
HAL Id: hal-00840436
https://hal.science/hal-00840436

Submitted on 30 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracking the consequences of design decisions in
mechatronic systems engineering

Pierre Couturier, Mambaye Lo, Abdelhak Imoussaten, Vincent Chapurlat,
Jacky Montmain

To cite this version:
Pierre Couturier, Mambaye Lo, Abdelhak Imoussaten, Vincent Chapurlat, Jacky Montmain. Tracking
the consequences of design decisions in mechatronic systems engineering. Mechatronics, 2014, 24 (7),
pp.763 - 774. �10.1016/j.mechatronics.2014.03.004�. �hal-00840436�

https://hal.science/hal-00840436
https://hal.archives-ouvertes.fr


1 

 

Tracking the consequences of design decisions in mechatronic systems engineering 

 

Pierre Couturier, Mambaye Lô, Abdelhak Imoussaten, Vincent Chapurlat, Jacky Montmain  

Laboratoire de Génie Informatique et d'Ingénierie de Production (LGI2P) 

Site de l’Ecole des Mines d’Alès 

Parc scientifique Georges Besse, 30035 Nîmes cedex 5, France 

Corresponding author: Pierre.Couturier@mines-ales.fr, tel: (+33) 4 66 38 40 46 

Authors’ email: first name.name@mines-ales.fr 

Abstract: 

The design of mechatronic systems involves several technical and scientific disciplines. It is often 

difficult to anticipate, at the outset, the consequences of design decisions on the ultimate 

effectiveness of such complex systems, in which case the evaluation process is required to support 

the designers each time engineering choices must be made or justified. Since designers may belong 

to different technical and scientific cultures however, their understanding of both the design stakes 

and the evaluation process is too often biased. Moreover, design choices take place in an uncertain 

context and according to multiple criteria, some of which may be contradictory. In order to track the 

consequences of design decisions, we are proposing a conceptual data model to perform evaluations 

within the MBSE framework of Systems Engineering. We then proceed by relying on the relationships 

demonstrated by such a model to identify the potential impacts of design choices on future product 

performance. Since data available during the conceptual phase of the design are typically uncertain 

or imprecise, an original research protocol is extended to a qualitative impact analysis for the 

purpose of highlighting the most promising alternative system design solutions (ASDS). An example in 

the mechatronics field serves to illustrate our proposals. 

Keywords: Systems engineering, Mechatronics, Evaluation, Traceability. 

1. Introduction 

Mechatronic design is an interdisciplinary activity that continually strives to integrate widespread 

functionality into geometrically constrained products. In the competitive marketplace, both time and 

finances are often lacking when it comes to studying and finalizing several mechatronic concepts and 

then retaining only the most satisfactory one. Engineers therefore require support in reviewing 

alternative system design solutions (ASDS) and in making and defending the best design choices as of 

the earliest product design stages [1]. In a Systems Engineering (SE) context [2], such is the role of 

evaluation activities in assessing ASDS and in ensuring that design-related decisions take into account 

relevant multidisciplinary knowledge and can hence be duly justified. With this aim, various analytical 

approaches and methods can be applied to conduct effectiveness, cost and risk studies as well as to 

compare different ASDS. 

The design evaluation process however faces a number of challenges, including: 

1) Though the initial choices are definitely critical to ensuring a successful design project, rating the 

merit factors of each candidate solution during the conceptual design stage is generally subject to 

uncertainty and inaccuracy; 
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2) Designing complex mechatronic products requires multidisciplinary knowledge. Since designers 

tend to have narrow technical and scientific backgrounds, their understanding of system design 

objectives and their vision of the evaluation process are often only partial and incomplete; 

3) Assessing the consequences when choosing from among several ASDS is a critical step to the 

process and to this day has still not been resolved effectively [3]; 

4) System requirements may at times be interpreted as contradictory when considering a given 

ASDS. The challenge then is to identify satisfactory ASDS that achieve an acceptable balance between 

these requirements, as opposed to finding the optimal ASDS. 

Although the core of design problematic is how to produce solutions, design solutions synthesis is 

not the scope of the presented research work. This paper aims to provide some basic elements to 

address the issues raised in 1 through 4 above by considering just the effectiveness evaluation; due 

to constraints placed on the paper's length, risk and cost aspects will not be included. 

After defining the role of evaluation within the design process, Section 2 will tackle the 2
nd

 issue 

raised above in proposing a conceptual data model considered herein as the abstract syntax of a 

possible language dedicated to evaluation within the Systems Engineering (SE) framework. The 

intention is for members of a multidisciplinary design team to be capable of sharing a common vision 

of data as a prerequisite to evaluating ASDS, regardless of their profession, objectives or 

specialization. Based on this proposed common view, Section 3 will contribute to resolving issue 3 by 

means of facilitating the identification of potential impact relations between design choices and 

effectiveness criteria. Once potential impacts have been identified, the consequences of such 

impacts on the degree of ASDS satisfaction in a multi-criteria context must be analyzed. To this end, 

Section 4 will formalize the interactions proposed in this research work between a behavior model of 

the system being designed and a model of stakeholders' expectations. Our proposal seeks to address 

issue 4 above by adapting a formal approach to determine the level of criterion satisfaction, which 

entails applying qualitative or quantitative reasoning depending on the uncertainty inherent in the 

design specification. Section 5 will illustrate our proposals through an example of developing the 

electrical assistance function for a wheelchair. Section 6 will draw a conclusion regarding future 

perspectives. 

2. Evaluation in design  

Let's consider, without the ambition of achieving completeness, a number of current design theories 

and methodologies that deal with evaluation issues [4,5,6,7]. According to [8], designers are making 

progress towards defining the systems under design in more concrete terms by iteratively 

performing the steps indicated in Fig. 1: 

• Synthesis: The creative activity by which known elements are placed together in new and 

more useful combinations in order to produce ASDS; 

• Analysis: Deriving an estimation and prediction of design parameter values; 

• Evaluation: Comparison of each ASDS with other ASDS and verification of compliance with 

customer requirements. 

Mechatronic engineering combines mechanical engineering, electrical engineering and computer 

science within an interactive way. The VDI2206 guideline recommends conducting the design of 

mechatronics systems according to the so-called "V-model" pattern [9]. The design process 

distinguishes between the problem solving process of the individual designer (micro-level) and the 

generic process related to design phases (macro-level). At the macro-level the system is specified 

functionally, working principle variants are evaluated and selected. Then sub-parts allocated to each 
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involved discipline such as mechanics, electronics, and computer science are specified, realized and 

integrated to form a system. 

 

FIGURE 1: Evaluation vs. analysis and synthesis [9] 

Several passes through the v-shaped model are necessary to obtain a mature product. Micro-level 

problem-solving activities are being performed during the design process to generate and then to 

assess candidate solutions. The present work will distinguish between the evaluation of ASDS (at the 

macro level) and the evaluation of the design ideas generated at the micro level (during the synthesis 

step of Fig. 1) in order to produce acceptable solutions (ASDS).  

The Function-Behavior-Structure approach supports systematic modeling and reasoning in the 

systems designing [10] and attempts to explain the act of generating design solutions (thus at the 

synthesis step of Fig. 1). The Function-Behavior-Structure activities include: a formulation which 

transforms functions into a set of expected behaviors; a synthesis of a structure which exhibits the 

expected behavior; an analysis of the behavior produced by the structure; an evaluation between the 

expected and the produced behavior.  

The Function-Behaviour-State modeler provides an approach for systematic modeling and reasoning 

in conceptual design [11]. In [12] it has been extended to incorporate a visualization of geometric 

information and has introduced interval-temporal logics. It then becomes possible for the system 

architect to evaluate the consistency between spatial relations in a Function-Behaviour-State model 

and the corresponding geometric model. 

Another design approach is represented by the Axiomatic Design, which is a general method for 

facilitating the synthesis of suitable design requirements, design solutions and design processes. Two 

principles must be verified according to Suh [13]: the independence axiom indicates to ‘Maintain the 

independence of functional requirements’, while the information axiom recommends to ‘Minimize 

the information content of the design’. The independence axiom provides the designer with a 

measure for rating the correctness of the design, in insisting that an independent relationship, as 

represented by an uncoupled or decoupled design matrix, is essential for a successful design [14]. 

Evaluating design solutions according to these two axioms aims at verifying that the system is well 

designed but does not guarantee that the solutions are the most satisfying to fulfill the stakeholder’s 

needs. 

In order to qualify a mechatronic system, a mechatronic index is presented in [15] in terms of 

flexibility, intelligence and complexity, as these three characteristics account for much of 

mechatronic products. The intelligence level of a mechatronic system is determined by both its 

control functionality (which includes programmability, self-diagnosis, self-repair, negotiation, 

learning and self-organization) and its information computing ability (e.g. knowledge discovery and 

analysis, inference mechanism and communication) from the low-level control to the general 

management level. The flexibility property of a mechatronic system translates its capacity to easily 
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change in order to fit new requirements or situations. Complexity is a consequence of the tradeoff 

involved when increasing the intelligence and flexibility and moreover may be observed through 

seven indices (including quantity of components, number of interconnections, number of design 

solution alternatives and number of feedback loops). The benefit of monitoring such indexes is to 

help mechatronic engineers in better designing their systems (i.e. a verification point of view) by 

taking into account the typical characteristics of mechatronic products: flexibility, intelligence, 

complexity, and strongly-coupled physical phenomena. 

The approach of evaluation exposed in this paper is complementary to the above research works as it 

focuses on how to rank ASDS outputted from the synthesis activities and how to select the most 

satisfying for the stakeholders (i.e. more of a validation point of view than of a verification point of 

view). For this purpose, we adopt the Systems Engineering framework which guides the engineers 

throughout the macro-level design phases without imposing any specific method to synthesize 

solutions. The specificity of evaluating mechatronic design lies in taking into account, at the earliest 

possible stage in the design development cycle, the many relevant discipline requirements, in 

addition to the system architect requirement, in order to design a product. 

 The evaluation process within the SE framework 

Systems Engineering (SE) is an interdisciplinary and collaborative approach based on the standards 

ISO/IEC 15288 [16], ANSI/EIA 632 and IEEE 1220, as well as on conceptual guidelines, e.g. SEBoK [17] 

and best practice guidelines, e.g. INCOSE handbook [18] or Nasa handbook [2]. SE promotes 

vocabulary, concepts and a comprehensive approach that facilitates communication within a design 

team, regardless of the underlying technological field, and moreover relies on a set of standardized 

processes and activities that have become widely and successfully applied across various industrial 

fields [19,20,21]. 

Among the aforementioned components, five technical processes run in an iterative manner when 

engineering a system. These processes, identified in Fig. 2, are [17]: Mission analysis, Stakeholders' 

needs and requirements, System requirements, Logical architecture, and Physical architecture. They 

are supported by three services, namely: System verification, System validation, and System analysis. 

 

FIGURE 2: Technical and support processes in SE 

Evaluation, is indeed an important activity of System Analysis in SE since according to standards (EIA 

632, l’IEEE 1220, SEBok 2013) technical performance assessment and tradeoff studies are necessary 

activities of SE.  
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Thus this paper addresses the set of System Analysis issues and focuses in particular on evaluating 

the product under design. The next section will present the generic activities associated with the 

evaluation process.  

2.1 Activities composing the evaluation process 

An evaluation is requested each time engineering choices must be made or justified, e.g. choice of 

major operations and solution concepts, research and resolution of inconsistencies between 

requirements, choice of logical vs. physical architecture. The criteria required to evaluate design 

progress actually evolve in the same manner as design model criteria [22]. 

This evaluation process includes generic activities, as summarized in Fig. 3. The main activities 

composing the evaluation process consist of: defining the evaluation objectives ("why" and "what"), 

preparing the job ("how"), producing and analyzing results ("do" and "check"), and finally delivering 

outcomes ("conclude"). Briefly summarized below are the individual tasks relevant to these 

successive stages. 

 

FIGURE 3: Flowchart of activities in the Evaluation Process 

‘Why and what’ activities: After specifying the scope, objectives and means available to perform the 

requested evaluation, only the ASDS that satisfy the non-negotiable technical and economic criteria 

are to be selected for more in-depth analysis. It is generally recommended that the number of 

alternatives be limited (in the range of 3 to 7) and moreover that all candidate solution 

characteristics be sufficiently distinct. 

‘How’ activities: Since the evaluation process constitutes the backbone of the decision-making 

process, the decision-making model must be specified. Such a model takes into account core 

elements, e.g. evaluation criteria, stakeholders' preferences, the scoring function used to assign 

desirability levels to system attributes, and the aggregation methods chosen to provide ASDS with 

the overall desirability levels used to classify or rank design solutions [15]. 

Regarding the evaluation of product effectiveness, three main families of multi-criteria decision-

making methods can be distinguished [23]: total aggregation methods [24], paired comparison 

methods [25], and outranking approaches [26]. The aggregation methods most frequently used in 

design are based on Multi-Attribute Utility Theory according to which local 'utility functions' are 

defined so as to quantify on a standardized scale (e.g. [0 1]) stakeholders' preferences about the 
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'attributes' of the designed artifact. These local utility values are then aggregated into an overall 

utility through application of a mathematical formalism (usually additive or multiplicative). The 

paired comparison methods (such as Analytical Hierarchical Process) are employed to both model 

stakeholders' preferences and rank alternatives. The primary outranking methods assume datasets 

similar to those assumed by the Multi-Attribute Utility Theory, yet allow defining just a partial 

ranking on the set of alternatives, which contains the most promising alternatives of the decision-

making problem. In ‘Electre III’, an outranking degree is computed that reflects outranking credibility 

among several alternatives [23]. 

Since the characteristic values of ASDS are not directly measurable from the product, they need to be 

predicted from models (referred hereafter as behavior model). At the conceptual design stage, 

behavior models tend to be coarse whereas at the detailed design stage, more specialized and 

precise models must be taken into consideration in order to derive product feature data. Some 

activity within the evaluation process thus consists of identifying which level of modeling granularity 

is required and then ordering additional modeling and analysis work. More generally speaking, 

evaluation relies on relevant knowledge based on engineering rules, standards, expert reports, 

simulations and analysis reports from previous completed projects or from measurements carried 

out on prototypes. In any event, it is necessary to estimate the degree of uncertainty associated with 

collected data and perform the evaluation accordingly [27]. 

‘Do and check’ activities: ASDS are assessed or ranked according to the selected multi-criteria 

analysis method. Sensitivity analyses are also conducted to determine whether the resulting 

classification or ranking is sufficiently robust, e.g. if the classification/ranking remains unchanged in 

the event of small input data variations. If the evaluation objectives are not met or if results lack 

adequate differentiation or show excessive dependence on the evaluation methods, then the 

evaluation process should return to one of its previous steps. 

‘Conclude’ activity: When the objectives are met, a report is produced and delivered to decision-

makers; this report includes: information on assessment objectives, the selected ASDS, the data 

sources along with their degrees of uncertainty, the decision-making model, evaluation results with 

their sensitivity analyses, and justifications of every choice made during the evaluation process. 

The conceptual data model shown in Fig. 4 allows characterizing and describing the relevant 

concepts and relationships from the SE context that must be taken into consideration throughout the 

evaluation activities, from the conceptual design phase to the detailed design phase. As displayed in 

a UML class diagram, each class describes a requested concept from the domain and is characterized 

by a set of typical attributes and relations. Each relation in turn describes and formalizes a link (i.e. 

dependence relationship) between two concepts. As such, this conceptual data model corresponds 

to the abstract syntax, i.e. the vocabulary and basic grammar of the meta-model of the so-called 

‘evaluation language’ proposed herein. Moreover, this language is indeed an extension or 

enrichment of Systems Engineering (SE) vocabulary and thus of the engineering language currently 

proposed in an MBSE context [28]. The section (2.2) presents the main classes of concepts and 

relations being considered among the three domains involved in the evaluation process: technical 

requirements, candidate solutions, and evaluations. 

2.2 A conceptual data model for evaluation data characterization within the SE framework 

According to Blanchard and Fabricky [8], the 'Design Consideration' concept designates any element 

of the complete set of attributes and characteristics potentially exhibited by: a system being 

engineered, a product, or a service. ‘Design Considerations’ are involved during the customer 

requirement analysis to facilitate the stakeholders' needs expression. They are also proved to be 

useful in analysis activities for the purpose of fully characterizing the product being designed and 

hence revealing the expected, as well as unexpected, behavior or properties. Among the set of 
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‘Design Considerations’, let's distinguish the 'Design Dependent Parameters', which are controlled by 

the designers (e.g. geometric dimensions, weight, reliability, maintainability or other-ilities [29]). 

Each instance of 'Design Dependent Parameters' generates a design candidate solution. ‘Input Design 

Dependent Parameters' (iDDPs) are ‘Design Dependent Parameters’ the values of which are chosen 

by the designers and determine other 'Design Dependent Parameters' values. The iDDPs which can 

be coded numerically referred to as design variables. Design variables include optimization variables 

used to improve a satisfactory solution even further. ‘Output Design Dependent Parameters' (oDDPs) 

are ‘Design Dependent Parameters’ the values of which are generally computed from behavior 

models and iDDPs values. 'Output Design Dependent Parameters' are parameters of interest for the 

stakeholders and are used to evaluate an ASDS. 

Energy autonomy is an example of ‘Design consideration’ for an electrical wheelchair. Then an oDDP 

can be the ‘number of km travelled without reloading in energy’ and an iDDP can be the ‘battery 

capacity’. 

The 'Design Independent Parameters' are known as "incurring" factors (for example: labor costs, 

variation of raw material characteristics, the market entry of a new competing product, energy cost, 

a new regulation etc.). 'Design Independent Parameters' are not controlled by the designers but they 

must be taken into account by decision-makers when selecting the most promising design solutions. 

 

FIGURE 4: A Conceptual Data Model for characterizing evaluation data in an SE context  

Considering multi-criteria decision-making methods (such as the ones cited in section 2.1 or the 

proposed one in section 4) the evaluation process establishes the level of adequacy between a 

consistent set of technical requirements (e.g. translations of stakeholders' needs by designers in 

considering the entire product life cycle) and ASDS . The evaluation criteria determine the principles 

or rules introduced to judge the level of adequacy. The evaluation criteria are specified by technical 

indicators (TIs), whose attributes comprise: the rating scales, objectives, target levels, and current 

level. A TI objective is specified by a single performance requirement or a single constraint. 
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While defining needs, attention turns to identifying MOEs (Measures Of Effectiveness), which are 

mandatory TIs to ensure system success. Inability to reach an MOE objective is considered a cause of 

failure [2]. 

Not directly estimable during the design, MOEs can be decomposed into MOPs (Measures of 

Performance), which are TIs associated with the product's physical or functional properties. MOPs 

may in turn be broken down into 'Technical Performance Measures' (TPMs) or characteristics, which 

are measured from attributes inherent to the designed product [8]. Current TPM values are in fact 

derived from oDDP values. For instance let us define some MOE, MOP and TPM when designing an 

electrical assistance for a wheelchair. According to the stakeholders, the ‘type of job that such 

assistance allows to practice in outside conditions’ is a MOE (the MOE objective is to be able to work 

as a roundsman in a company). Such a MOE can be decomposed in several MOPs, the ‘capacity to 

drive outside’ is one of them (the MOP objective is to be able to drive on unsurfaced roads). The 

MOP can be decomposed in several TPMs, the ‘capacity to climb sloping road’ is one of them (the 

TPM objective is to be able to climb 10% slopes with a 120 kg total charge). 

ASDS are described by their functional and physical architectures models (generated by SE activities) 

and also by behavior models built up to lead analysis studies and to calculate oDDP values. The 

knowledge elements needed to perform such analysis and the results of evaluation reports are 

collected in the ‘Evaluation repository’. 

In order to be able to analyze the impacts of design choices on criteria TI current values, it is first 

necessary to identify which TI current value (i.e. oDDP values) can be (adversely or positively) 

affected by iDDPs and then to determine the magnitude of such impacts. The next two sections are 

intended to propose some resolution to these issues conforming to the conceptual data model 

shown in Fig. 4. 

3. Identification of potential impacts 

In complex system design, it is not altogether obvious whether or not an iDDP exerts potential 

impact on an oDDP. The following section will analyze how traceability relations stemming from both 

SE models and the conceptual data model (Fig. 4) can actually help detect potential influence 

relations between DDPs. 

Without imposing restrictive constraints on system architects, we are able to postulate that (Fig. 4): 

• Any evaluation criterion is expressed using at least one technical requirement; 

• Any criterion is specified by at least one technical indicator(TI); 

• Any TI is associated with one and only one non-functional requirement (more precisely with 

one performance requirement or with one constraint). 

Based on these assumptions and by utilizing the traceability relationships between SE elements in 

system models, the influence relations between TIs and iDDPs can be underscored so as to identify 

what might generate some impact. The formalization of such a notion will be provided hereafter. 

3.1 Traceability relations 

Traceability is defined as the ability to describe and track the life of a requirement from its origin (in 

the design phase) to deployment (in the operations phase) [30, 31]. The main needs behind 

introducing traceability in SE are summarized in Table 1. 
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Need Description 

Coverage 

analysis 

Are all requests for features in the 

delivered product? 

Do test cases exist for all functional and 

non-functional requirements? 

Impact 

analysis 

Tracing from the impacted features to 

the actual system design to determine 

the extent of eventual modifications 

Derivation 

analysis 

Help discover the origin and rationale of a 

function; alternatively, a component 

requirement is traced back to the original 

rationale for its creation 

TABLE 1: Traceability needs in an SE process 

A more formal definition can be provided for: 

• A ‘traceability relation’, denoted ℑ  on ΕxΕ, with Ε a set of artefacts, is a partial relation on 

ΕxΕ that is non-reflexive, non-symmetric and non-transitive. For example, the SE relation 

‘refines’ (requirement b refines requirement a) defines a ‘traceability relation’ on RxR where 

R is the set of the artefacts ‘system requirements’. SE relations have distinct semantics 

(refines, built from, specifies…); traceability relations have not.  

• A ‘traceability link’, denoted τ, is an oriented link between two artefacts; it is associated with 

a traceability relation between one source artefact ‘a’ and one target artefact ‘b’, such that b 

= τ(a). So, if ℑ (a,b) is true then it exists τ such as  b = τ(a). The set of artefacts connected by 

traceablity links forms a digraph. 

• If ℑ 1 and ℑ 2 are two traceability relations defined on ΕxΕ, then ℑ 1o ℑ 2 is a traceability 

relation on ΕxΕ. 

Any artifact a, with a Є Ε, can display an impact δba on other artefacts b of Ε if and only if a is the 

source of at least one traceability link τ with  b = τ(a). The set of artefacts that are in relations by k 

successive compositions of a traceability relation ℑ  is thus expressed as: 

{ })()( abbaI kk τ== , where τk
(a) is τ (τk-1

(a)); the coverage of element a is: )()(
1

aIaI
k

q

q
C U

=

=  

Such formalization is used to compute the set of artefacts that can potentially impact or be impacted 

by others as proposed in next section. 

3.2 Using traceability relations to identify potential impacts 

Table 2 presents examples of relationships between entities according to an example of an SE meta-

model (i.e. a model proposed by one of the MBSE solution providers; other meta-models derived 

from other providers may also be used)[32]. To these SE relationships, are associated ‘traceability 

links’ as defined above.  

According to the conceptual data model shown in Fig. 4, we propose adding the relationships 

between criteria, requirements and Technical Indicators (TIs) to the basic relationships listed in Table 

2, with the outcome shown in Table 3. 
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Source / Target Target / 

Source 

SE relations and their associated 

(traceability links) 

Functional requirement Function Basis of (��_��) / Based on (��_��) 

Performance requirement Function Specifies (���	/ Is specified by (��_�
� 

Performance requirement, 

Constraint 

Component Specifies ( ���	/ Is specified by (��_�
� 

Function Component Is allocated to (��_��) / Performs (�
� 

Function Function Decomposes (��)/ Decomposed by (��_�
) 

Component Component Built from (��_����) / Built in (��_��) 

Requirement Requirement Refines (��) / Is refined by (��_�
) 

Requirement Interface Specifies (��� / Is specified by (��_�
� 

Interface  Component Joins (��� / Joined to (��_��) 

Interface Link Comprised of (���� / Comprises (���_�
� 

Link Item Transfers (��)/ Is transferred by (��_�
� 

TABLE 2: Traceability relations between SE entities [23] 

One criterion and one TI may be correlated with the same requirement if and only if this requirement 

specifies the TI objective in its formulation. The inability to link any of the TIs with a single 

performance requirement or with a single constraints attests to a certain level of incompleteness in 

the set of requirements. 

Source /Target Target / 

Source 

SE relations and their associated 

traceability links 

Criterion Criterion Decomposes	��
��
�/Decomposed by ����_��� 

TI Criterion Precises (�
�� / Is precised by (�
�_�
� 

Requirement Criterion Expresses (���� / Expressed from (���_����� 

TI non-funct. 

requirement 

Traces (����/ Is traced by (���_�
� 

TABLE 3: Extension of traceability relation between SE entities 

 

FIGURE 5: Identifying potential impact from traceability links 

Using compositions of the traceability links presented in Tables 2 and 3 can serve to highlight 

potential impacts between any function parameter (an instance of an iDDP) or any component 
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attribute (another instance of an iDDP) and the evaluation criteria and their associated TIs (the 

current value of an TI is an instance of an oDDP). 

Thus, if the value of some iDDP (attribute of a component) is changed, traceability links 

��_��, ��,��,��_��,� ,�!"	spread the possibility of impact to the evaluation criteria (Fig. 5). Similarly, 

from traceability links,	�� _#$ , �% _#$ , �&_#$ , � _#$ , �'_() it is possible to identify the functions and 

components potentially impacted by a change in some TI objective value of one criterion. 

The TI value reached by an ASDS is derived from an oDDP value. According to available knowledge, 

the transformation between iDDPs and oDDPs may be either a quantitative model with a low level of 

uncertainty or a qualitative one with higher uncertainty. 

The latter case is critical during product design since it occurs at the very earliest stage of the design 

development cycle, when both the future success and cost issues of the design project are being 

determined in full. For this reason, Section 4 will focus on this SE analysis, which often remains 

inadequate in its methodology. 

4. Decision-making aid in designing complex products in an SE context 

4.1 Linking a predictive system model with a decision-making model 

A number of notations will be introduced in this subsection. 

Let's start by considering a situation with m iDDPs. Each iDDP is assigned a value from the set 

denoted jX , with 1,...,j m= , where 1 2 ... mX X X X= × × ×  denotes the set of all m_tuple 

),...,,( 21 mxxxx = and where j jx X∈  is the value of the j
th

 iDDP. *+ may be a set of nominal, 

discrete or continuous values. Each element of X  represents an ASDS.  

 

FIGURE 6: Merging a system predictive model with a decision-making model 

For instance let’s consider the design of a motor-wheel for a wheelchair: the diameter of the wheel 

in inches, the nominal torque provided by the electrical engine in N.m, the reduction ratio of the 

x= (x1, x2 ,    ,xm)Є X 

T

u1, u2,…, un

[u1(y1) u2(y2) un(yn)) 

y= (y1, y2 ,    yn)Є Y 

Global utility 
computation

ux =U([u1(y1) u2(y2) un(yn)]) 

Decision
model

Predictive
model

Input DDPs

Output DDPs

Local 
satisfaction

Global 
satisfaction
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gearbox are examples of iDDPs. The iDDP j ‘nominal torque of the electrical engine’ may take its 

values �+ in the interval *+ = -100, 6001 mNm. 

Let's also consider that the system may be described by n oDDPs relative to the decision-making 

criteria. Each oDDP is assigned values from the set denoted iY , with 1,...,i n=  and with 

1 2 ... nY Y Y Y= × × ×  denoting the set of all n_tuple ),...,,( 21 nyyyy = , where i iy Y∈  is the value 

assigned to the i
th

 oDDP. 2�  may be a set of nominal, discrete or continuous values. For instance the 

oDDP i ‘Current consumption’ may take its values 
�, in the interval 2� = -1, 514. 

Each input configuration in X  corresponds to an output in Y  representing the system 

characteristics of interest. Let's indicate this correspondence by the transformation: 1( ,..., )nT T T= , 

where: :i iT X Y→ , 1,...,i n=
 
(Fig.6). 

T may be a formal transformation deduced either from physical laws or from validated knowledge in 

the field. For example, a dynamical model of the wheelchair can compute the ‘Current consumption’ 

from the values of iDDPs such as ‘nominal torque of the engine’, ‘diameter of the wheel’, ‘reduction 

ratio of the gearbox’ and others impacting iDDPs. In general however, T is not explicitly known and, 

in the most favorable case, it can be approximated by a predictive model [33]. 

The oDDPs must then be interpreted in terms of satisfaction with respect to the stakeholders' goals. 

The Multi-Attribute Utility Theory allows expressing the degree of satisfaction of an oDDP by a real-

valued utility function in [0,1]  [34, 35, 36]. Let’s denote therefore for {1,..., }i n∈ , iu  (

: [0,1]i iu Y → ) the real-valued utility function for oDDP i . For i iy Y∈ , ( )i iu y  reflects the extent to 

which the goal associated with the TPM i  is satisfied by the value iy . 

Then the satisfaction level of a higher-level TI, in the hierarchy of criteria, e.g. a MOP or a MOE, in the 

decomposition tree containing TPM, should be computed using some aggregation operator U (Fig. 6). 

According to the Multi-Attribute Utility Theory, the weighted arithmetic mean can be the operator 

used to compute the global utility from the local utilities ( )i iu y  .
 

As noted above, transformation T is typically unknown or marred by uncertainty, and this mainly 

arises during the preliminary (or conceptual) design phase. The scenario is then often played out 

where experts or senior engineers are asked to advise on ASDS and judge the qualitative effect of 

design choices on stakeholder satisfaction. To properly treat this kind of model, we have relied on 

the research work presented in [37] regarding qualitative analyses. 

4.2 Qualitative analyses 

The notion behind the qualitative model in [37] is that an expert can express the impact of an iDDP 

instance directly as a degree of satisfaction of an oDDP. Our attention here is thus focused on the 

transformation	u�o8�, 1,...i n= , which is approximated by a qualitative model (Fig. 7). Figure 7 has to 

be generated by the designer team in agreement with the stakeholders. Two scales are used in this 

context: a positive ordinal scale PS and a negative ordinal scale NS . If the impact of a given instance 

jx  of iDDP jX  on the ith  oDDP is positive, its values are taken from PS  (ex: strong, medium, low, 

etc.) and the notation 
+
ijδ  is introduced. On the other hand, if the impact is negative, its values are 

derived from NS  (ex: strong, medium, low, etc.) with use of the notation 
−
ijδ . Should the expert not 

be able to decide, the unknown impact is denoted 
u
ijδ . This paper has assumed that PS NS=  and 
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an absence of impact is represented by the value 0 (which corresponds to the lower value on the 

PS  scale). 

 

FIGURE 7: Influence digraph (δ+: improvement, δ-: degradation, δu
: unknown) 

Let's now introduce two sets: { }






 ∈=+ positivelyiimpactsxmjS jxi :,...,1,  (i.e. for each 

m_tuple x
 

the set of iDDP j that exerts a positive impact on oDDP i), and 

{ }






 ∈=− negativelyiimpactsxmjS jxi :,...,1,  (for each m_tuple x the the set of iDDP j that 

negatively affects oDDP i). 

To assign the degree of impact of an ASDS 1( ,..., )mx x x X= ∈  on an oDDPi, [36] introduced two 

aggregation operators along with two propagation constraints. Each combination of an aggregation 

operator with a propagation constraint yields a decision-maker's attitude. The following pessimistic 

or optimistic attitude of the decision-maker can serve as a guide. Indeed, the estimation of the ASDS
 

1( ,..., )mx x merged impact on oDDPi naturally depends on system behavior, as well as on the 

decision maker’s decisional behavior: a pessimistic attitude (whereby a risk aversion position will 

lead to concluding the most highly negative merged impacts) vs. an optimistic attitude (whereby risk 

acceptance will conclude the most highly positive merged impacts). 

Let's denote xi,δ  the impact of ASDS x on oDDP i. We also consider that ,i x PS NSδ ∈ ×  and can be 

represented by the pair (
,

,
at

i xδ +
,

,
,

at
i xδ −

), as proposed [38], where 
,

,
at

i xδ +
 (resp. 

,
,

at
i xδ −

) corresponds to an 

aggregation of positive impacts (resp. negative impacts) and {1,2}at ∈  corresponds to the decision-

maker's attitude ("1" encodes the pessimistic attitude and “2” the optimistic attitude). In the 

following, (
,

,
at

i xδ +
,

,
,

at
i xδ −

) will be explained for both these attitudes. 

The pessimistic attitude (at=1 in 
,

,
at

i xδ +
and 

,
,

at
i xδ −

) is modeled by assigning the least positive impact as 

the aggregation of positive impacts (less favorable case) and the worst negative impact as the 

aggregation of negative impacts (less favorable case again), in which case the propagation constraint 

consists of comparing the least positive impact value with the worst negative impact value on oDDP i, 

resulting in: 






 >
=

−

∈

+

∈

+

∈+ −++

otherwise

if ij
Sj

ij
Sj

ij
Sj

xi
xixixi

0

maxminmin
,,,1,

,

δδδ
δ







 >
= −

∈

−

∈

+

∈−

−

−+

otherwise

if

ij
Sj

ij
Sj

ij
Sj

xi

xi

xixi

δ

δδ
δ

,

,,

max

maxmin0
1,

,    (1) 
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In this case, an unknown impact corresponds to a negative impact and is equal to the top of the NS  

scale.  

The optimistic attitude (at=2 in 
,

,
at

i xδ +
and 

,
,

at
i xδ −

) is modeled by assigning the highest positive impact as 

the aggregation of positive impacts and the worst negative impact as the aggregation of negative 

impacts. In this case, the propagation constraint consists of comparing the highest positive impact 

value with the worst negative impact value on oDDP i, hence: 






 >
=

−

∈

+

∈

+

∈+ −++

otherwise

if ij
Sj

ij
Sj

ij
Sj

xi
xixixi

0

maxmaxmax
,,,2,

,

δδδ
δ







 >
= −

∈

−

∈

+

∈−

−

−+

otherwise

if

ij
Sj

ij
Sj

ij
Sj

xi

xi

xixi

δ

δδ
δ

,

,,

max

maxmax0
2,

,    (2) 

For this latter case, an unknown impact corresponds to an absence of impact and is equal to the 

bottom of the PS  scale. 

Let's denote ),( ,, at
x

at
x

at
x

−+= δδδ  as the impact of the m_tuple x  of iDDP on the n oDDPs. Then, in 

order to avoid risky choices, it can be reasonably stated: 

))(max),(min(),( ,
,

,
,

,, at
xi

i

at
xi

i

at
x

at
x

at
x

−+−+ == δδδδδ        (3) 

Note that veto and dictator effects of some criteria through min and max operators can be smoothed 

when a weights distribution is assigned to the oDDPs as suggested in [39].  

According to expressions (1) and (2), one of the values 
at

x
,+δ  or 

at
x

,−δ  is equal to zero. 

The most promising ASDS would then be the one with the highest positive impact or otherwise the 

lowest negative impact on the n oDDP: 

The most promising ASDS: 






 ≠∃
−

∈

++

∈

otherwise

iif

at
x

ASDSx

at
xi

at
x

ASDSx
,

,
,

,

minarg

0:maxarg

δ

δδ
     (4) 

Section 5 will illustrate this type of qualitative analysis through designing an electrically-assisted 

device for a wheelchair. 

5. Illustrations 

This section will illustrate the proposed approach in the context of designing of a power-assisted 

wheelchair. Such an assisted wheelchair has been developed by a pluridisciplinary team on the 

mechatronics platform of Ecole des Mines d’Ales. The purpose of this electrical assistance is to 

promote employment opportunities for the mobility impaired. The system is being made available 

firstly to allow a person with reduced mobility to perform an outdoor job without undue fatigue and 

secondly to enable driving the wheelchair as if it were a manual device. The objectives adopted refer 

to the capability of moving on uneven ground and under exterior conditions. Constraints regarding 

maximum allowable speed, maximum dimensions and safety have been defined in the relevant set of 

regulations [40].  

Once stakeholders’ needs have been translated into a set of technical requirements (which should 

subsequently be enhanced as the design process progresses), the main principles of electrical 

assistance are to be analyzed and a concept of electrical assistance selected [41]. The selected 

product concept chosen in [41] is the concept of motor-wheel consisting in measuring the pushing 
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force of the mobility-impaired individual on the handrail and then delivering additional torque on 

each wheel in proportion to the measured force.  

During the preliminary design stage, a set of evaluation criteria and associated TIs are defined in 

accordance with the technical requirements; these elements are partially displayed in Fig. 8. The 

mission of the assistance system is to help reduced mobility persons to be maintained in their job or 

to access to a new one. It is the real motivation of the customers (big firms which have obligation to 

employ reduced mobility persons). So the assistance system has to improve such persons mobility 

(needed, for instance, to practice a roundsman profession) but it must be quite easy and intuitive to 

use (as a manual wheel chair) in order the person to be able to do the job efficiently. So 

‘Employability’ criterion must be satisfied to ensure success of this assistance system. As per the 

agreement with clients, this criterion is associated with the MOE ‘Ability to perform a roundsman's 

job’. Such an ‘Employability’ criterion has been broken down into both a ‘Mobility criterion’ (with its 

associated MOP: ‘Outside drive possibility’) and a ‘User Friendliness’ criterion (with its MOP: ‘Just an 

assistance’). 

 

FIGURE 8: Decomposition of Criterion (Cr) and associated TIs (MOE,MOPs,TPMs) 

Another lower level of the criterion hierarchy with associated TPM indicators is correlated with a set 

of more elementary oDDPs (such as the ability to: climb, overcome an obstacle, maintain average 

speed etc. as shown in Table 4). Let us remark that such a criteria hierarchy is not unique and may be 

different depending on the design team, but each criterion is expressed from technical requirements 

(according to the conceptual data model in Fig.4).  

 

TABLE 4: output DDPs i, iЄ{1,..,7} relative to ‘Mobility’  and output DDPs i, iЄ{8,..,11} relative to ‘User 

friendliness’ 

As the design progresses, these chief concerns must be handled, namely choices of: mechanical 

transmission and reduction (gears vs. rack and pinion), number of electric motors (one or more per 

wheel), location of the battery and electronics board (on the wheel vs. the chair), control type (reflex 
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vs. smart), tuning facilities (with or without), and system status feedback to the user (rich or poor) as 

seen in Table 5. The iDDPs of table 5 have been identified by the designers within the development 

team. They result from the SE activities performed by the team and depend also upon the designers’ 

experience. The example has been adapted for the sake of explanation but we have done the effort 

to stick the reality as well as possible. We do not focus in the paper on how ASDS are generated by 

the designers but on how choices can be made rationally between them within a multidisciplinary 

context. According to the identified iDDPs, the whole proposed method is all about to selecting some 

solutions from all possible combinations. As there is no incompatibility between iDDPs, the number 

of possible ASDS is 3
2
x2

6
 = 576. The question is which ASDS are the most promising relatively to the 

main criteria: mobility, user friendliness and employability? 

 

TABLE 5: input DDPs j, jЄ{1,…8) 

 

 

TABLE 6: Example of impacts of instances of input DDPs xj on output oDDP i                                          

(H: High, M: Medium, L: Low, N: null (0), Uk: unknown) 

No behavior model being available at this stage of the design process to compute how iDDPs values 

impact the oDDps the analysis relies on the expertise of a senior designer who provided advices 

relative to the impacts of such choices on the degree of utility of elementary oDDPs, as summarized 

in Table 6. The ordinal scale on which the impacts are assigned their values is PS=NS={H,M,L,N,U}, 
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where N denotes a zero impact (0), L denotes low impact, M denotes medium impact, H denotes 

high impact and U an unknown impact (i.e. an impact is present, yet its strength raises doubts). 

For instance, equipping the motor wheel with one CC motor, the impact on the ‘total wheelchair 

width’ (oDDP4) satisfaction level is (-L) due to the motor large diameter while it is (+L) if equipped 

with smaller diameter motors. ‘Tuning facility’ increases satisfaction level for ‘climbing capacity’ (+M) 

or ‘overcoming obstacles capacity’ (+M) because of the possible adaptation of the assistance to the 

context but decreases ‘manual usage’ (-L) since the user has to adjust assistance parameters. 

To be able to fulfill Table 6 automatically using more fundamental or partial knowledge is quite a 

challenging issue. A way to overcome this difficulty is to trust experts. Even if Table 6 was the most 

pertinent, it is not so clear how to aggregate such data and so how to select the most satisfying 

solutions. It is the purpose of this study case to illustrate hereafter how the method developed in 

section 4 can help designers make their choice rationally from Table 6.  

Thanks to the qualitative analysis developed in Section 4, we can now compute the impacts of the 

various ASDS on the satisfaction level on criteria. 

For instance, let's consider the particular ASDS defined by the 8_tuple 

x={x1:3,x2:2,x3:2,x4:1,x5:1,x6:2,x7:2,x8:2} (i.e. the gray case in Table 6), oDDPs i , iЄ{1,..,7} the oDDPs 

linked with the ‘Mobility’ criterion and oDDPs i, iЄ{8,..,11} the oDDPs linked with the ‘User 

Friendliness’ criterion. 

• Applying expression (1) in assuming a pessimistic attitude, the impact of ASDS x on oDDP6 

(autonomy) is (0,L) and (0,H) on oDDP10 (manual usage) since : 

min 	<=+
>

+

= min�?,@,@, ?,@,@� = ?;	max	
+

<=+
D 	= max 	�?, ?� = ?				

so  <=,"
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+
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+
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+

<EG+
D 	= max 	�@, ?, ?, H,@, ?� = H				
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+

<EG,+
D = H; 

• Applying expression (2) in assuming an optimistic attitude, the impact of ASDS x on oDDP6 

(autonomy) is (M,0) and (0,H) on oDDP10 (manual usage) since : 

�max<=+
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According to (3) and with the optimistic attitude assumption: 

• the impact of ASDS x on all oDDPs relative to ‘Mobility’ is:  

{ } { }
),0())(max),(min(),( 2,
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,
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2,2,2 Lxi
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xi
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+

∈

−+ δδδδδ  

• the impact of ASDS x on all oDDPs relative to ‘User Friendliness’ with U1 = -H, U2 = -L, U3 = -H 

(Table 6) is:  
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Under the optimistic attitude assumption , the most promising ASDS relative to ‘Mobility’ on one side 

and ‘User friendliness’ on the other side can be determined by applying expression (4). Out of the 

total 576 ASDS, 20 are the most promising as regards ‘Mobility’ (the colored iDDPs choices on line 

‘Mobility’ in Table 7) and 8 are the most promising as regards ‘User friendliness’ (the colored iDDPs 

choices on line ‘User friendliness’ in Table 7). 

 

TABLE 7: Most promising choices (coloured areas) for Mobility, UserFriendliness, and Employability 

(darkest area on line Employability ensure best satisfaction on the three criteria) 

Ultimately, under the optimistic attitude assumption, most promising ASDS for ‘Employability’ are 

those that maximize the minimum positive impacts of ASDS on both oDDPs relative to ‘Mobility’ and 

to ‘User friendliness’ provided such a minimum is nonzero or, otherwise, that minimize the maximum 

negative impacts of ASDS on oDDPs relative to (Mobility’ and ‘User Friendliness’). 

Therefore, by computing the following: 


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−−
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otherwise
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x
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The so found 16/576 most promising ASDS are shown in Table 7 (colored iDDPs choices on line 

‘Employability’). In this particular case, the number 16 is obtained because whatever the choices of 

iDDP6, iDDP7, iDDP8 (2x2x2 possibilities) these solutions are the most satisfying. It can be noted that 

the set of ASDS with a higher degree of utility for the ‘Employability’ criterion is larger than the 

intersection of the set of ASDS with a higher degree of utility for the ‘Mobility’ criterion and the set 

of ASDS with a higher degree of utility for the ‘User Friendliness’ criterion.  

From the sixteen most promising ASDS for the ‘Employability’ criterion, four are also the most 

promising for the ‘Mobility’ and ‘User-friendliness’ criteria. They are those corresponding to (the 

darkest iDDPs choices): mixed reduction type (gearbox and rack and pinion), 3 motors on each wheel, 

battery and electronics boards on wheel, not too a rigid structure, feedback provided to the user. As 

regards control type and tuning facilities choices remain opened. 
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The results of table 7 do not show any incoherence, and illustrate how the qualitative method 

proposed in Section 4 can be applied on a mechatronic study case. Even if Table 6 could have been 

fulfilled by experts in different disciplines, the proposed qualitative evaluation method allows to 

synthetize their advices in a rational, reproducible and traceable way. 

Remarks: 

• It must be clarified that these results depend on any translation of the impact value on the PS or 

the NS scale. As a matter of fact, translating these values means that the current state y of the 

oDDP has changed. For instance, any component added to the product adversely affects the total 

wheelchair weight (so no choice could feature a positive impact!). In assuming a nonzero total 

weight however, choosing between the two solutions may modify this weight either positively or 

negatively. 

• As seen in Section 2, a sensitivity analysis must be performed. In pursuing this goal, we have not 

yet investigated any approaches other than that consisting of testing an array of impact values. 

As an example, changing U2 values from U2 = -L to U2 = -M does not change the most promising 

ASDS for ‘Employability’, although changing U2 = -M to U2 = -H actually eliminates all ASDS. It is 

obvious that the experts need to be truly trusted professionals. 

• For a more flexible attitude, we could assign a weighting distribution to the oDDPs related to the 

customer preference [39]. 

6. Conclusion and outlook 

Mechatronic design is an interdisciplinary activity that always tends to integrate more functionality 

into geometrically-constrained products. What makes mechatronic design quite specific is the need 

for an interdisciplinary problem solving approach at the earliest of the preliminary design stages. The 

role of the evaluation process therefore is to support designers each time engineering choices need 

to be made or justified. However it is often difficult to anticipate, during these earlier stages, the 

consequences of design decisions on the effectiveness of such complex products. Thus the designers 

should be able to evaluate the system properties that result from design changes in the functional 

and physical architectures of the system even when models of the system are still coarse. The 

proposed evaluation method aims at achieving this objective. 

By adopting the MBSE framework in Systems Engineering, we have proposed a meta-model of 

evaluation so that designers from different technical backgrounds can share a common vision of the 

evaluation process. Based on the relationships exhibited by such a meta-model, we have also 

proposed a protocol for identifying the potential impact relations of design choices on future product 

performance. Depending on the accuracy and precision of the models introduced to advance the 

design, a quantitative or qualitative analysis of such impacts must be performed. During the 

conceptual design phase, given that the data are quite uncertain or imprecise, we have extended an 

original qualitative impact analysis in order to detect the most promising alternative system design 

solutions. Our proposals have been illustrated through the design of a mechatronic system. 

The proposals we've presented are complementary to current design approaches, which focus on 

ensuring that mechatronic products are well-designed, since our scope is more oriented around 

design validation (to satisfy stakeholder requirements) than design verification (to follow the best 

design practices in ensuring highest product quality). Both of these focuses are indeed necessary. 

Although the design of an electrical assistance for a wheelchair is a typical example of mechatronic 

interdisciplinary design on which we successively applied our proposals, the method is not 

necessarily unique to mechatronics product development but may be applied in other 

interdisciplinary field of engineering. 
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In addition to incorporating most of the recent research on decision theory (in the aim of increasing 

the level of trust designers can show in the evaluation process), our research has been intended to 

improve the consistency between successive and more refined evaluation results through conducting 

the SE process in successive layers, thus yielding detailed insight into the design and taking 

advantage of both inter and intra SE-level traceability relations. 
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