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Abstract—This paper presents the Bayesian Optimistic Plan-
ning (BOP) algorithm, a novel model-based Bayesian reinforce-
ment learning approach. BOP extends the planning approach
of the Optimistic Planning for Markov Decision Processes (OP-
MDP) algorithm [10], [9] to contexts where the transition model
of the MDP is initially unknown and progressively learned
through interactions within the environment. The knowledge
about the unknown MDP is represented with a probability
distribution over all possible transition models using Dirichlet dis-
tributions, and the BOP algorithm plans in the belief-augmented
state space constructed by concatenating the original state vector
with the current posterior distribution over transition models.
We show that BOP becomes Bayesian optimal when the budget
parameter increases to infinity. Preliminary empirical validations
show promising performance.

I. INTRODUCTION

Learning algorithms for planning and decision making have
become increasingly popular in the past few years, and they
have attracted researchers among several types of applications
such as financial engineering [23], medicine [29], robotics
[31], [33], and many sub-domains of artificial intelligence
[38]. By collecting data about the underlying environment,
such algorithms have the ability to learn how to behave near-
optimally with respect to a given optimality criterion.

Several challenges need to be addressed when designing
such algorithms. In particular, one of the main difficulties is
to solve the so-called Exploration versus Exploitation (E/E)
dilemma: at a given time-step of the process, the algorithm
must both (i) take a decision which is of good quality regarding
information that has been collected so far (the exploitation
part) and (ii) open the door for collecting new information
about the (unknown) underlying environment in order to take
better decisions in the future (the exploration part). Such a
problem has been intriguing researchers for many decades:
in the sixties, the optimal control community was already
developing the dual control theory [18] (“dual” referring to
the dual objective E/E), proving that such a dilemma should
theoretically be solvable using Dynamic Programming [5].

In the end of the eighties, the popularization of Reinforce-
ment Learning (RL) [37] gave a new impulse to the research
community working on the design of efficient algorithms for
learning how to plan in unknown environments, and the E/E
dilemma was re-discovered in the light of the RL paradigm.

As a first step, heuristic-type of solutions were proposed
(ε−greedy policies, Boltzmann exploration), but later in the
end of the nineties, new horizons were opened thanks to tech-
niques coming from Bayesian statistics, leading to Bayesian
RL (BRL) [14], [36]. The main asset of BRL was to formalize
in an elegant manner the E/E dilemma so that one could
theoretically solve it. However, in practice, BRL approaches
revealed themselves to be almost intractable, except in the case
of k−armed bandit problems where the Bayesian approach
leads to the well known Gittins indices [20]. Despite compu-
tational challenges, BRL has become more and more popular
in the last decade [32], even if standard BRL algorithms were
still outperformed by classic RL algorithms (see for instance
[6]).

More recently, a new generation of algorithms based on tree
search techniques has lead to a huge breakthrough in RL in
terms of empirical performance. In particular, Monte Carlo
Tree Search (MCTS) techniques [13], [28], and in particular
the UCT algorithm (for “Upper Confidence Trees”, see [25])
have allowed to tackle large scale problems such as the game
of Go [19]. Such techniques are actually being exported to
the BRL field of research, leading to new efficient algorithms
[34], [3], [21].

The contribution detailed in this paper stands within this
context, in between model-based BRL and tree search algo-
rithms. We present the BOP algorithm (for “Bayesian Opti-
mistic Planning”), a novel model-based BRL algorithm. BOP
extends the principle of the OP-MDP algorithm (for “Opti-
mistic Planning for MDPs”, see [10], [9]) to the case were the
model of the environment is initially unknown and needs to
be learned through interactions. The optimistic approach for
planning proposed in the OP-MDP algorithm is derived in a
BA-MDP (for “Belief-Augmented MDP”, see [16]) obtained
by concatenating the actual state with a posterior distribution
over possible transition models. The algorithm builds a belief-
augmented planning tree by taking the current BA-state at the
root node ; it iteratively expands new nodes by adding to them,
for all possible actions, all subsequent BA-states. Since BOP is
designed to be used on-line, the number of expansions is fixed
to a given budget parameter n in order to limit the computation
time. An optimistic planning procedure is used to allocate
efficiently this budget by expanding the most promising BA-



states first. Such an approach is made tractable by assuming
one independent Dirichlet distribution for each state-action
pair, which allows to constrain the branching factor of the
exploration trees. This branching factor turns out to be the
same as in the OP-MDP framework. Like OP-MDP, BOP
can be reinterpreted as a branch-and-bound-type optimization
technique in a space of tree-policies, and the analysis of
OP-MDP also applies, showing that BOP leads to Bayesian-
optimal decisions as the budget parameter n converges towards
infinity. The approach is illustrated on the standard 5-state
chain MDP [36].

The remainder of this paper is organized as follows: in
Section II, we discuss some related work using the optimistic
principle in the context of MDPs. Section III formalizes the
model-based BRL problem considered in this paper. Section
IV presents the main contribution of this paper, the BOP
algorithm. In Section V, BOP is reinterpreted as a branch-
and-bound-type optimization technique, and its convergence
towards Bayesian optimality is stated in Section VI. Section
VII presents some simulation results and Section VIII con-
cludes.

II. RELATED OPTIMISTIC APPROACHES

The optimism in the face of uncertainty paradigm has al-
ready lead to several successful results (see [28] for a extensive
view of the use of the optimistic principles applied to planning
and optimization). Optimism has been specifically used in the
following contexts: (i) multi-armed bandit problems (which
can be seen as 1-state MDPs) [4], [8], (ii) planning algorithms
for deterministic systems [22] and stochastic systems [25],
[39], [7], [3], [10], [9], [40] when the system dynamics
/ transition model is known, and also (iii) optimization of
unknown functions only accessible through sampling [27].

The optimistic principle has also been used for address-
ing the E/E dilemma for MDPs when the transition model
is unknown and progressively learned through interactions
with the environment. For instance, the R-MAX algorithm
[6] assumes optimistic rewards for less visited transitions.
The UCRL / UCRL2 algorithms [30], [24] also adopt an
optimistic approach to face the E/E dilemma using upper
confidence bounds. Very recently, [12] proposed to solve the
E/E dilemma in a context where one can sample MDPs from
a known (computational) distribution, which has the flavor of
assuming a prior over transitions model (even if such a prior is
not updated afterwards in their paper). A multi-armed bandit
approach is used to identify efficient policies in a space of
formula-based policies, each policy being associated with an
arm.

The optimistic principle has also already been proposed
in the context of BRL. For instance, the BEB algorithm
(for “Bayesian Exploration Bonus”, see [26]) is a model-
based approach that chooses actions according to the current
expected model plus an additional reward bonus for state-
action pairs that have been observed relatively little. The idea
of adding such an exploration bonus is also proposed in the
BVR algorithm (for “Bounded Variance Reward”, see [35])

using a different type of bonuses. The BOSS algorithm (for
“Best Of Sampled Set”, see [2]) proposes a Thompson-like
approach by (i) sampling models from a posterior distribution
over transition models and (ii) combining the models into an
optimistic MDP for decision making. A more efficient variant
using an adaptive sampling process of the BOSS algorithm was
also proposed in [11]. More recently, the BOLT algorithm (for
“Bayesian Optimistic Local Transitions”, see [1]) also adopts
an optimistic principle by following a policy which is optimal
with respect to an optimistic variant of the current expected
model (obtained by adding artificial optimistic transitions).
Even more recently, the BAMCP algorithm (for “Bayes-
Adaptive Monte Carlo Planning”, see [21]) proposes a UCT-
like sparse sampling methods for Bayes-adaptive planning
wich manages to achieve empirical state-of-the-art perfor-
mance.

Like all methods listed in the previous paragraph, the BOP
algorithm stands within the class of methods that make use
of optimism in the face of uncertainty in the context of
model-based BRL. Unlike these methods, the BOP algorithm
proposes a tractable belief-lookahead approach in the sense
that the belief is updated during the planning phase. This
ensures that, whatever the number of transitions observed so-
far, BOP converges towards Bayesian optimality as the budget
parameter converges towards infinity.

III. PROBLEM FORMALIZATION

We first formalize the standard Reinforcement Learning
(RL) problem in Section III-A. In Section III-B, we focus
on the model-based Bayesian RL problem that we instantiate
using Dirichlet distributions in Section III-C.

A. Reinforcement Learning

Let M = (S,A, T,R) be a Markov Decision Process
(MDP), where the set S =

{
s(1), . . . , s(nS)

}
denotes the finite

state space and the set A =
{
a(1), . . . , a(nA)

}
the finite action

space of the MDP. When the MDP is in state st ∈ S at time
t ∈ N, an action at ∈ A is selected and the MDP moves
toward a next state st+1 ∈ S drawn according to a probability

T (st, at, st+1) = P (st+1|st, at) .

It also receives a instantaneous deterministic scalar reward
rt ∈ [0, 1]:

rt = R(st, at, st+1) .

In this paper, we assume that the transition model T is un-
known. For simplicity, we assume that the value R(s, a, s′) ∈
[0, 1] is known for any possible transitions (s, a, s′) ∈ S×A×
S, which is often true in practice, e.g. in control R is often
known to the user. Let π : S → A be a deterministic policy,
i.e. a mapping from states to actions. A standard criterion for
evaluating the performance of π is to consider its expected
discounted return Jπ defined as follows:

∀s ∈ S, Jπ(s) = E

[ ∞∑
t=0

γtR(st, π(st), st+1)
∣∣s0 = s

]



where γ ∈ [0, 1) is the so-called discount factor. An optimal
policy is a policy π∗ such that, for any policy π,

∀s ∈ S, Jπ
∗
(s) ≥ Jπ(s) .

Such an optimal policy π∗ is scored with an optimal return
J∗(s) = Jπ

∗
(s) which satisfies the Bellman optimality equa-

tion:

∀s ∈ S,
J∗(s) = max

a∈A

∑
s′∈S

T (s, a, s′) (R(s, a, s′) + γJ∗(s′)) .

Finding an optimal policy can thus be theoretically achieved
by behaving greedily with respect to the optimal state-action
value function Q∗ : S ×A → R defined as follows:

∀(s, a) ∈ S ×A,
Q∗(s, a) =

∑
s′∈S

T (s, a, s′) [R(s, a, s′) + γJ∗(s′)] .

One major difficulty in our setting resides in the fact that
the transition model T (·, ·, ·) is initially unknown and need
to be learned through interactions. This implicitly leads to a
trade-off between acting optimally with respect to the current
knowledge of the unknown transition model (exploitation) and
acting in order to increase the knowledge about the unknown
transition model (exploration).

B. Model-based Bayesian Reinforcement Learning

Model-based Bayesian RL proposes to address the explo-
ration/exploitation (E/E) trade-off by representing the knowl-
edge about the unknown transition model using a probability
distribution over all possible transition models µ. In this
setting, an initial prior distribution b0 is given and iteratively
updated according to the Bayes rule as new samples of the
actual transition model are generated. At any time-step t, the
so-called posterior distribution bt depends on the prior dis-
tribution b0 and the history ht = (s0, a0, . . . , st−1, at−1, st)
observed so-far. The Markovian property implies that the
posterior bt+1:

bt+1 = P (µ|ht+1, b0)

can be updated sequentially:

bt+1 = P (µ|(st, at, st+1), bt) .

The posterior distribution bt over all possible models is called
“belief” in the Bayesian RL literature.

A standard approach to − theoretically − solve Bayesian
RL problems is to consider a BA-state z obtained by con-
catenating the state with the belief z = 〈s, b〉 and solving
the corresponding BA-MDP [17], [15]. In the following, we
denote by B the BA-state space. This BA-MDP is defined by
a transition function T given by:

∀(z, z′) ∈ B2,∀a ∈ A,
T(z, a,z′) = P (z′|(z, a))

= P (b′|b, s, a, s′)E [P (s′|s, a)|b]
= 1{ht+1=(ht,a,s′)}E [P (s′|s, a)|b]

and a reward function R given by:

∀(z, z′) ∈ B2,∀a ∈ A, R(z, a,z′) = R(s, a, s′) .

A Bayesian optimal policy π∗ can be theoretically obtained
by behaving greedily with respect to the optimal Bayesian
state-action value function Q∗:

∀z ∈ B, π∗(z) = arg max
a∈A

Q∗(z, a)

where ∀z ∈ B,∀a ∈ A,

Q∗(z, a) =
∑
z′

T (z, a,z′) (R(z, a,z′) + γJ∗(z′)) .

Here, z′ are reachable belief state when taking action a in
belief state z and J∗(z) is the Bayesian optimal return:

J∗(z) = max
a∈A

Q∗(z, a) .

In this work, the goal is to take decisions that are near-
optimal in the Bayesian meaning, i.e. we want to find a policy
which is as close as possible as π∗.

C. Dirichet distribution-based BRL
One needs to define a class of distributions. A most usual

approach is to consider one independent Dirichlet distribution
for each state-action transition. We obtain a posterior b whose
probability density function is:

d(µ; Θ) =
∏

(s,a)∈S×A

D
(
µs,a; Θ(s, a, ·)

)
where D(·; ·) denotes a Dirichlet distribution, Θ(s, a, s′) de-
notes the number of observed transitions from (s, a) ∈ S ×A
towards every s′ ∈ S and Θ(s, a, ·) denotes the vector of
counters of observed transitions:

Θ(s, a, .) =
[
Θ
(
s, a, s(1)

)
, . . . ,Θ

(
s, a, s(nS)

)]
and Θ is the matrix that contains all Θ(s, a, .) s ∈ S, a ∈
A. In the following, we denote by b (Θ) such a Dirichlet
distribution-based posterior. The resulting posterior distribu-
tion b (Θ) satisfies the following well-known property:

E [P (s′|s, a)|b (Θ)] =
Θ(s, a, s′)∑

s′′∈SΘ(s, a, s′′)

and the Bayesian update under the observation of a transition
(s, a, s′) ∈ S ×A×S is reduced to a simple increment of the
corresponding counter:

Θ(s, a, s′)← Θ(s, a, s′) + 1 .

In such a context, the Bayesian optimal state-action value
function writes:

Q∗(〈s, b (Θ)〉, a) =
∑
s′∈S

Θ(s, a, s′)∑
s′′∈SΘ(s, a, s′′)

(
R(s, a, s′)

+γJ∗(〈s′, b
(
Θ′s,a,s′

)
〉
)

where Θ′s,a,s′ is such that:

Θ′s,a,s′(x, y, x
′) =

{
Θ(x, y, x′) + 1 if (x, y, x′) = (s, a, s′),

Θ(x, y, x′) otherwise.



IV. THE BOP ALGORITHM

In this section, we describe our contribution, the Bayesian
Optimistic Planning (BOP) algorithm. We first formalize the
notion of BA-planning trees in Section IV-A. The BOP al-
gorithm is based on an optimistic approach for expanding a
BA-planning tree that we detail in Section IV-B.

A. BA-planning trees

Each node in a BA-planning tree is denoted by x and
labeled by a BA-state z = 〈s, b (Θ)〉. Many nodes may
have the same label z, for this reason we distinguish nodes
from their belief states labels. A node x is extended by
adding to it, for each action a ∈ A, and then for each
z′ =

〈
s′, b

(
Θ′s,a,s′

)〉
, a child node x′ labeled by z′. The

branching factor of the tree is thus nS ×nA. Let us denote by
C(x, a) the set of children x′ corresponding to action a, and
by C(x) the union:

C(x) =
⋃
a∈A
C(x, a) .

B. Optimistic planning in a BA-state space

The BOP algorithm builds a belief-augmented planning
tree starting from a root node that contains the belief state
where an action has to be chosen. At each iteration, the
algorithm actively selects a leaf of the tree and expands it
by generating, for every action, all possible successor belief-
augmented states. The algorithm stops growing the tree after
a fixed expansion budget n ∈ N \ {0} and returns an action
on the basis of the final tree. The heart of this approach is
the procedure to select leaves for expansion. To this end, we
design an optimistic strategy that assumes the best possible
optimal values compatible with the belief-augmented planning
tree generated so far. To formalize this optimistic strategy, let
us first introduce some notations;
• The entire tree is denoted by T , and the set of leaf nodes

by L(T );
• A node of the tree x is labeled with its associated belief-

augmented state z = 〈s, b (Θ)〉. A child node is denoted
by x′ (and labeled by z′ =

〈
s′, b

(
Θ′s,a,s′

)〉
where a is

the action that was taken to jump from z to z′) and is
also called next state.

• The depth of a node x is denoted by ∆(x).
An illustration of a belief-augmented planning tree is given in
Figure 1.

Expansion criterion. For each x ∈ T (labeled by z =
〈s, b (Θ)〉) and a ∈ A, we recursively define the B-values
B(x, a) as follows:

∀x ∈ L(T ),∀a ∈ A , B(x, a) =
1

1− γ
,

∀x ∈ T \ L(T ),∀a ∈ A , B(x, a) =∑
x′∈C(x,a)

T (z, a,z′)

(
R (z, a,z′) + γmax

a′∈A
B(x′, a′)

)
.

Each B-value B(x, a) is an upper bound for the optimal
Bayesian state-action value function Q∗(〈s, b(Θ)〉, a).
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Fig. 1. Illustration of a BA-planning tree. Squares are BA-state nodes whereas
circles represent decisions.

To obtain a set of candidate leaf nodes for expansion, we
build an optimistic subtree by starting from the root and
selecting at each node only its children that are associated
to optimistic actions:

a† (x) ∈ arg max
a∈A

B (x, a)

(here ties are broken always the same). We denote by T † and
L
(
T †
)

the resulting optimistic subtree and its corresponding
set of leaves. An illustration of such an optimistic subtree is
given in Figure 2

To choose one leaf node to expand among the candidates
L
(
T †
)
, we propose to maximize the potential decrease of the

B-value at the root of the belief state tree B
(
x0, a

†(x0)
)
.

Such a B-value can be written more explicitly as an expected
optimistic return obtained along the paths from the root to all
the leaf nodes in the optimistic subtree:

B(x0, a
†(x0)) =

∑
x∈L(T †)

P(x)

(
R̄(x) +

γ∆(x)

1− γ

)
where P(x) is the probability to reach x ∈ L

(
T †
)

(product
of probabilities along the path) and R̄(x) is the discounted
sum or reward gathered along the path. If we denote the path
by yx

0 ,y
x
1 , . . . ,y

x
∆(x) for a given x and zx0 , z

x
1 , . . . ,z

x
∆(x) the

associated sequence of labels (yx
0 = x0 and yx

∆(x) = x), we



obtain:

P(x) =

∆(x)−1∏
d=0

T
(
zxd , a

† (yx
d ) , zxd+1

)
R̄(x) =

∆(x)−1∑
d=0

γdR
(
zxd , a

† (yx
d ) , zxd+1

)
(P and R̄ are both defined on nodes). Consider the contribu-
tion of a single leaf node to Equation 1:

P(x)

(
R̄(x) +

γ∆(x)

1− γ

)
.

If this leaf node were expanded, its contribution would de-
crease the most if the rewards along the transitions to all the
new children were 0. In that case, its updated contribution
would be P(x)

(
R̄(x) + γ∆(x)+1

1−γ

)
, and its contribution would

have decreased by:

P(x)

(
R̄(x) +

γ∆(x)

1− γ
− R̄(x)− γ∆(x)+1

1− γ

)
= P(x)γ∆(x) .

So, finally, the rule for selecting a node to expand xe is the
following:

xe ∈ arg max
x∈L(T †)

P(x) γ∆(x) .

Algorithm 1 The BOP algorithm.

input initial belief state z0 =
〈
s0, b

(
Θ(0)

)〉
;

a budget parameter n;
output a near-Bayesian optimal action ãn(z0);
initialize T0 ← {x0};
for t = 0, . . . , n− 1 do

starting from x0, build the optimistic subtree T †t ;
select leaf to expand: xt ← arg max

x∈L(T †t )
P(z)γ∆(x);

expand xt and obtain Tt+1;
end for
return ãn(z0) ∈ arg max

a∈A
ν(x0, a)

run action ãn(z0);
observe a subsequent state s̃;

update the initial vector of counters:

Θ(0)(s0, ãn(z0), s̃)← Θ(0)(s0, ãn(z0), s̃) + 1

Action selection at the root. Similarly to the B-values, we
define the ν-values:

∀x ∈ L(T ),∀a ∈ A , ν(x, a) = 0,

∀x ∈ T \ L(T ),∀a ∈ A , ν(x, a) =∑
x′∈C(x,a)

T (z, a,z′)

(
R (z, a,z′) + γmax

a′∈A
ν(x′, a′)

)

The difference from the B-values is that its starts with 0 values
at the leaves. At the end, the root action ãn(z0) is selected as
follows:

ãn(z0) ∈ arg max
a′∈A

ν(x0, a
′) .

Maximizing the lower bound ν(x0, ·) can be seen as taking a
cautious decision. We give in Table 1 a tabular version of the
BOP algorithm.

Finally, observe that the branching factor of the belief-
augmented planning trees is nS × nA, which is equal to the
branching factor of the planning trees used in the original
OP-MDP algorithm. The only additional complexity of the
BOP algorithm is that one needs to propagate and update the
counter Θ in the belief-augmented planning tree. Also note
that in real-life applications, it is often the case that the set of
reachable states starting from a given state is much smaller
than S. If such a priori knowledge is available, it can be
exploited by BOP, and the branching factor becomes n′S×nA
with n′S � nS .

V. REINTERPRETATION OF THE BOP ALGORITHM

In this section, we reinterprete the BOP algorithm similarly
to [9] as a branch-and-bound-type optimization in the space
of BA-planning tree-policies (tree-policies for short). A tree-
policy h is an assignment of actions to a subtree Th of the
infinite belief-augmented planning tree T∞:

h : Th → A,

recursively taking into account only the nodes reached under
the action choices made so far:

Th = {x ∈ T∞|x = x0 or ∃x′ ∈ Th,x ∈ C(x′, h(x′)) }

where actions h(x) are assigned as desired. The branching
factor of Th is at most nS . Denote the Bayesian expected
return of the tree-policy h by v(h), and the optimal, maximal
Bayesian return by v∗.

A class of tree-policies, H : TH → A, is obtained similarly
but restricting the procedure to nodes in some finite tree Tt
considered by BOP, so that all action assignments below Tt
are free. H is a set of tree-policies, where one such tree-
policy h ∈ H is obtained by initializing the free actions. Note
that TH = Tt ∩ Th for any h ∈ H . Note that tree-policies
h are more general than the usual stationary, deterministic
policies that would always take the same action in a given
belief-augmented state z.

The expected Bayesian return of any tree-policy h belonging
to some class H is lower-bounded by:

νH =
∑

x∈L(TH)

P(x)R̄(x)

because the rewards that h can obtain below the leaves of
L(TH) are lower-bounded by 0. Since rewards are also upper-
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Fig. 2. Illustration of an optimistic subtree in the case nS = nA = 2. Parts of the original tree that do not
belong to the optimistic subtree are in light gray / white.

bounded by 1, an upper bound on the value of h ∈ H is:

BH =
∑

x∈L(TH)

P(x)

[
R̄(x) +

γ∆(x)

1− γ

]
= νH +

∑
x∈L(TH)

c(x) = νH + diam(H)

where we introduce the notations:

c(x) = P(x)
γ∆(x)

1− γ
,

the contribution of a leaf x to the difference between the upper
and lower bounds, and

diam(H) =
∑

x∈L(TH)

c(x)

the diameter of H . Note that diam(H) = sup
h,h′∈H

δ(h, h′)

where δ is a metric defined over the space of tree-policies:

δ(h, h′) =
∑

x∈L(Th∩Th′ )

c(x) .

Using these notations, BOP can be reformulated as follows.
At each iteration, the algorithm selects an optimistic tree-
policy class which maximizes the upper bound among all
classes compatible with the current tree Tt:

H†t ∈ arg max
H∈Tt

BH

where H ∈ Tt means that TH ⊆ Tt. The optimistic class is
explored deeper, by expanding one of its leaf nodes (making
the action choices for that note definite). The chosen leaf is
the one maximizing the contributions c(x) to the uncertainty
diam

(
H†t

)
on the value of policies h ∈ H†t :

xt ∈ arg max

x∈L
(
T
H
†
t

) c(x) .

Under the metric δ, this can also be seen as splitting the set of
tree policies H along the longest edge, where H is a hyperbox
with

∣∣∣L(TH†t )∣∣∣ dimensions, having a length of c(x) along
dimension x. The algorithm continues at the next iteration
with the new, resulting tree Tt+1. After n iterations, a policy
class is chosen, by maximizing the lower bound :

H∗n ∈ arg max
H∈Tn

νH .

The action ãn(z0) returned by BOP is then the first action
chosen by H∗n.

VI. THEORETICAL RESULTS

Let Rn(z0) be the Bayesian simple regret:

Rn(z0) = J∗(z0)−Q∗(z0, ãn(z0)) ,

i.e. the loss - with respect to the Bayesian optimal policy
- of taking action ãn(z0)) instead of π∗(z0). We have the
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Fig. 3. The standard 5-state chain problem.

Algorithm Performance
BEB (β = 150) [26] 165.2
BEETLE [32] 175.4
BOP (n = 50) 255.6
BOLT (η = 150) [1] 278.7
BOLT (η = 7) [1] 289.6
BOP (n = 100) 292.9
BOSS [2] 300.3
BOP (n = 200) 304.6
EXPLOIT [32] 307.8
BOP (n = 500) 308.8
BEB (β = 1) [26] 343.0
BVR [35] 346.5
Optimal strategy 367.7

TABLE I
PERFORMANCE OF BOP COMPARED WITH OTHER MODEL-BASED BRL

APPROACHES.

following asymptotic result:
Proposition 1:

∀z0 ∈ B, lim
n→∞

Rn(z0) = 0 .

For finite values of n, we have:
Proposition 2:

∀z0 ∈ B,∃β(z0) ∈ R+,

Rn(z0) =

 Õ
(
n
− 1
β(z0)

)
if β(z0) > 0

O
(

exp
(
−
(
n
a

) 1
b

))
if β(z0) = 0

where β(z0) ≥ 0 depends on the belief-augmented state z0

and a, b > 0 are some constants. Those two propositions
directly follow from the analysis of the OP-MDP algorithm
[9], that we apply here in the context of a BA-MDP (which
is also a MDP). As the number of observed transitions goes
to infinity, the distribution over transition models converges
towards a Dirac centered on the actual MDP, and the β(z0)
should converges towards the parameter β(s0) of the under-
lying MDP, meaning that the complexity of planning in the
BA-MDP becomes similar to the complexity of planning in
the underlying MDP.

VII. EXPERIMENTAL ILLUSTRATION

We compare the BOP algorithm with other model-based
Bayesian RL algorithms on the standard 5-state chain problem
[36] which is one of the most usual benchmarks for evaluating
BRL algorithms. In this benchmark, the state space contains 5
states (nS = 5), and two actions are possible (nA = 2). Taking

Fig. 4. Empirical probability of taking the optimal decision (action a(1))
over time (note that action a(1) is optimal for all states).

action a(1) in state s(i) leads to jump towards state s(i+1),
except in state s(5) where it makes the agent stay in s(5) and
receive a +1 reward. Taking action a(2) makes the agent go
back to state 1 and get a reward of .2. With probability p = .2,
taking an action has the effect of the other action. The optimal
strategy is to take action 1 whatever the state. An illustration
is given in Figure 3.

The transition model is unknown to the agent. In our
experiments, we consider a full prior which means that we do
not incorporate any specific prior knowledge (all transitions are
possible). In the particular context of Dirichlet distributions,
the full prior hypothesis is implemented by initializing Θ(0)

as follows:

∀(s, a, s′) ∈ S ×A× S, Θ(0)(s, a, s′) = 1 .

We have run 500 times the BOP algorithm starting from
state s0 = 1 and applying BOP decisions during 1000
time-steps for four different values of the budget parameter
n ∈ {50, 100, 200, 500}. The empirical average performance
(in terms of cumulative undiscounted received rewards) of the
BOP algorithm are give in Table I with a 95% confidence
interval. We also display in Table I the performances obtained
by other BRL algorithms in the very same settings (obtained
from the literature).

We first observe that the performances of the BOP algorithm
increase with n. Then, we observe that the BOP algorithm
with n = 500 offers performances that are better than other
algorithms, except those using exploration bonuses such as
BEB (with a tuned value of its parameter β) and BVR which
outperform the BOP algorithm on this benchmark. Do not
forget that Bayesian optimality differs from optimality, so
it is not suprising that some algorithms may be here more
efficient than BOP with n = 500, which is likely to be close to
Bayesian optimality. We also display in Figure 4 the evolution
over time of the empirical probability (computed over the



500 runs) that the BOP algorithm takes optimal decision for
n ∈ {50, 100, 200, 500}. For information, the computation of
one 1000 time-steps run of the BOP algorithm takes about 10
hours (resp. 1 hour, 20 minutes and 5 minutes) on a standard
recent one-core linux machine with n = 500 (resp. n = 200,
n = 100 and n = 50) using Matlab R©.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed BOP (for “Bayesian Optimistic Plan-
ning”), a new model-based Bayesian reinforcement learning
algorithm that extends the principle of the OP-MDP algorithm
[10], [9] to the context where the transition model is initially
unknown and has to be learned through interactions within the
environment.

In this paper, we have considered a finite state space,
but one could extend BOP to infinite state space settings
by constraining the branching factor of the belief-augmented
planning tree. Another open and interesting research direction
is to analyze the meaning of the near-optimality exponent
of the belief-augmented MDP and its relationship with the
exponent in the underlying MDP.
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