernel. The result is obtained for a 258048 grid.

T7 The spatial discretization of the channel is achieved witniFinite Volume Method. The
numerical code used is the commercial FLUENT code 12. Gndiseity has been studied
an a non-uniform grid (5& 300) was retained, with a refinement near the vertical walls a
well as at the inlet and outlet boundaries. Numerical resuéire obtained from a pressure-
based segregated solver, under Boussinesq approxim&uessure-velocity coupling was
solved using the SIMPLE algorithm. The Navier-Stokes eignatwere solved using, for
the pressure discretization, the PRESTO (PRESsure STagdeption) scheme, and for
the momentum and energy equations, the QUICK scheme. Tusidn terms are central-
differenced and are second order accurate.

Note that the dynamic boundary conditions are slightfjedent fromLB boundary condi-
tions. Let us not&i the unit normal vector pointing outward. Then, for fluid flows

e entering the channel,- i < 0,u = 0 and pw)/(92) = —(du)/(0X);
e leaving the channel}- i > 0, (Ou)/(02) = 0 and pw)/(92) = —(du)/(9X).

The other boundary conditions are the sameRdt is worth to point out thatdqu)/(0x) is
relatively small in the inlgbutlet sections, and theaw)/(dz) ~ 0. Considering the no slip
boundary conditions at walls andu)/(0x) ~ 0, we recoveu ~ 0, namely the boundary
conditions forLB.

T8 Both spatial and temporal discretization and the resatytimcedure of discretized equations
are identical to T6. The marker-and-cell (MAC) type staggegrid arrangement is used.
The artificial boundaries of the computational domain wiagohrespond to the inlet and the
outlet of the channel are considered to be on the scalanpeesedes. The pressure equation
is associated to homogeneous Neumann boundary conditiloa aall and Dirichlet bound-
aries conditions at the inlet and at the outlet so as to gatsflocal or the global Bernoulli
condition for pressure. The four set of boundaries condipooposed in the benchmark
have been treated. The whole results are obtained for & 1380 grid.
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Channel Inlet
Relation 5b| Relation 5¢
Channel| Relation 6¢ LB GB
Outlet | Relation 6d LB-0 GB-0

Table 1: Notations for constructing the boundary condgion

Team Laboratory Code Grid Stationary scheme  Boundary conditions
T1 PPRIME FDS [34] 40 2560 no GB-0
T2 MSME, LAMA Laboratory code [35-37] 258 1520 yemo GB, GB-0 LB, LB-0
T3 CETHIL Laboratory code [25, 38] 2001200 no GB, GB-Q, LB, LB-0
T4 PIMENT, LaSIE  Laboratory code [39] (with OpenFoam [40]) 8600 no GB-0
T5 I2M-TREFLE Aquilor®[41-43] 100x 1000 no GB-0
T6 LIMSI Laboratory code [25, 30, 31] 2562048 no GB-0
T7 LGCgE, LEME Fluen® 50x% 300 yes LB
T8 LIMSI Laboratory code 12& 1300 no GB, GB-Q, LB, LB-0

Table 2: Some characteristics of the numerical codes amdislalh teams.
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Figure 1. Geometry and boundary conditions
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dw (z=A)
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Figure 2: Fluid flow and temperature field foB boundary conditions (see Tab. 1). The vertical
thick line located on the left wall emphasizes the heateti@ec(a) Streamlines and size of the
recirculation at the top sectiod,(z = A) (Eq. 14); (b) Horizontal component of the velocity,
u(x, 2); (c) Vertical component of the velocity(x, z), and size of the downward flow at the top
sectiond,(z = A) (Eq. 13); (d) Temperature field. Data provided by team T2.
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Figure 7: Vertical component of the velocity atffédrent horizontal sections of the channel for
(a) LB and (b)GB boundary conditions (Tab. 1). The vertical thick line lezhbn the left wall
emphasizes the heated section. Data provided by team T2.

A A
78 | ] s |
3A/4 q 3A/4 ¢
5A/8 | B 5A/8 |
. A2 |
3a8 | g 3a8 |
sl 1 as N
G o0 40w o0 2000 1000 0 %0 20 0 2 4 e s 100 1‘20‘ 140
(@) Prpgggure (b) Vertical compg&rsignt of the velocity

Figure 8: (a) Pressure and (b) vertical velocity profiles daretion of z at mid-width of the
channel for boundary conditiohd3, GB, LB-0andGB-0(Tab. 1). Data provided by team T8.

33



z

6 2inbi4

z

z

@)% (o)

z

VIVE:

z

8IVL:

z

V:

ve

"San[paWmdY) 0] 18S aJe YdIYM SUOIIN|OS 32uaiajal ay) ale saiydeld

ay1 mopg/saabe|iwiad ul passaldxa pue sasayjuated ul pauodal ((X)/Juoneinap prepuels
1e|33/8) pue sanjeA abelane ayl Aq paddo) ale saxog (T ‘qel) g9 pueo-go ‘g1 ‘0-g1 40}

z)"ppue (0 =z)"b ‘©N ‘NN ()

‘(’guoneinap prepuels puesgrpA abeiane 1o) puels sieq 1o1id pue swelbolsiH
(v

0C

8/VE

2V

8IVS:

N

ZQN

7)o

(0

Benchmark
Benchmark o 1<) o 1<) Benchmark o o v?lue)s . 5 5
values 3 Q ] 5] S values ] 5 3 - Xm. ' ; '
o ! j J i i i T T T 7.198 * 7.196 (+ 0.45%,)
0.02094 0.02083 (+ 9.1%,) . % | 7267 7.268 (£ 0.36%,)
| 0.01706 0.01707 (+ 1.8%,) c')é | El726| 7291337
9
0.01614 0.01602 (+ 17.4%,) P S 7327 (2046 %)
0.01463 0.01464 (+ 2.8 %,) o 7 &
. 5 5 @ 6.170 } 6.169 ( 0.38%,) ®
0.04182 ¥ 0.04157 (+ 9.1%,) g Pl w610 6219 (£ 0.28%) IS
+0.48%,) © N S L1 219 (& 0.28%,
| 0.03404 0.03404 (717-/ oo il =z I Z( 62 ) 62a230%) H
;/ 7/ 2 2 2 } + 179 <
0.03226 0.03205 (¢ ;"’) N [ 6.265 6.266 (+ 0.39 %,)
0.02919 0.02922 (2.8 %,) =
~—~ 0
5.627 } 5.627 (+ 0.427
0.06270 0.06232 (+ 9.1%,) | o~ 04141 0.4088 (+ 19%,) N ( am) 5
X RRRIXT [ N w| S | 5674 5.675 (+ 0.25%,)
| 0.05104 0.05100 (+ 1.8%,) O 101534 0.1532 (+ 5.3%,) - 2 5603 V7777 5,698 (+ 3.3%)
0.04831 0.04784 (+ 19%,) — 2 [0.0902| ¥4— 0.0989 (+ 529%,) Z &7 . 1698 (+ 3.3%,)
g P o < 5.716 5.717 (x 0.30 %,)
0.04375 0.04381 (£ 2.8%,) S c o
2 A~ o = 5.602 5.616 (+ 3.9%,) @
0B 3 QOB EO1L) B N OSISTL o 3OSIRETZ) B A | hoooonoool - ese 3070 S
0.06788 0.06788 (+ 0.31%,) ~ I |0.4139 0.4139 (+ 0.16%,) gL SIEEEE005 5,659 (x 3.8%)
[ [ +
0.06431( /"7 4 0.06395 (+ 18%,) E 2 [0.37138) 774 03683 (+ 58%) E IA = 5665 5.638 (+ 14/0;,) E
0.05820 0.05828 (+ 2.8 %,) 0.2591 0.2620 (+ 16 %,) w 5.694 5.708 (£ 4.2 %)
0.08356 008303 (£9.0%) g 0.5424 05409 (+38%) | > | 9692 } 9.697 (+0.76%,) 2
N TSI TS a
| 0.06801 0.06801 (+ 0.13%,) © 11 0.4862 [$ZXEIIEEIRLIZRLZA 0.4862 (+ 0.37%, ®| =~ 1| 983 9.835 (+ 0.088%,)
0.06439 (/77 4 0.06390 (+ 17%,) 2 [0.4640 #e 0.4618 (+ 20%,) D Tl 988\ k9912 (£54%)
0.05828 0.05838 (£ 2.9 %,) 0.4106 0.4117 (+ 4.0 %) 9.965 9.965 (+0.22 %)
0.08348 $ 0.08208 (+ 9.0%) 0.5530 0.5532 (* 2.7%,) 1168 } 11.69 ( 0.97%,)
| 0.06794 0.06795 (+ 0.45%,) n 05230 SEEE 0.5244 (+5.6%,) | 1187 11.87 (+ 0.31%,)
0.06437( /4 0.06382 (+ 17%,) > [0.5018 0.5007 (+ 22%,) > 119s) 0 00 12.04 (+11%,)
0.05823 0.05835 (2.9 %,) 0.4758 0.4765 (+ 2.3 %,) 12.05 12.05 ( 0.35 %,)
. \ . . . X
Benchmark Benchmark
values N I @ ® S Benchmark o o ° values 5 S 8 8 3
) o o o (=} =] =] values o g b a - (xm) S o o =] (s}
. T T T T T (Xm) T T T T T
. : : . [
6.840| { 6.838 (+ 1.0%,) 8.469} 8.464 (+ 1.3%,)
0,947 N i | 82961 8.297 (+ 0.56%,)
" L H
g G132 6.915 (+0.84%) 2T & [8.255]] 8.257 (+3.1%)
6.947|4 6.955 (+ 3.6%,) < 8.207| 8.207 (+ 0.32%,)
= hH ~
6.969| | 6.974 (+1.1%) ® & & |ssuljsassE2ey) ®
bt N S N | 7.889[} 7.891 (+ 0.67%,) S
309 H Er ZI & [7.807]) 7.805 (£5.1%) H
9.005) | 8.998 (+3.2%,) RS 7.671| 7.671 (£ 0.36%,)
X 583 (+ 1.0% >
o 580 8.563 (x 1.0% = - 05012 0.5835 (+ 207, N 8.690] 8.666 (+ 4.4%,) -
8.484[ 4 8.498 (+5.1%) @ N 5835 (£ 20%) & >~ 1 +2.49 )
4847/ 8.498 (£ 5.17%, Q. 1 02260 0.2261 (= 12%,) = [ 7991} 8001 (£2.4%)
8.362 8.363 (+ 1.1%,) @ — § 0.1334 0.1432 (+ 482%,) =z GEQ 7.853(}) 7.849 (+ 7.7%,) @
*:\Q' = 7.626| 7.628 (+ 0.66%,)
[0 o) [0}
+8.6%, i N 0.7257 0.7211 (£ 9.0%) ® 10.52(¢ 10.51 (+ 13%,) w
59.82 60.17 (+ 8.6%,) IS O i M —— il B Y 6.1 IS
RIS IS ~ Il | 05953 0.5941 (* 4.1%,) N {9160} 9.189 (+6.1%,)
, | 0.5953 [ RKNANAKS
| 73.47 [(SSRISIRELIIE T13.47 (2 0.32%) E 2 05392 1 05369 (+ 58%,) E IN & |[8o17]} 8877 (+17%) E
0
L | 77.63 78.17 (£ 17%,) 0.3826 0.3839 (+ 7.7 %) w 8.528| 8.556 (+ 5.4%,)
85.77 85.58 (+3.1%) © L|oTe4al 07607 (£ 71%) o| T> . | 5095 49.82 (+ 33%,) 2
1, [ 0.6921 06913 (£3.8%) ®| S~ 1 |29.71p%f 29.71 (+ 0.43%)
Z [0.6652 4 0.6618 (+ 18%,) ) g [27.22(7} 27.06 ( 27%,)
28.87 28.65 (+ 117%,) 0.5950 0.5952 (+ 0.44 %,) 23.78| | 23.83 (£3.5%,)
2 | 1859 18.60 (+ 0.567%,) 0.7775 0.7746 (£ 6.1%) 471.0 4095 (+ 219%,) st
< F e
2| 82| 0w 171 (£ 52%) n |[0.7204 BEREEEEIIREEIETLEE 07195 (+2.9%) n [ 6134 61.31 (= 1.2%,)
9 213(£197 > 10.7049 4 0.7022 (+11%,) > | 5176 52.14 (+ 70%,)
11.97 1213 (£19%) 0.6595 0.6584 (+ 3.8 %,) 40.50| | 40.62 (+ 6.5%,)
. . X , \ .




