<i>In situ</i> reduction and evaluation of anode supported single chamber solid oxide fuel cells - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Power Sources Année : 2013

In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells

Résumé

Single chamber anode-supported fuel cells are investigated under several methane-oxygen-nitrogen atmospheres at intermediate temperatures (500°C-700°C). Ce0.9Gd0.1O1.95 (CGO) is chosen as electrolyte and deposited by screen-printing onto NiO-CGO anode pellets. A cathode composed of 70 wt% La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and 30 wt% of CGO is screen-printed onto the electrolyte. Thermogravimetric analyses of anode reduction are performed at 700 °C. Carbon deposition is observed under diluted methane but a successful reduction is obtained after an initialization under diluted methane followed by a final treatment under methane-to-oxygen ratio (Rmix) of 2. Anode-supported fuel cells are investigated regarding the working temperature and Rmix. Two types of cells are prepared with modifications of the electrolyte microstructure. For both cells tested, the Open Circuit Voltage (OCV), the power density and the fuel utilization increase when Rmix and temperature decrease. The electrolytes of both cells have a porous microstructure and the electrolyte of the second cell, with the highest thickness, brings better performances. At 600 °C for Rmix = 0.6, the maximum power density is improved from 60 for the first cell to 160 mW cm−2 for the second cell. Comparing the fuel utilization, it increases from 3% for the first cell to 6% for the second one for the same testing conditions.
Fichier principal
Vignette du fichier
DR-JPS-242-Orig.pdf (1.63 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00840106 , version 1 (01-07-2013)

Identifiants

Citer

Damien Rembelski, Mathilde Rieu, Lionel Combemale, Jean-Paul Viricelle. In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells. Journal of Power Sources, 2013, 242 (15), pp.811-816. ⟨10.1016/j.jpowsour.2013.05.118⟩. ⟨hal-00840106⟩
72 Consultations
64 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More