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Abstract

The dynamics of a system and its safety can be considerably affected by the presence of cracks.
Health monitoring strategies attract so a great deal of interest from industry. Cracks detection
methods based on modal parameters variation are particularly efficient in the case of large cracks
but are difficult to implement in the case of small cracks due to measurement difficulties in the
case of small parameters variation. Therefore the present study proposes a new method to detect
small cracks based on active modal damping and piezoelectric components. This method uses
the active damping variation identificated with the Rational Fraction Polynomial algorithm as
an indicator of cracks detection. The efficiency of the proposed method is demonstrated through
numerical simulations corresponding to different crack depth and locations in the case of a finite

element model of a clamped-clamped beam including four piezoelectric transducers.



1 Introduction

Cracks can considerably modify the dynamics of a system and affect system safety in several indus-
trial applications. Crack modeling can be the first step of a health monitoring strategy. Cracks can
be modelled using several approaches [14], for example reduction in element stiffness or pinned joint
at crack location [19, 26]. Rigid finite element method can be used to model cracks with a set of
spring-damping elements of variable stiffness as shown by Kulesza and Sawicki [20]. The approach
can be first linear if the crack is supposed to be opened [12] and second non linear if the crack breath-
ing is taken into account [2, 9, 24]. Christides and Barr [10] shown that cracks can be modelled using
exponential stiffness reduction in the case of Euler Bernoulli beams. This model takes into account
the second moment of area reduction induced by the crack. Sinha et al [31] proposed a simplified
model for the location of cracks based on a triangular variation of the stiffness in beam structures
using measured vibration data. This approach based on a local formulation of the flexibility permits
particularly to include the crack model in a finite element model assuming that the stiffness reduction

all fall within a single element.

One way to detect cracks on structures is to employ modal testing in which changes in modal param-
eters such as variations in frequencies and mode shapes are used to detect damage. A review based
on the detection of structural damage through changes in frequencies was discussed by Salawu [28].
Moreover, Dilena and Morassi [11] proposed damage identification based on changes in the nodes
of mode shapes. They demonstrated that appropriate use of resonances and antiresonances can be
used to avoid the non-uniqueness of damage location for symmetrical beams. Faverjon and Sinou [12]
demonstrated that it is possible to detect the number of cracks in a beam and estimate both crack
positions and sizes despite the presence of noise levels. Cracks can also be detected using observer
[30] or using non linear phenomena in the case of cracked beams submitted to forced vibrations [1]

or in the case of cracked rotors [29].

Piezoelectric components are usually used in health monitoring systems coupling to active control
strategies such as active collocated control [23], active modal control [7, 15] or passive strategies
[4, 17]. These strategies can be used in complex applications such as curved panels in a car body
as shown by Hurlebaus [18], using evaluated modal parameters [32]| or in the case of 3D mechanical
structures [16]. There are more various finite element approaches to model piezoelectric compo-

nents, using 3D-solid elements, plate or beam elements. Benjeddou [5] proposed a review of the



different piezoelectric finite elements, solid, shell, plate and beam. Sadilek and Zemcik [27] proposed
a one-dimensional beam element based on Euler-Bernoulli theory using a bilinear distribution of the
electric field potential [13]. This model permits particularly to link one dimensional piezoelectric

and cracks theory in order to develop health monitoring strategies.

In the case of controlled structures or smart-structures including actuators, sensors and control loop,
cracks can considerably modify the dynamics of the controlled system. Chomette et al. [6] shown
that active modal control based on Linear Quadratic Algorithm is highly sensitive to the variation
of boundary conditions and thus to structure modification. They demonstrated that differences be-
tween the cracked structure and the modal model used in the controller based on the uncracked
structure lead to control performance decrease. Chomette and Sinou [8] investigated the possibility
of detecting transversal cracks in controlled truss structures using variation in the amplitude of the
controlled system frequency response function and shown that the control performance variation can

be an indicator of transversal crack detection.

Therefore the present study proposes a new method to detect small cracks based on piezoelectric com-
ponents and active modal damping. Firstly the model of a cracked Euler-Bernoulli beam including
piezoelectric elements is proposed. The main purpose of the control system is here to detect cracks.
Consequently, the control algorithm is secondly designed in order to see small cracks. The novelty
of the proposed strategy is to applied active control to monitor the structure behavior. Finally the
efficiency of the proposed method is demonstrated through numerical simulations corresponding to
different crack depths and locations in the case of the finite element model of a clamped-clamped

beam including four piezoelectric transducers.

2 Finite element modeling

In this section the finite element modeling of a multi-cracked Euler Bernoulli beam including piezo-
electric components is proposed. Firstly the crack modeling extended on several elements and the
piezoelectric modeling are detailed. Secondly the finite element modeling of the complete structure

including cracks and piezoelectric elements is proposed.



2.1 Crack modeling

Christides and Barr [10] shown that the effect of a crack in a continuous rectangular beam can be
considered using an exponential variation of the flexural stiffness £ 1 where FE is the Young modulus
and I the second moment of area. This stiffness reduction can be approximated by a triangular
reduction for the cracked element as explained by Sinha et al. [31] in order to include the reduction
in a finite element model. If the stiffness reduction extends over more than one element the proposed
approach have to be extended on several elements as shown in Fig. 1. Thus the stiffness reduction

can be written in local coordinates for the p* element of length £,

E (I —Ic)(

EI* (z.,p) = Ely + 7
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where F, b, e, and I are the Young modulus, the weigth, the depth and the second moment of area
of the uncracked beam respectively. e. and I. are the crack depth and the second moment of area
of the cracked beam respectively. T and ~ define the left and right part of the crack as shown in
Fig. 1. z., z7 and x_ are the crack location and the affected stiffness location in global coordinates

respectively. The affected stiffness zone is defined so that

xj —x, =24, (2)

where ¢, = 1.5¢, is the length of the affected stiffness based on experimental data [14]. The stiffness
matrices are obtained using the standard integration based on the variation in flexural rigidity

EI* (z¢,p)

Le
Kiorae = | BT (@ p) N7 (@) N () do (3)

where the shape functions N, are those for a standard Euler-Bernoulli element beam. Finally, the

element stiffness matrix including a crack can be written using the p parameter

K+ K, - K& (p), (4)

e,crack e
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where X, = 27 — p/l, and —KcF (p) is the stiffness reduction induced by the crack on the p* element

and K. the element stiffness matrix of an uncracked element.

Using this modeling, crack location is independant of the mesh and the mesh size can be modified to
take into account other physical coupling like electromechanical coupling using piezoelectric elements.
Due to the detection method based on linear control, the crack is supposed to be open and the

breathing crack is not taken into account.

[Fig. 1 about here.|

2.2 Piezoelectric finite element modeling

The finite element modeling of a structure including piezoelectric elements [5, 22, 27| can be written

My, i+ K u+ K,;¢=F ©)
, 6
quu + K¢¢¢ = Q

where M, K7, Ky = Kgu and K4 are the mass, the short-circuit stiffness, the electromechanical

coupling and the dielectric matrix respectively. u, ¢, F and Q are the mechanical displacement vector

and electrical potential, the force and the electrical charge vector respectively. The generalized

electromechanical coupling coefficient ky is defined [17] for the £ mode as
2 2
g Wo,, —W
coyp

where we,, and w, are the ¢t pulsations with open and short circuited electrodes respectively. The
generalized electromechanical coupling coefficient is used to characterize piezoelectric actuators and

sensors efficiency in the control algorithm.



2.3 Model of the complete beam

The finite element model of the complete beam including multi-cracks and piezoelectric elements
permits to take into account cracks in the generalized electromechanical coupling coefficient. It can

be written using equations (4) and (6)

M, i + (KQCLZ - Kcrack) u+ Ku¢¢ =F (8)
K¢uu + K¢¢¢ = Q

where K .41 is the crack stiffness matrix after assembling the different beam elements of stiffness

+

e,crack”

3 Modal Control

Modal control is usually applied to reduce structural vibration in targeting the control energy only
on the modes of interest and permits to reduce the actuators and sensors number [15]. The control
algorithm is designed here in order to detect small cracks. The Linear Quadratic Gaussian (LQG)
algorithm is chosen in this application to target the control only on the mode of interest with the
weighting matrix in order to see the modal influence of the cracks. The LQG algorithm is based on

a linear model of the structure.

3.1 Linear system

The linear control [23] is based on a linear model which can be described in the state form by

x = Ax + Bu* + Wuw
) ut = -Gx, (9)

y=0Cx

where A is the dynamical system matrix, B and C are the actuator and sensor matrices respectively
and W is the excitation matrix. x is the state vector in modal coordinates. y = *(y; o) is the
output vector detailed here in the case of two sensors. u* = ‘(u} wu}) is the optimal control solution
of the Linear Quadratic Regulator problem, detailed here in the case of two actuators and calculated
using the estimated state x and the gain matrix G. w is the excitation applied on the beam and

choosen to be unitary in this study. In practical applications, a white noise excitation can be applied

using the piezoelectric actuators. The state matrices can be written for n modes, 2 actuators and 2



Sensors
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with ¢ = {1,n}, where q is the modal displacement vector, wy and &, are the natural frequencies and

th gensor and disturbance vectors in

damping respectively. TI%, II% and II¥ are the i*" actuator, i
the modal basis respectively (i = {1,2}). In the case of piezoelectric actuators and sensors, the ¢

electromechanical coupling vector composants corresponding to the i** actuator can be written 6]

2 _ () Op (wee,)’
1= (k)
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where ¢ indicates actuator. k is the electromechanical coupling coefficient and C), the piezoelectric
component capacity. The piezoelectric component whose electromechanical coupling coefficient k& is
calculated using the equation (7), is modelled with open electrodes and all the other components are
modelled with short circuited electrodes so that the only piezoelectric effect is due to the considered

component.

3.2 Transfer functions in open and closed loop

The transfer function of the uncontrolled (open-loop) system H,; can be written using equation (9)

fOI‘ one sensor Of response yl as
H, (jw) = % = C, (jwld — A,) ' Wy, (12)

where (Ag, Bg, Cs, W) is the state model that represents the structure in the numerical simulations.
Frequencies and damping variation induced by the cracks are taken into account in the matrix Aj.
Mode shapes and electromechanical coupling coefficient variation induced by the cracks are taken into
account in the By, C; and W matrices. The transfer function of the system controlled (closed-loop)

H,; can be written for one sensor as

1
H, (jw) = % - C, (jw Id — <A8 - BSG<jw 1d - (A,, - B,G — LCm)>_1LCS>> W, (13)



where (A, B, C,,) is the state model used by the Luenberger observer [21] to evaluate the state
vector. G and L are the Linear Quadratic gain (LQ) and the observer gain of the Linear Quadratic

Gaussian algorithm (LQG) [3] respectively.

3.3 Gain calculation to detect cracks

In the case of small cracks the frequency shift induced by the stiffness reduction cannot be easily
measured. The proposed method consists in studying the dynamic of the closed loop system and to
modify the control gain G in order to detect the cracks. The gain G is obtained using the quadratic

criterion [23]

[e.e]
J = / x(t)T Q x(t)dt (14)
0
where Q is the classical weighting matrix. It can be written for n modes

q= % O (15
O0nn  Qing

The principle of the method is to design a little robust controller highly sensitive to the structure
modifications. Therefore, the controller performance must be high and the robustness low. In this
study, only the even modes are weighted using the Q matrix so that a frequency shift and an
electromechanical coupling coefficient variation induce a slip of the controller effects on the even
modes. In the case of uncracked structures only the weighted modes are highly actively damped
using Q,,,, and Q,,,; and there is no effect on the odd modes. Weighting coefficient are arbitrarily
chosen to target the control only on the wanted modes. In this study, three ponderations (Q,
Q, and Qj3) of the LQG controller are tested and the maximal weighting matrix Qs is defined so

that Q,, = diag (1 1lel511el7 1) and Q;,,; = diag (1 1111). In the case of cracked structures,

sup

the structural modifications induced by the cracks modify the controller dynamics and induce some

active damping on the odd modes whereas the damping of the even modes decreases.

4 Numerical results

The clamped-clamped beam studied (length L, = 200mm, thickness e, = 3mm and width b, =
20mm) presented in Fig. 2 includes two piezoelectric actuators and two piezoelectric colocated

sensors (length L,s = 20mm, thickness e;s = 0.2mm and width b,s = 20mm) located closed to



the both clamping and made in PZT-5H whose mechanical and electromechanical properties can be

found in table 1.
[Table 1 about here.]

Numerical simulations of section 4 are based on the open (without control) and closed (with control)
loop transfer function between the excitation and the first piezoelectric sensor of the cracked struc-
ture. Modal parameters of the uncracked uncontrolled beam identified using the Rational Fraction
Polynomial (RFP) algorithm [25] applied to the Frequency Response Function of the finite element

model are detailed in table 2.
[Table 2 about here.]

Two crack location cases are studied to demonstrate the robustness of the detection method. In the

first case three cracks are located on z., = 2.4 mm, z., = 1mm and z., = 17.6 mm. In the second
e

case two cracks are located at x., = 6mm and x., = 14mm. The crack depth y = — varies from 0
€p

to —.
°1

[Fig. 2 about here.|

The control loop presented in Fig. 3 includes a LQG controller based on a Luenberger observer. Fre-
quency Response Functions (FRF) are measured between the excitation w and the first piezoelectric
sensor. u* is the optimal control calculated using the LQ) gain G, u] and uj are the control com-
posants applied on the actuators 1 and 2. y is the output vector where y; and y- are the composants
of the sensors 1 and 2. The model (Ag, B, Cs, Wy) represents the multi-cracked beam including ten
modes and (A,,, B, C,,) is the model of the uncracked structure including five modes used by the

Luenberger observer to reconstruct the state vector x.
[Fig. 3 about here.|

The study focusses on the first fourth modes. Three ponderations (Q;, Q5 and Q3) of the LQG

controller are tested in the two cases in order to show the proposed method efficiency, with Q5 >>
Q; >> Q.
4.1 First case: three cracks

In this first case three cracks are located on z., = 24mm, ., = 1mm and z., = 17.6mm. A

first study is carried out to show the influence of the crack depth on the electromechanical coupling



coefficient. Indeed, the piezoelectric actuators are here located in the section where the stiffness
is affected by the first and fourth crack. This first study permits to know if the electromechanical
coupling coefficient of the actuators and consequently the B, and Cg matrices of the controller are
affected or not. The coupling coefficient is calculated for several locations of one piezoelectric patch
on the beam from z,s = 0mm to x,s = 180 mm, where x,5 defines the left corner coordinate of the
patch, and for a crack depth from p = 0 to u = 1/4. The evolution of the coupling coefficient is
presented in Fig. 4(a) to 4(d). In these figures, the location of the piezoelectric component changes
along the beam to look into all the sections of the structure where the stiffness is affected by the
cracks. The excitation application point is constant. In the data shown in Fig. 5 to 8, the piezo-
electric components and the force vector location are constants. There is a large variation of the
coupling coefficient for the first and third mode when the patch is above the second crack. There
is a large variation of the coupling coefficient for the fourth mode when the patch is above the first
or third crack. There is a very small modification for the second mode. These modifications will
be taken into account in the closed loop system dynamics calculation particularly in the By and
C; matrices which include the coupling coefficient. In closed loop, frequency and electromechanical
coupling coefficient shift induce some differences between the state model of the controller and the
real structure (Ag # A,,, Bs # By, and C4 # C,;,). These differences can modify the closed loop

structure dynamics and consequently induce some performance variations.

[Fig. 4 about here.|

Frequency response functions of the uncontrolled and controlled beam for three ponderations Qq,
Q. and Qs are shown in Fig. 5(a), 5(b) and 5(c) for the first mode, in Fig. 5(d), 5(e) and 5(f)
for the second mode, in Fig. 5(g), 5(h) and 5(i) for the third mode and in Fig. 5(j), 5(k) and
5(1) for the fourth mode. It can be observed that the presence of cracks decrease the frequencies of
each mode. Moreover, increasing the crack size decrease modal frequencies. For the uncontrolled
beam, the frequency variation induced by the crack depth variation from p = 1/16 to p = 1/4,
usually measured to detect cracks, is about -0.8 to -3.8% for the first mode, 0 to -0.2% for the
second mode, -0.5 to -2.3% for the third mode and -0.4 to -1.7% for the fourth mode. Howeover,
due to the small depth of each cracks, detection of the presence of cracks based on the evolution of
natural frequencies appears to be not efficient. Identified frequency and damping for three weighting
matrices are presented in Fig. 6(a), 6(b), 6(c) and 6(d) for the first fourth modes. The modal

structural damping variation in less than 1% for the four modes. The damping variation for the

10



controlled beam using the Q; weighting matrix is about 18.6 to 33.8% for the first mode and 7.6 to
12.6% for the third mode, 72 to 85% for the first mode and 51.1 to 65.9% for the third mode using
the Q, weighting matrix, 93.7 to 96.5% for the first mode and 81.0 to 91.9% for the third mode

using the Q3 weighting matrix.
[Fig. 5 about here.]

[Fig. 6 about here.|

4.2 Second case: two cracks

In this second case two cracks are located at x.,, = 6mm and z., = 14mm. Frequency response
functions of the uncontrolled and controlled beam for three ponderations Q;, Q5 and Q3 are shown
in Fig. 7(a), 7(b) and 7(c) for the first mode, in Fig. 7(d), 7(e) and 7(f) for the second mode,
in the Fig. 7(g), 7(h) and 7(i) for the third mode and in Fig. 7(j), 7(k) and 7(1) for the fourth
mode. There is the same decrease of the frequencies induced by the cracks depend on the crack
depth. For the uncontrolled beam, the frequency variation induced by the crack depth variation
from p = 1/16 to p = 1/4, usually measured to detect cracks, is about -0.1 to -0.5% for the first
mode, -0.8 to -3.6% for the second mode, -0.3 to -1.4% for the third mode and -0.1 to -0.4% for
the fourth mode. Consequently, the evolution of natural frequencies appears to be not efficient to
detect cracks. Identified frequency and damping for three weighting matrices are presented in Fig.
8(a), 8(b), 8(c) and 8(d) for the first fourth modes. The modal structural damping variation in less
than 2% for the four modes. The damping variation for the controlled beam using the Q; weighting
matrix is about 5.0 to 13.8% for the first mode and 5.2 to 13.5% for the third mode, 28.9 to 64.7%
for the first mode and 38.6 to 64.3% for the third mode using the Q, weighting matrix, 66.1 to 90.9%

for the first mode and 68.7 to 90.7% for the third mode using the Q3 weighting matrix.
[Fig. 7 about here.|
[Fig. 8 about here.|
[Fig. 9 about here.|

The index variation is summarized in Fig. 9. The detection index based on frequency shift is
feracked — Juncracked
feracked
. Where £ denotes the identified total damping, that is to say the structural

and based on active modal damping using

calculated using the formula 100 x

gcracked - funcracked

100 x
gcracked

11



damping and the active damping whose variation is the most important. In the two cases, cracks
induce a small frequency variation that cannot be experimentally measured and a very light structural
damping variation. Using active damping, the damping variation is highly increased proportionally
to the crack depth and induces a large amplitude variation of the controlled beam frequency response
function that can be easily measured. The control is initially targeted on the second and third modes.
The modal parameters variation, frequency shift, modal damping and mode shapes variation, induce
some differences between the state model used by the controller and the real structure. These changes
modify the controller behaviour and induce some active damping on the first and third modes initially
very slightly controlled and are here used as an indicator of cracks presence. These results can be
physically interpreted. The stiffness of the cracked structure is lower than the uncracked ones. The
piezoelectric components are therefore more efficient and the electromechanical coupling coefficient is
increased. This variation is taken into account in the B, and C; matrices. Moreover, the frequency
shift included in the matrix Ay leads to disturb the modal control in the mode targeting. And as
the control gains are not updated, the controller dynamics is changed. The proposed method is
well adapted to detect small cracks increasing the weighting matrices and consequently the control

voltage.

5 Conclusion

In this paper a new method to detect small cracks based on piezoelectric components and active
modal damping is proposed. The originality of the proposed strategy is to exploit the fact that
modal control is little robust. The main purpose of the control system is here to detect cracks.
Consequently, the control algorithm is designed in order to detect cracks and the weighting matrix
is chosen only to this task. Some weighting matrices can be tested by switching the controller
between several values up to the crack detection. As the robustness of the controller is inversely
proportional to the controller performances, the weighting coefficients must be increase in the case
of small cracks. This method does not affect here the structure stability because the system is
more and more damped. In other applications, the crack detection could induce some vibration
amplification in state of damping but if the weighting matrices are tested increasingly, cracks must
be detected before a too large amplification. Therefore, it can be applied to monitor the structure
dynamics and to detect cracks instead of reduce vibration. The model of the uncracked structure,
contained in the Luenberger observer permits to monitor the cracked structure dynamics. The main

advantage of the use of a LQG controller to detect cracks is the possibility to use high control voltage

12



in the case of small crack depth when the frequency shift cannot be easily measured. The proposed
method is validated with numerical simulation on a clamped-clamped cracked beam including four
piezoelectric transducers linked by the LQG control loop. This approach could be extended to plates
and more complex industrial systems. Weighting matrix coefficients could be optimize to detect small
cracks using a minimum of energy. Moreover, the proposed method can be easily implemented with
actuators and sensors traditionally used to detect cracks with frequency shift by adding a controller

and an identification algorithm adapted to highly damped controlled systems.
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cﬁ (GPa) 01292 c?% cg 61193 e31 (C/mQ) €33 e§3 (nF/m)
127.2 1272 1174 802.1 846.7 -6.6 23.2 8.85

Table 1: Elastic, piezoelectric and dielectric constants of piezoelectric materials
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Mode Frequency [Hz|] Damping

1 427.8 5.00x10~%
2 1148.5 5.00x10~%
3 2205.5 7.70x1074
4 3590.4 1.18x1073

Table 2: Modal parameters of the uncracked uncontrolled beam
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