Improved Three-Way Split Formulas for Binary Polynomial and Toeplitz Matrix Vector Products

Murat Cenk 1 Christophe Negre 2, 3 Anwar Hasan 1
3 DALI - Digits, Architectures et Logiciels Informatiques
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, UPVD - Université de Perpignan Via Domitia
Abstract : In this paper, we consider three-way split formulas for binary polynomial multiplication and Toeplitz matrix vector product (TMVP). We first recall the best known three-way split formulas for polynomial multiplication: the formulas with six recursive multiplications given by Sunar in a 2006 IEEE Transactions on Computers paper and the formula with five recursive multiplications proposed by Bernstein at CRYPTO 2009. Second, we propose a new set of three-way split formulas for polynomial multiplication that are an optimization of Sunar's formulas. Then, we present formulas with five recursive multiplications based on field extension. In addition, we extend the latter formulas to TMVP. We evaluate the space and delay complexities when computations are performed in parallel and provide a comparison with best known methods.
Type de document :
Article dans une revue
IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2013, 62 (7), pp.1345-1361
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00839945
Contributeur : Christophe Negre <>
Soumis le : lundi 1 juillet 2013 - 11:24:43
Dernière modification le : mardi 10 octobre 2017 - 11:07:40

Identifiants

  • HAL Id : hal-00839945, version 1

Collections

Citation

Murat Cenk, Christophe Negre, Anwar Hasan. Improved Three-Way Split Formulas for Binary Polynomial and Toeplitz Matrix Vector Products. IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2013, 62 (7), pp.1345-1361. 〈hal-00839945〉

Partager

Métriques

Consultations de la notice

95