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A SET-OPERAD OF FORMAL FRACTIONS

AND DENDRIFORM-LIKE SUB-OPERADS

FRÉDÉRIC CHAPOTON, FLORENT HIVERT, AND JEAN-CHRISTOPHE NOVELLI

Abstract. We introduce an operad of formal fractions, abstracted from the Mould
operads and containing both the Dendriform and the Tridendriform operads. We
consider the smallest set-operad contained in this operad and containing four spe-
cific elements of arity two, corresponding to the generators and the associative
elements of the Dendriform and Tridendriform operads. We obtain a presentation
of this operad (by binary generators and quadratic relations) and an explicit com-
binatorial description using a new kind of bi-colored trees. Similar results are also
presented for related symmetric operads.
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The main theme of this article is about combinatorial and algebraic descriptions of
some set-operads. The notion of operad has its historical roots in algebraic topology,
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and has become a useful and classical tool in this field. More recently, operads have
also been considered from a more algebraic point of view, namely in the monoidal
categories of vector spaces and chain complexes instead of the monoidal category of
topological spaces. The homology functor is a natural way to pass from topological
operads to algebraic operads.

But operads can also be considered with a combinatorial state of mind, and the
natural ambient category is then the monoidal category of finite sets. If one is given
an operad P in the category of vector spaces, there is a simple idea to obtain an
operad in the category of finite sets: choose a finite set of elements of P and consider
the closure of this set under the composition maps of P . One can then try to count
the finite sets obtained in this way, and to describe their elements in an explicit way.

As a side remark, let us note that there is an algebraic motivation for doing this,
related to categorification. If the underlying vector spaces of an operad could be
considered as the Grothendieck groups of some Abelian categories, and composition
maps as coming from functors between these categories, then elements of the operad
would correspond to objects of these categories. Finding subsets of elements closed
under the composition maps and describing their combinatorics could be a way to
find hints on the nature of objects in the Abelian categories.

This article started with the aim to apply this closure procedure to the generators
and their sums, in two operads in the category of vector spaces introduced by J.-
L. Loday, namely the dendriform [19] and tridendriform operads [20]. It has been
proved in [2] and [5] (see also [21]) that these operads can be considered as sub-
operads of two different operads of fractions. Our problem is therefore to describe
combinatorially the fractions that can be obtained by iterated compositions of the
fractions corresponding to generators of Dend or T ridend and their sums.

Because these two operads of fractions have very similar composition maps, one
can define a set-operad of formal fractions FF in which the closure problems for Dend
and T ridend can be considered simultaneously. Indeed, the chosen subset of Dend
is contained in the chosen subset of T ridend , when both are considered as formal
fractions. One is therefore lead to the following question: describe the closure of four
fractions in FF(2) (associated with three generators of T ridend and their sum) under
the compositions of the operad FF . This defines a set-operad, denoted by FF4.

Our main results are a presentation by binary generators and quadratic relations
and an explicit combinatorial description of FF4 using a new kind of bicolored trees,
called the red and white trees.

The main interest of those trees is to provide simple ways to answer two natural
questions: compute the automorphism group of a given element and check if a given
tree is in a given set-operad. Indeed, on the description of an element as a composition
of generators, none of these questions can easily be answered, and on the description
as a fraction, only the automorphism group can effortlessly be seen.

We also consider the similar closure properties for symmetric operads (with actions
of the symmetric groups) and obtain a symmetric analog of the isomorphism between
FF4 and the operad of red and white trees.
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The article is organized as follows:
In Section 1, we briefly recall general facts about operads, dendriform and triden-

driform algebras.
In section 2, we recall two known operads on fractions, introduce the operad of

formal fractions, and describe two inclusions of formal fractions in fractions.
In section 3, we describe the images of the chosen elements of the Dendriform and

Tridendriform operads in formal fractions and define the operad FF4 as the closure
of these images. We then introduce an operad GR4 given by generators and relations,
and proceed to prove that it is isomorphic to FF4, using rewriting techniques.

In section 4, we introduce an operad RW on the sets of red and white trees, its
composition maps being given by combinatorial rules. We prove that this operad
is isomorphic to the operad GR4 by comparing their generating series. We then
prove the main theorem, which states that all three operads FF4, GR4 and RW are
isomorphic.

In section 5, we use the previous construction to consider various sub-operads
generated by some subsets of the four chosen generators.

In section 6, we extend some of the previous results to the closure as symmetric
operads (instead of non-symmetric operads). In particular, we obtain a symmetric
analog of the isomorphism between FF4 and RW.

In section 7, we sketch, mostly without proofs, an extension of all this work to
a set-operad on 6 generators inside a more general kind of formal fractions and its
relation with a more general kind of red and white trees.

Acknowledgment. This research was partially supported by projet ANR-12-BS01-
0017. The authors thank the Centro di Giorgi (Pise) for its hospitality. This research
was driven by computer exploration, using the open-source mathematical software
Sage [27] and its algebraic combinatorics features developed by the Sage-Combinat

community [28].

1. Background

1.1. Operads. We will consider in this article various kinds of operads. Let us fix
our terminology.

First, we will use the word operad to mean a non-symmetric operad, and otherwise
talk of symmetric operad.

An operad P in a monoidal category with tensor product ⊗ is a collection of objects
P (n) for integers n ≥ 1, endowed with composition maps ◦i from P (m) ⊗ P (n) →
P (m + n − 1) for all integers m,n ≥ 1 and 1 ≤ i ≤ m satisfying appropriate
associativity axioms. One also requires a unit in P (1). The detailed definition can
be found in many references, for example [].

Symmetric operads are slightly more complex structures. A symmetric operad
can be defined as a collection P (n) with an action of the symmetric group Sn on
P (n), these actions being moreover compatible in the appropriate sense with the
composition maps. An alternative definition can be given using the language of
species [1]: a symmetric operad is then a species P and natural composition maps
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◦i from P (I)⊗ P (J) → P (I \ {i} ⊔ J) for all finite sets I and J and every element
i ∈ I.

Almost all operads that will be considered are operads in the category of sets
endowed with the cartesian product. They will sometimes be called set-operads to
avoid ambiguity.

1.2. The dendriform and tridendriform operads. The notion of a dendriform
algebra has been introduced by Loday, in a sequence of articles involving several
other new kinds of algebras, including Leibniz algebras. A dendriform algebra is an
associative algebra where the associative product ⊙ can be written as a sum of two
bilinear operations:

(1) x⊙ y = x ≺ y + x ≻ y,

in such a way that ≺ and ≻ satisfy three axioms. Conversely, these three axioms
on the operations ≺ and ≻ imply that the ⊙ product is associative. Loday has
described the free dendriform algebras, and therefore the dendriform operad, using
planar binary trees. For more details, the reader may consult [19].

The notion of tridendriform algebra is a variation on the same idea, where the
associative product is cut into three pieces

(2) x⊙ y = x ≺ y + x ◦ y + x ≻ y,

in such a way that ◦ is associative and ≺, ◦ and ≻ satisfy 6 other axioms. The free
algebras are then described by planar trees instead of planar binary trees. For more
details, see for example [20].

2. The operads of formal fractions

Inspired by Écalle’s mould calculus [8], the first author defined in [2] an operad
structureMould0 on the vector spaces

(3) Mould0(n) := Q (u1, . . . , un)

of rational fractions in the variables {u1, . . . , un}.
The composition is defined for F ∈Mould0(m) and G ∈Mould0(n) by

(4) F ◦i G := Si,n F (u1, . . . , ui−1, Si,n, ui+1, . . . , um+n−1)G(ui, . . . , ui+n−1)

where Si,n = ui + ui+1 + · · · + ui+n−1. It was proved in [2] that the sub-operad
of Mould0 generated by the fractions 1

u1(u1+u2)
and 1

u2(u1+u2)
is isomorphic to the

dendriform operad.
The natural action on the symmetric groups endows Mould0 with a symmetric

operad structure. The symmetric sub-operad generated by 1
u1(u1+u2)

is isomorphic to

the Zinbiel operad [5].
A very similar operad calledMould1, over the same vector spaces, has been defined

in [25]. InMould1, the composition is defined by

(5) F ◦i G := (Pi,n − 1)F (u1, . . . , ui−1, Pi,n, ui+1, . . . , um+n−1)G(ui, . . . , ui+n−1)
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where Pi,n = uiui+1 . . . ui+n−1. The operad Mould1 contains the tridendriform op-
erad, as the sub-operad generated by

(6)
1

(u1 − 1)(u1u2 − 1)
,

1

(u2 − 1)(u1u2 − 1)
, and

1

u1u2 − 1
.

It is also a symmetric operad and its symmetric sub-operad generated by 1
(u1−1)(u1u2−1)

and 1
u1u2−1

is called CTD1 by Loday [22].
Interestingly, these two operads are particular cases of a family of operads indexed

by a parameter λ defined by Loday in [21] and denoted by λ-RatFct. He showed
that Mould0 and 0-RatFct are isomorphic. In [25], it is showed that Mould1 and
1-RatFct are isomorphic too.

2.1. Formal fractions. Let us denote by SET(O), the set-operad obtained from
an operad O by forgetting about its linear structure. In the present paper, we deal
with some sub-operads of SET(Mould0) and SET(Mould1). It will be handy, as an
intermediate tool, to encode all computations by means of a common sub-operad of
both, namely the operad of formal fractions FF .

Let FF(n) be the set of fractions whose numerator and denominator are products
of formal symbols [S] where S is any non-empty subset of {1, . . . , n}. As usual, we
simplify the fraction if the same symbol appears on top and bottom. For readability,
[{1, 3, 5, 6}] is written [1356]. The empty product is denoted by 1, which should not
be confused with the symbol [1].

For F ∈ FF(n) and i1, . . . , in integers, we write F (i1, . . . , in) the fraction where k
is replaced by ik. We extend naturally the definition to the case where ik is itself a
set by taking union. For example,

(7)
[1][34]

[13][2]
(2, 5, 6, 9) =

[2][69]

[26][5]
and

[1][34]

[13][2]
(2, 5, {6, 8}, 9) =

[2][689]

[268][5]
.

Let F ∈ FF(m) and G ∈ FF(n). Define composition F ◦i G ∈ FF(m+ n− 1) by

(8) F ◦i G := [Si,n]F (u1, . . . , xi−1, Si,n, ui+1, . . . , um+n−1)G(ui, . . . , ui+n−1)

where Si,n := {i, i+ 1, . . . i+ n− 1}.
For example, using

[123]

[1234][12][2][3]
(1, {2, 3, 4, 5}, 6, 7) =

[123456]

[1234567][12345][2345][6]
,(9)

1

[12][34]
(2, 3, 4, 5) =

1

[23][45]
,(10)

one finds that

[123]

[1234][12][2][3]
◦2

1

[12][34]
=

[123456]

[1234567][12345][6][23][45]
.(11)

1standing for Commutative TriDendriform
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Similarly,

[123]

[1234][12][2][3]
◦1

1

[12][34]
=

[123456][1234]

[1234567][12345][5][6][12][34]
.(12)

Proposition 2.1. (1) The family FF := (FF(n))n∈N together with the composi-
tions ◦i is a set-operad.

(2) The map φ0 sending [S] to
∑

i∈S ui and formal fractions to fractions is an

injective morphism of set-operads from FF to SET(Mould0).
(3) The map φ1 sending [S] to

(
∏

i∈S ui

)

− 1 and formal fractions to fractions is

an injective morphism of set-operads from FF to SET(Mould1).

Proof. It is clear from the definitions of compositions in Equations (4), (5) and (8)
that both maps φ0 and φ1 are injective and commute with all compositions. Therefore
FF itself is an operad.

The symmetric groups act naturally onMould0,Mould1 and FF , endowing these
with symmetric operad structures. We shall denote these operads by adding a Σ as
exponent.

Proposition 2.2. The maps φ0 and φ1 are respectively injective morphisms from

FFΣ toMould0Σ andMould1
Σ
.

3. Dendriform and tridendriform operads in formal fractions

Recall that according to [2], the map ≻ 7→ 1
u1(u1+u2)

and ≺ 7→ 1
u2(u1+u2)

is an

injective morphism from the dendriform operad toMould0. Note that by definition

(13) φ0

(

1

[1][12]

)

=
1

u1(u1 + u2)
and φ0

(

1

[2][12]

)

=
1

u2(u1 + u2)
.

Therefore, the sub-operad of SET(Dend) generated by ≻ and ≺ is isomorphic to
the sub-operad of FF generated by 1

[1][12]
and 1

[2][12]
. Moreover, the associative product

≺ + ≻ of Dend is associated to

(14)
1

u1(u1 + u2)
+

1

u2(u1 + u2)
=

1

u1u2

= φ0

(

1

[1][2]

)

,

and therefore also lives in FF .
In a similar way, according to [25], the tridendriform operad is a sub-operad of

Mould1 via the map

≻ 7→
1

(u1 − 1)(u1u2 − 1)
= φ1

(

1

[1][12]

)

,(15)

≺ 7→
1

(u2 − 1)(u1u2 − 1)
= φ1

(

1

[2][12]

)

,(16)

◦ 7→
1

(u1u2 − 1)
= φ1

(

1

[12]

)

.(17)
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Moreover

(≺ + ◦+ ≻) 7→
1

(u1 − 1)(u2 − 1)
= φ1

(

1

[1][2]

)

.(18)

So we can study both the dendriform and tridendriform cases by studying the case
of formal fractions:

Definition 3.1. We denote by FF4 the sub-set-operad of FF generated by the frac-
tions

(19) F≻ :=
1

[1][12]
, F≺ :=

1

[2][12]
, F◦ :=

1

[12]
, F⊙ :=

1

[1][2]
.

The main goal of this paper is to understand FF4 and several of its sub-operads.

3.1. Generators and relations. The first problem is to determine the relations
between the four generators. As we shall see, it turns out that the relations are all
in degree 2. They are

(20)

1

[12][2]
◦1

1

[12][1]
=

1

[123][1][3]
=

1

[12][1]
◦2

1

[12][2]

1

[12]
◦1

1

[12]
=

1

[123]
=

1

[12]
◦2

1

[12]

1

[12]
◦1

1

[12][1]
=

1

[123][1]
=

1

[12][1]
◦2

1

[12]

1

[12]
◦1

1

[12][2]
=

1

[123][2]
=

1

[12]
◦2

1

[12][1]

1

[12][2]
◦1

1

[12]
=

1

[123][3]
=

1

[12]
◦2

1

[12][2]

1

[1][2]
◦1

1

[1][2]
=

1

[1][2][3]
=

1

[1][2]
◦2

1

[1][2]

1

[12][2]
◦1

1

[12][2]
=

1

[123][2][3]
=

1

[12][2]
◦2

1

[1][2]

1

[12][1]
◦1

1

[1][2]
=

1

[123][1][2]
=

1

[12][1]
◦2

1

[12][1]

Note that they correspond to the tridendriform relations:

(21)

(x≻y)≺z = x≻(y≺z) ,

(x ◦ y) ◦ z = x ◦ (y ◦ z) ,

(x≻y) ◦ z = x≻(y ◦ z) ,

(x≺y) ◦ z = x ◦ (y≻z) ,

(x ◦ y)≺z = x ◦ (y≺z) ,

(x⊙ y)⊙ z = x⊙ (y ⊙ z) ,

(x≺y)≺z = x≺(y ⊙ z) ,

(x⊙ y)≻z = x≻(y≻z) .
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To show that these are the only relations of FF4, we need to consider the quotient
of the free set-operad on {≺,≻, ◦, ⊙} by these relations. Recall that the free operad
on a set G of binary generators is the set of binary trees with nodes labelled by the
elements of G. To simplify the notations, when drawing a tree we never write the
leaves of the tree: for example, the following trees are equal and we shall draw the
first one in the rest of the paper:

(22) ≺ ◦1 ⊙ =
≺

⊙
=

≺

⊙

Definition 3.2. Let us denote by GR4 the quotient of the free set-operad G4 generated
by { ≺ , ≻ , ◦ , and ⊙ } by the relations:

(23)

≺

≻
=
≻

≺

◦

◦
=
◦

◦

◦

≻
=
≻

◦

◦

≺
=
◦

≻

≺

◦
=
◦

≺

⊙

⊙
=
⊙

⊙

≺

≺
=
≺

⊙

≻

⊙
=
≻

≻

The next paragraphs are devoted to the proof that GR4 is isomorphic to FF4.

3.2. Canonical trees. Let us begin our study of GR4 by computing the generating
series of its cardinalities. This is done using rewriting theory.

We start by choosing a tree in each equivalence class modulo the relation:

Definition 3.3. We say that a tree in G4 is canonical if it avoid all patterns on the
right-hand side of each of the Relations (23).

Lemma 3.4. Each equivalence class modulo Relations (23) contains at least one
canonical tree.

Proof. Consider a tree T . We want to show that there is a canonical tree in the class
of T .

If it avoids all patterns, the property is true; otherwise, replace any pattern by
its (left-hand side) image. If one denotes by f the function that associates with a
tree the sum of the cardinality of the right sub-tree of each node, then f strictly
decreases from T to the new tree T ′, hence proving that the process stops after a
certain number of steps.

Note that f is the classical invariant that shows that the Tamari order is anti-
symmetric.
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Definition 3.5. We say that an edge of T is rewritable if its extremities belong to
one of the relations above, either on the left or on the right.

So if one changes a rewritable edge into its rewriting thanks to the relations, it
remains rewritable by definition. Then one can check that for all 5 shapes of binary
trees with 3 nodes, there exists exactly 16 trees whose two edges are rewritable. Using
the rewriting relations, we can group those trees into 16 pentagons of equivalent
trees where each shape appears exactly once and each edge is rewritable. Here is an
example:

(24)

◦

≺

≺

◦

≺ ≻

◦

≻

≻

◦

≻

⊙

◦

≺

⊙

Note that each pentagon contains exactly one canonical tree. As a consequence,
there are only three kinds of equivalence classes of trees with three nodes: singleton
(tree with no rewriting), pairs (trees with only one rewriting), and pentagons (trees
with two rewritings). This has the fundamental consequence that rewriting an edge
in any tree does not create new rewritable edges. We can therefore prove that:

Lemma 3.6. Each equivalence class modulo Relations (23) contains exactly one
canonical tree.

Proof. We claim that given tree T , the number of rewritable edges does not change
if one rewrites a given edge. It is obvious for a rewritable edge that has no node in
common with any other rewritable edge. Thanks to the pentagonal relations, this
is also true if one rewrites an edge adjacent to another one. Now, if two rewritable
edges do not share a node, one can rewrite both in any order and obtain the same
final tree. If two rewritable edges share a node, the pentagonal relations show that if
one rewrites any of the two edges, one will always end ultimately with the same tree.
Otherwise said, the rewriting system is locally confluent and hence confluent.

Hence, one can do the rewritings in any order, the resulting tree is always the
same. So there only is one tree that avoids all patterns on the right-hand sides in
each class.
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Note 3.7. Note that two different trees of the same shape are necessarily in different
classes. Otherwise, one could find two sequences of rewritings starting from these
trees and leading to the same canonical form. Using the pentagons (and squares),
one can assume that the underlying sequences of rotations of trees are the same. But
then the sequences of rewritings are the same, hence the trees are the same, which is
absurd.

Moreover, all shapes of trees appearing in a class form an interval of the Tamari
lattice (thanks to the observation about rewritable edges) and the representative of a
class is the tree closest to the left comb.

Finally, note that thanks to the existence of simple canonical trees, one easily
obtains an equation satisfied by the generating series of the cardinalities of the operad.
Indeed, the eight relations (23) when oriented provide the following relations. Let us
denote by F , l, m, r, s respectively the generating series of all canonical trees, all
canonical trees having ≺, ◦, ≻, and ⊙ as their root.

We then get

(25)































F = l +m+ r + s+ 1,

l = xF (l +m+ r + 1),

m = xF (s+ 1),

r = xF (s+ 1),

s = xF (l +m+ r + 1).

Then, summing the last four equations, one finds

(26) F − 1 = xF 2(F + 1),

which is also

(27) 2xF 2 + (2x− 1)F + 1 = 0.

In the system of equations (25), binary trees are counted according to the number
of internal nodes, whereas in the context of operads, it is more natural to count
trees by the number of leaves. To compare Equation (27) with Equation (37), it is
therefore necessary to replace F by F/x in the former.

We shall show in section 4.4.2 that this generating series is also the generating
series of FF4. We first need a third operad isomorphic to these first two, based on
trees.

Note 3.8. The presentation given here is quadratic and confluent. By choosing an
appropriate monomial order, this gives a quadratic Groebner basis. By a known
result [7, 14], this implies that GR4 is Koszul.

4. The operads of red and white trees

4.1. Red and white trees. Let us consider topological rooted trees, that is, rooted
trees with no order on the children, so that each node can have either none, one, or
multiple dots in it. If a node has no dots, then it must have at least two children.
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The weight of a tree is its number of dots. This set of trees is known in [29] as
Sequence A050381, except for the first term that is not 2 but 1.

The first values are

(28) 1, 3, 10, 40, 170, 785, 3770, 18805, 96180, 502381, 2667034, 14351775, . . .

We shall make use of a small variation on these trees: the nodes will be colored
either red or white following the simple rule: a nonempty node is always white and
an empty node is red if and only if all its children are white. Since there is only one
such way to color the nodes, this set is obviously in bijection with the previous one
and is called the red and white trees and denoted by RW. The set RW(n) is the set
of RW trees of weight n. Depending on what we are discussing, we shall make use
of the red and white trees or of the non-colored version.

We shall represent all trees in the following way: the red nodes are represented in
red and the others are represented in light blue 2.

[ (•) ]

[

(•)

(•)

(••)
()

(•) (•)

]







(•)

(•)

(•)

(•)

(••)

(•)

()

(•) (•)

(•)

(•) (•)

(•••)
(••)

(•)

()

(•)

(•)

(•)
()

(••) (•)

()

()

(•) (•)

(•)

()

(•) (•) (•)







4.1.1. Labelling red and white trees. We shall now replace the dots by numbers and
label our trees. The first labelling is easy: if a tree belongs to RW(n), replace each
dot by a different integer from [n] = {1, . . . , n}. We shall denote this set of labellings
by RWΣ(n). The number of such labellings is Sequence A005172 of [29] by definition
of this sequence, and their first values are

(29) 1, 4, 32, 416, 7552, 176128, 5018624, 168968192, 6563282944, 288909131776, . . .

One can give an equivalent definition using the language of species [1] or labeled
combinatorial classes [11]. Let Set be the species of sets (such that Set[U ] := {U})
and Set≥k the species of sets of cardinality at least k. Let Z denote the singleton
species (one object in size 1). We denote by + the sum of species (disjoint union
of labelled classes) and by · the product of species (Cartesian product of labelled
classes). Finally the substitution is denoted functionally (as in A(B)).

Then F := RWΣ(n) is the solution of the equation

(30) F = Set≥2(F) + Set≥1(Z) · Set(F).

As a consequence, their exponential generating function F = FRWΣ satisfies

(31) F = exp(F )− 1− F + (exp(x)− 1) exp(F ).

2When viewed in black-and-white, red appears dark and blue appears light.
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4.2. Operad structure on labelled red and white trees. Let us consider two
trees T1 and T2 and a label x inside T1 belonging to node z. To ensure that the
composition of two trees is a tree labelled by distinct integers, we shall first renumber
T1 and T2 as follows: shift all labels greater than x in T1 by the size of T2, and shift
all labels of T2 by x− 1.

The composition T1 ◦x T2 is then defined as

(W) If the root of T2 is not red, erase x in z, add the labels (if any) of the root of
T2 to z and put the children of the root of T2 as new children of z.

(R) If the root of T2 is red, consider three cases:
(R1) If T1 is the tree with one node labelled x, then the result is T2.
(R2) If z is not a leaf or if z is a leaf with multiple labels, start with T1, remove

x from the labels of z and glue the root of T2 as a child of z.
(R3) Otherwise, z is a leaf and not the root, and x is its only label. Consider

z′, the parent of z. Then remove the leaf z and put all children of the
root of T2 as new children of z′.

In all cases, if z has no remaining labels, it is colored as white.
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(Rule W)
{1}

{2} {3}
◦1

{1}

{2} {3,4}
=

{1}

{2} {3,4} {5} {6}

(Rule W)
{1}

{2} {3,4}
◦3

{1}

{2} {3}
=

{1}

{2} {3,6}

{4} {5}

(Rule W)
{1}

{2} {3,4}
◦1

{}

{1} {}

{2} {3}

=

{}

{1} {}

{2} {3}

{4} {5,6}

(Rule W)
{1}

{2} {3,4}
◦2

{}

{1} {}

{2} {3}

=

{1}

{}

{2} {}

{3} {4}

{5,6}

(Rule R1) {1} ◦1

{}

{1}

{2}

{3} =

{}

{1}

{2}

{3}

(Rule R2)
{1}

{2} {3,4}
◦1

{}

{1}

{2}

{3} =

{}

{}

{1}

{2}

{3}

{4} {5,6}

(Rule R3)
{1}

{2} {3,4}
◦2

{}

{1}

{2}

{3} =

{1}

{2}

{3}

{4} {5,6}

Theorem 4.1. The set RWΣ endowed with operations ◦x is a symmetric set-operad.

Proof – Let us first check that that the ◦i are internal. The only problem that
could arise would be to have two red nodes as father and child, one being created by
emptying a node of the first tree. But any new empty node has at least two children,
so that this cannot happen.

Let us now check that the operations ◦x satisfy the axioms of an operad, that is:
if x and y are two labels of a tree A, and t a label of a tree B,

(32) (A ◦x B) ◦y C = (A ◦y C) ◦x B, (A ◦x B) ◦t C = A ◦x (B ◦t C).

Note that when applying the composition rule A ◦x B, only the node labelled x in A
in changed. So the first equation is trivial except in the case where x and y are in the
same node z. In that case, we need to consider all four cases for the roots of B and
C. If both are not red, case (W ) applies twice and the result is obvious. If one is red,
say the root of B and not the other, then case (R2) applies twice when substituting
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B since z cannot both be a leaf and have only one label. Case W applies twice when
substituting C so the result of both hand-sides is the same. Now, if both roots of B
and C are red, for the same reason as before, both substituting go by application of
rule (R2) again, so the same result holds.

Let us now check the second rule of operads. If any tree is a single root with one
label, the equality is clear. Now, the root of B can never become red after B ◦zC. So
the substitution of B into A goes along the same case as the substitution of B ◦z C
into A since the distinction between the (R) cases only relies on properties of A.
Now, the substitution of C into B also in obtained by applying the same case as its
substitution into A ◦x B, so that the result on both sides is always the same.

Note 4.2. In fact, this composition defines a symmetric operad, which will be con-
sidered in Section 6.

4.3. The operad RW and recursively labelled red-white trees. We shall be
interested now in the sub-operad RW of the operad RWΣ on all labelled red and
white trees, which is generated by the four elements of size 2 (and containing the
element of size 1):

(33)

[

{1}

{2}
, {1,2} ,

{2}

{1}
,

{}

{2} {1}

]

.

4.3.1. Recursively labelled red-white trees.

Definition 4.3. We say that a labelling of a tree in RW(n) is recursive if, for any
node, the set of labels of all its descendants (including its own labels) is an interval
of [n].

We shall denote this set of labellings by RW(n). The number of such labeled trees
is given by Sequence A156017 of [29] and their first values are
(34)

1, 4, 24, 176, 1440, 12608, 115584, 1095424, 10646016, 105522176, 1062623232, . . .

Here are the first examples:
[ {1} ]

[

{1,2}
{1}

{2}

{2}

{1}

{}

{2} {1}

]







{1,2,3}
{1,2}

{3}

{1}

{3} {2}

{1}

{2,3}

{1}

{2}

{3}

{1}

{3}

{2}

{1}

{}

{3} {2}

{1,3}

{2}

{3}

{2} {1}

{3}

{1,2}

{3}

{1}

{2}

{3}

{2}

{1}

{3}

{}

{2} {1}

{2,3}

{1}

{2}

{3} {1}

{}

{3} {2} {1}

{}

{1} {2,3}

{}

{1} {2}

{3}
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{}

{1} {3}

{2}

{}

{1} {}

{3} {2}

{}

{3} {1,2}

{}

{3} {1}

{2}

{}

{3} {2}

{1}

{}

{3} {}

{2} {1}







Let F := FRW be the ordinary generating series of such trees. Because of the recursive
labeling, trees having an empty root (and thus at least two sub-trees) are in bijection
with sequences of length at least 2 of trees as follows: the sequence (t1, t2, . . . , tr)
with r ≥ 2 of trees of sizes (s1, . . . , sr), corresponds to the following trees

(35) (t1, t2, . . . , tr) ←→

{} or {}

t1 t2[s1] . . . tr[s1 + · · ·+ sr−1]

where t[k] denote the tree obtained from t by adding k to all integers in the labels.
Therefore the generating series of those trees is given by 1/(1 − F ) − 1 − F . In a
similar fashion, there is a bijection between trees and non-empty sequences of either
a dot (labelled 1) or a tree, by shifting the labels (including dots) as previously and
gathering dots into the roots. Here is an example:

(

{1}

{2}
• •

{}

{1,2} {3}
{1} •

)

←→

{3,4,9}

{1}

{2}

{}

{5,6} {7}

{8}

Since we are here only considering trees without empty root, their generating series
is therefore (x+F )/(1− (x+F ))−F/(1−F ). Summarizing the previous reasoning
we get that, the ordinary generating series F := FRW satisfies

(36) F = 1/(1− F )− 1− F + (x+ F )/(1− (x+ F ))− F/(1− F ),

that is, after simplifications and clearing the denominator

(37) F = x+ 2xF + 2F 2.

One then easily checks that this equation is the same as Equation (27) (up to
multiplication by x) obtained for the number of canonical GR4 trees, hence suggesting
that a natural operad isomorphism exists between the two structures. We shall first
check that the recursively labelled trees are indeed elements of an operad.

4.3.2. The sub-operad RW.

Proposition 4.4. The elements of RW are the recursively labelled red and white
trees.

Proof – First, let us note that the composition ◦x of two recursively labelled red and
white trees T1 and T2 gives rise to a recursively labelled red and white tree T . Indeed,
T is a labelled tree. Now, if the node that contains x on T1 has as set of labels of
descendants [y, z], the corresponding node in T has as set of labels of descendants
[y, z + |T2|]. Now, since all labels greater than x in T1 have been shifted by the size
|T2| of T2, all nodes of T also have an interval as set of labels of their descendants.
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Now, let us prove the converse, that is, that all recursively labelled red and white
trees can be obtained as substitutions of smaller trees. The property is true for trees
of size at most 2. Now, if a node z of a tree T of size k has more than two labels, T
is easily written as a substitution of smaller trees on this node: indeed, T is obtained
by substituting the tree with a root labelled {1, 2} in the tree T ′ obtained from T by
removing any of the consecutive integers labelling z and then renumbering all labels
in order to obtain all numbers from 1 to k − 1.

Otherwise, consider a leaf l that is not an uncle/aunt. Let us consider cases
depending on the parent p of l:

• If p has x as a label, then T = T ′ ◦y T ′′ where T ′ is obtained from T by
changing x into y and removing l, and T ′′ is the tree having as root x with
one child l.

Otherwise, p is empty, and it is necessarily red because if l has some siblings then
they are leaves and thus white.

• Now, if l has two siblings or more, then T = T ′ ◦y T ′′ where T ′ is obtained
from T by labelling l by y and removing one sibling of l, and T ′′ is a tree with
a red root and two children: l and the missing sibling of l.
• Otherwise, l has only one sibling, p has itself a parent p′, which is white,
either labelled or not. In both cases, T is obtained as T = T ′ ◦y T ′′ where T ′

is obtained from T by changing p and its sub-tree by a new leaf labelled y
and where T ′′ is the sub-tree of T of root p.

We conclude by induction on the size of the trees.

Theorem 4.5. The operads RW and GR4 are isomorphic as operads.

Proof – We already know that as sets, RW and GR4 are equinumerous. Since GR4 is
the quotient of the free operad on four generators with eight relations, we only need
to prove that the generators of GR4 satisfy the same relations. The decoding is the
following:

(38)

[

{1,2} ,
{1}

{2}
,
{2}

{1}
,

{}

{2} {1}

]

⇐⇒ [ ◦ , ≺ , ≻ , ⊙ ].

The fact that all relations hold is immediate given the definition of the operad RW.
For example, the first relation of Equation (23)

(39) (x≻y)≺z = x≻(y≺z) ,

rewrites as

(40) (a≺z) ◦a (x≻y) = (x≻a) ◦a (y≺z) ,

which rewrites in the red and white trees as

(41)
{a}

{z}
◦a

{y}

{x}
=

{a}

{x}
◦a

{y}

{z}
,
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which is true since both expressions are equal to

(42)
{y}

{x} {z}

The trees corresponding to the eight relations are

(43)
{y}

{x} {z}
, {xyz} ,

{yz}

{x}
,

{xz}

{y}
,

{xy}

{z}
,

{}

{x} {y} {z}
,

{x}

{y} {z}
,

{z}

{x} {y}
.

4.4. From red and white trees to FF4. Let us summarize what we have in terms
of operads. We first have the operad GR4 that is sent surjectively to the operad FF4

since GR4 is the quotient of the free operad on four generators with eight relations
and that FF4 has four generators and satisfies the eight relations. We also have that
GR4 and RW are isomorphic operads on equinumerous sets. To conclude that FF4 is
isomorphic to GR4, it only remains to prove that there exists an injective morphism
of operads Φ from RW to FF4 that makes the diagram below commutative.

GR4 FF4

RW FF

≃
Φ

Φ

Our injective morphism is a set morphism, that is, a bijection.

4.4.1. An injection from RWΣ to the fractions in FF . We define here a map from
labelled red and white trees to formal fractions, that will be a bijection with its image.

The bijection is as follows. Consider a red and white tree T . For each node z,
compute the set S(z) of all values in the sub-tree of root z and then define E(z) as
either

(44)







1
[S(z)]

if z is white,

[S(z)] if z is red and not the root,
1 if z is red and the root.

The fraction associated with T is then

(45) Φ(T ) :=
∏

z∈nodes(T )

E(z).

For example, we have

{5}

{1,2}

{}

{3} {4}

{}

{8} {}

{6} {7}

[34][67]

[3][4][1234][6][7][8][678][12345678]
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{}

{1} {}

{5}

{4}

{2} {3}

{}

{6} {7,8}

[678]

[1][2][3][2345][234][6][78][2345678]

Lemma 4.6. Φ is an injective map from RWΣ to FF .

Proof. We prove that one easily rebuilds the tree from the fraction: let us show how
to rebuild the root, the rest of the construction being done recursively. Let F be a
fraction obtained by the previous process. Let S be the union of all values in the
fraction.

Either [S] belongs to the fraction or not. If not, the root is red, separate [S] in
the greatest possible number of sets (into the coarsest partition) so that any element
of F is a subset of one of these sets. These are the children of the root. Iterate the
process on each child separately.

If [S] belongs to F , then it is on the denominator of F . Then the root is white and
labelled by [S] minus the union of all values of the fraction F ′ = [S]F . Note that the
root might be empty. Then split F ′ as in the case of the red root and iterate.

4.4.2. The main theorem.

Theorem 4.7. The three set-operads RW on red and white trees, FF4 on formal
fractions and GR4 are isomorphic.

Proof – We first show that the bijection Φ between RW and some formal fractions is
compatible with the operad ◦i operations, meaning that it is a morphism of operads
from RW to FF .

Let us check this for the various cases (W ), (R1), (R2) and (R3) in the composition
T1◦xT2 of elements of RW. Let z be the vertex of T1 containing x, which is necessarily
non-empty and therefore white. Let f1 and f2 be the fractions associated to T1 and
T2 by Φ. Let f̂1 be the fraction obtained from f1 by replacing x by the indices of T2.
Let S2 be the set of indices of T2.

In the (W ) case, the root of T2 is not red and the vertex corresponding to z in
T1◦xT2 remains white. By the description of (R2) and the definition of Φ, the fraction
associated to T1 ◦x T2 is the product of f2[S2] (coming from vertices of T2 except the

white root) and f̂1 (coming from vertices of T1).
The (R1) case follows from the fact that the unit of the operad RW is mapped to

the unit of the operad FF .
In the (R2) case, the root of T2 is red, and the vertex corresponding to z in T1 ◦xT2

remains white. By the description of (R2) and the definition of Φ, the fraction

associated to T1 ◦x T2 is the product of f̂1 (from vertices coming from T1), f2 (from
vertices coming from T2 other than the root of T2) and [S2] (coming from the red
root of T2, which becomes a non-root red vertex).
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In the (R3) case, the root of T2 is red. By the description of (R2) and the definition
of Φ, the fraction associated to T1 ◦x T2 is the product of f2 (from vertices coming

from T2 other than the root of T2) and f̂1[S2] (from vertices coming from T1, except
the vertex z which was white and is removed)

In all cases, the fraction obtained is the same as the fraction f1 ◦x f2 which is
[S2]f̂1f2 by the composition rule (8) of FF . This proves that Φ is a morphism of
operads from RW to FF .

One can check on the four generators of GR4 that the inclusion of GR4 in FF4 is
the same as the composite of Φ and the isomorphism of GR4 and RW.

This also proves that the image of RW by the bijection Φ is the same as the image of
the set-operad GR4 since all fractions can be obtained by applying the substitutions
◦i to the generators.

Here are a GR4 tree, its corresponding red and white tree and its fraction.

≻

◦

1 2

Σ

≻

3 ≻

4 Σ

≺

5 6

7

≺

8 9

{}

{1,2} {}

{}

{3} {4} {}

{5}

{6}

{7}

{8}

{9}

[3456789][567]

[123456789][12][34567][3][4][56][6][7][89][9]

5. Remarkable sub-operads

As set-operads, there are many interesting and already known sub-operads of RW.
On GR4 trees, they correspond to selecting some operations inside the four possible
ones. We shall see some examples and describe how they can be seen in terms of
trees in RW.

5.1. The operad RWT. Let us consider the sub-set-operad RWT of red and white
trees generated by

(46)

{

{1,2} ,
{1}

{2}
,
{2}

{1}

}

.

We then have:

Theorem 5.1. The set sub-operad RWT of RW generated by the three previous trees
has as elements the red and white trees with no empty nodes.

Proof – Given the product rules of RW (see Subsection 4.2), one easily checks that
all trees belonging to RWT have no empty nodes.
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Conversely, using the same technique as in the proof of Proposition 4.4, one checks
that any tree with no empty nodes can be obtained as a composition of strictly
smaller such trees.

So the cardinalities of this operad is Sequence A200757 of [29], whose first elements
are

(47) 1, 3, 13, 68, 395, 2450, 15892, 106489, 731379, 5121392, 36425796, 262425982, . . .

with ordinary generating series F = FRWT
satisfying

(48) F = (x+ F )/(1− (x+ F ))− F/(1− F ),

which is therefore algebraic.

Note 5.2. For the corresponding unlabelled trees, we get the set of rooted trees with
multiple dots, that correspond to Sequence A036249 of [29]. Their first numbers of
elements are

(49) 1, 2, 5, 13, 37, 108, 332, 1042, 3360, 11019, 36722, 123875, 422449, 1453553, . . .

5.2. The operad RWD. One can consider the subset RWD of RWT of the subset
RW generated by

(50)

{

{1}

{2}
,
{2}

{1}

}

.

We then have:

Theorem 5.3. The set sub-operad RWD of RWT generated by the two previous trees
has as elements the red and white trees with no empty nodes and no multiple labels
in their nodes. These trees are in immediate bijection with recursively labelled rooted
trees.

Proof – The proof is the same as in Theorem 5.1.

This set of trees corresponds to the set of trees that are in bijection with the GR4

trees only containing≺ and ≻ in their internal nodes. The cardinalities of this operad
is Sequence A006013 of [29], whose first elements are

(51) 1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480, . . .

with ordinary generating series F = FRWD
satisfying

(52) F = x/(1− F )2,

which is therefore algebraic.
This corresponds to the set-operad based on non-crossing trees [17, 5].



21

5.3. The operad RWDS. There is another trickier way to study the sub-set-operads
of RW. Let us consider the sub-set-operad RWDS of red and white trees generated
by

(53)

{

{2}

{1}
,
{1}

{2}
,

{}

{2} {1}

}

.

We then have:

Theorem 5.4. The set sub-operad RWDS of RW generated by the three previous trees
has as elements the red and white trees with no multiple labels and that avoid the two
following patterns: no labelled node can have a red child, and no white node can have
two red children.

Proof – Let us first show that the ◦i are internal on this set. Let us consider the
different cases appearing when computing T = T1 ◦x T2, with T1 and T2 in RWDS. If
the root of T2 is not red, T also belongs to RWDS. If the root of T2 is red, and if z
is not a leaf, then z, being labelled by x, cannot have a red child. So T has now a
white empty node (replacing z) with only one red child. So T also belongs to RWDS.

If the root of T2 is red and z is a leaf, then the parent of z (if z has no parent,
T = T2 and the statement is trivial) can be whatever node, it only gets white children,
which does not fall in any forbidden pattern.

Now, given such a tree, one easily sees that it can be obtained as a composition of
strictly smaller such trees.

As a species, F = FRWDS
is the solution of

F = R+W

R = Set≥2(W)

W = R · Set≥1(W) + Z · Set(W)

Here are the recursively labelled trees in RW of size 3:






{1}

{2}

{3}

{1}

{2} {3}

{}

{3} {}

{2} {1}

{}

{1} {2}

{3}

{}

{2} {1} {3}







Here are those of size 4:












{1}

{2}

{3}

{4}

{1}

{2}

{3} {4}

{1}

{}

{4} {}

{2} {3}

{1}

{2} {3}

{4}

{1}

{2} {3} {4}

{}

{}

{2} {1}

{3}

{4}

{}

{3} {}

{2} {1}

{4}

{}

{4} {}

{1} {2}

{3}

{}

{4} {}

{2} {1} {3}

{}

{1} {}

{4} {}

{2} {3}

{}

{1} {2}

{3}

{4}

{}

{1} {2}

{3} {4}

{}

{1}

{2}

{3}

{4}

{}

{2} {1} {3}

{4}

{}

{2} {1} {3} {4}












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The trees are in bijection with the GR4 trees only containing≺,≻, and ⊙ in their
internal nodes. So

Corollary 5.5. The set-operad on RWDS is isomorphic to the set-operad on the three
tridendriform operations≺, ⊙, and≻.

The cardinalities of this operad is Sequence A121873 of [29], whose first elements
are

(54) 1, 3, 14, 80, 510, 3479, 24848, 183465, 1389090, 10726452, 84150858, . . .

with ordinary generating series F = FRWDS
satisfying

F = R +W

R = 1/(1−W )− 1−W

W = R/(1−W )2 − R + x/(1−W )2,

which is therefore algebraic.
This corresponds to the operad of noncrossing plants already defined by Chapo-

ton [2].
This sequence also appears as Example (g) in [23].

6. Symmetric operads

All results presented above have analogs in the world of symmetric operads. Indeed,
given either the GR4 trees, or the red and white trees, or the fractions, one can
consider their pendant as symmetric operads.

6.1. The symmetric operad on red and white trees. In Section 4.2, an operad
structure was defined on the set of red and white trees with arbitrary labeling. Re-
labeling by a permutation clearly defines an action of the symmetric groups. Those
tree forms a species which is defined by Equation (30).

Theorem 6.1. The set RWΣ endowed with operations ◦x and the natural symmetric
groups actions has a symmetric set-operad structure. This operad will be also be
denoted by RWΣ.

Proof. The definition of the composition clearly commutes with relabeling.

Let us investigate more closely the actions of the groups. The species equation
allows to compute the characters of the representations which we prefer to encode
as a symmetric function using Frobenius characteristic (see e.g. [24]). Using the
notations from the later, Equation (30) translate directly on Frobenius characteristic
into the following equation:

(55) F = (E1 ◦ F − 1− F ) + (Et − 1)(E1 ◦ F )

where Et =
∑

i≥0 eit
i is the generating series of elementary symmetric functions,

and ◦ is the plethysm operation. The solution of this equation can be computed
inductively. Here are the first few terms expanded on Schur functions:

s1, s1,1 + 3s2, 10s3 + 2s1,1,1 + 10s2,1, 6s1,1,1,1 + 40s4 + 64s3,1 + 38s2,2 + 34s2,1,1
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We also need some information on the orbits:

Proposition 6.2. Under the action of the symmetric groups on RWΣ there exists at
least one recursively labeled tree in each orbit.

Proof. It is sufficient to prove that there exists a recursive labeling for each unlabeled
red and white tree. This is clear as such a labeling can be obtained by a recursive
depth-first walk of a tree labeling for example the dots in the roots before the dots
in the sub-trees.

Corollary 6.3. As a symmetric operad, RWΣ is generated by the trees:

(56) GΣ :=

{

{1}

{2}

{1,2}
{}

{2} {1}

}

.

Proof. Note that the action of the transposition (12) on e :=
{1}

{2}
is f :=

{2}

{1}
. Therefore

it is not necessary to put the later in the generators. By Proposition 4.4, the set of
elements obtained by composition from GΣ ∩ {f}, without using the action of the
symmetric groups is exactly the set of recursively labeled trees. Therefore using the
action we get at least the set of the orbit of the recursively labeled trees, that is all
labeled trees.

The main goal of this section is to show that the symmetric operad RWΣ is isomor-
phic to the symmetric sub-operad of formal fraction generated by the corresponding
fraction.

6.1.1. The symmetric operad on fractions. In Section 4.4.1, we defined a map φ from
red and white tree to formal fraction; See Equation (45). We showed that this map
restricted to recursively labeled trees is an isomorphism of (non-symmetric) operads
from RW to FF . It is also an isomorphism of symmetric operads:

Theorem 6.4. The map Φ is an isomorphism of symmetric operads from RWΣ to
the sub-operad of FFΣ generated by the fractions:

(57) F≻ :=
1

[1][12]
, F◦ :=

1

[12]
, F⊙ :=

1

[1][2]
.

Note: the action of the transposition (1, 2) on F≻ is F≺ := 1
[2][12]

.

Proof. We already proved (Lemma 4.6) that as a set map Φ is injective from RWΣ

to FF . From its definition it is also clear that Φ commutes with the action of the
symmetric group. Now we know that on recursively labeled trees, Φ commute with
compositions ◦i (Theorem 4.7). Since there is a recursively labeled tree in every
orbit, using the action we get that Φ commute with compositions ◦i on all red and
white trees. Therefore Φ is an injective symmetric operad morphism from RWΣ to
FFΣ. Let us consider its image Φ(RWΣ). It is generated by {Φ(g) | g ∈ G}, where
G is any generating set of RWΣ. The theorem is then obtained using the set GΣ of
Equation (56).
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6.2. The symmetric sub-operads. Let us consider a subset of the generators of
RW and the symmetric and non symmetric operads generated by this subset. Using
the same argument as in Proposition 6.2 and Corollary 6.3, one sees that the under-
lying set of the symmetric one is given by the orbits of the symmetric group on the
underlying set of the non-symmetric one. This amounts to consider the set of the
same red and white trees with no restrictions on the labels.

6.2.1. The symmetric sub-operad RWΣ
T. Let us consider the symmetric analog of

RWT. When labelling red and white trees with no empty nodes with different integers
from 1 to n without any other constraint, one gets Sequence A048802 of [29] whose
first number of elements are

(58) 1, 3, 16, 133, 1521, 22184, . . .

with exponential generating function F = FRWΣ

T

satisfying

(59) F = (exp(x)− 1) exp(F ).

6.2.2. The symmetric sub-operad RWΣ
D. Let us consider the symmetric analog of

RWD. When labelling red and white trees with no empty or multiple nodes with dif-
ferent integers from 1 to n without any other constraint, one gets Sequence A000169
of [29] whose value is nn−1 and first number of elements are

(60) 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601

with exponential generating function F = FRWΣ

D

satisfying

(61) F = x exp(F ).

This is isomorphic to the set-operad NAP3 [18], because it is generated by one
generator which satisfies the same relations as the generator of the NAP operad and
the dimensions are the same.

6.2.3. The symmetric sub-operad RWΣ
DS. Let us consider the symmetric analog of

RWDS. When labelling the corresponding red and white trees with different integers
from 1 to n without any other constraint, one gets Sequence A048172 of [29] whose
first terms are

(62) 1, 3, 19, 195, 2791, 51303, 1152019, 30564075, 935494831, 32447734143, . . .

with exponential generating function F = FRWΣ

DS

satisfying

F = R +W,

R = exp(W )− 1−W,

W = R(exp(W )− 1) + x exp(W ).

Recalling the constraints described in Theorem 5.4, one can obtain this system of
equations as follows. Here R (resp. W ) denotes the generating series of trees with a
red root (resp with a white root). The second equation says that a red root has only
white sons. The last equation says that a white root is either empty and has exactly
one red son, or has a label and an arbitrary set of white sons.

3standing for Non-Associative Permutative



25

Note 6.5. This operad is isomorphic to the operads of shrubs, which was defined in
[3, 4] by the very same closure as this operad. The combinatorial objects called shrubs
are directed graphs with levels in N, where arrows go down by one level, satisfying
some forbidden pattern conditions. This is rather different at first sight from red and
white trees with the given constraints.

Using the operad structure, once the components of arity 2 have been matched, one
can easily define by induction a bijection between shrubs and red and white trees with
the given constraints, that gives an isomorphism of operads between the operad of
shrubs and RWΣ

DS.

7. More general operads on more generators

Recall that there is a natural morphism from the dendriform operad to the tri-
dendriform operad sending ≻ to ◦ + ≻ and ≺ to itself (the other convention is also
possible). It is therefore very natural to add the counterpart in Mould1 of ◦ + ≻
and ◦ + ≺ to the generating set of FF4. This leads to several interesting operads
which do not live in formal fractions, but rather in a slightly more general operad of
formal fractions with monomials, which is defined as a Hadamard product. In this
section, we present the combinatorial properties of these operads, omitting most of
the proofs as they are either direct consequences of the previous results or derived
by very similar reasoning.

Recall that the generators of the tridendriform operad are realized as moulds by
(15), (16), (17) and (18). With this convention the two new generators are realized
as:

(63) ◦ + ≻ 7→
u1

(u1 − 1)(u1u2 − 1)
, ◦ + ≺ 7→

u2

(u2 − 1)(u1u2 − 1)
,

We consider here the sub-operad generated by the four fractions together with these
two new. To be able to deal with this operad using formal fractions we need to
generalize them a little using an operad on monomials: let Mon(n) be the set of
monomials in u1, . . . , un. The composition defined, for F ∈ Mon(m) and G ∈
Mon(n), by

(64) F ◦i G := F (u1, . . . , xi−1, Pi,n, ui+1, . . . , um+n−1)G(ui, . . . , ui+n−1)

where Pi,n = uiui+1 . . . ui+n−1, endows Mon with a structure of a set-operad. To-
gether with the action of the symmetric group, it becomes a symmetric set-operad
denoted by MonΣ. This operad has already appeared in [21]. One denotes by
MFF := Mon × FF the Hadamard product of these set-operads. Elements of
MFF(n) are pairs (m, f) ∈ Mon(n)× FF(n), the composition being defined com-
ponentwise. We denote such an element by putting the monomial in the numerator
of the formal fraction. Then it is clear from the definition of the composition in
Mould1 (by Eq. (5)) that the morphism φ1 from FF toMould1 extends toMFF :

Proposition 7.1. The map φM : (m, f) 7→ mφ1(f) is an injective morphism of
set-operads from MFF to Mould1. It is also an injective morphism of symmetric
set-operads with the symmetric version of those operads.
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7.1. The 6-generator operad and more. We now consider the sub-operad FF6

ofMFF , generated by the four generator of FF4 together with

(65) F≫ :=
u1

[1][12]
, F≪ :=

u2

[2][12]
.

The generators satisfies the following 16 relations:

(66)

⊙

⊙
=
⊙

⊙

◦

◦
=
◦

◦

◦

≺
=
◦

≻

◦

≪
=
◦

≫

≺

≺
=
≺

⊙

≪

≪
=
≪

⊙

≻

⊙
=
≻

≻

≫

⊙
=
≫

≫

≺

◦
=
◦

≺

≪

◦
=
◦

≪

◦

≻
=
≻

◦

◦

≫
=
≫

◦

≺

≻
=
≻

≺

≪

≻
=
≻

≪

≺

≫
=
≫

≺

≪

≫
=
≫

≪

and generates an operad whose cardinalities are

1, 6, 56, 640, 8158, 111258, 1588544, 23446248, 354855218, . . .

This can be computed by counting the canonical trees as in Section 3.2. The system
of equations for generating series, analog to (25), writes

(67)



















































f = l + L+m+ r +R + s+ 1,

l = x f (l + L+m+ r +R + 1),

L = x f (l + L+m+ r +R + 1),

r = x f (R + s+ 1),

R = x f (l + s+ 1),

m = x f (s+ 1),

s = x f (l + L+m+ r +R + 1).

where f , l, L, m, r, R and s denotes respectively the generating series of all canonical
trees, all canonical trees having ≺, ≪ ◦, ≻, ≫ and ⊙ as their root.

Eliminating all the variables but f and x, and setting F = xf gives the following
algebraic equation for the generating series

(68) F = x+ 3xF + (3 + x)F 2 + (1− x)F 3 − F 4 ,

which can be rewritten as

(69) x = F
1− 3F − F 2 + F 3

1 + 3F + F 2 − F 3
.

To show that there are no other relations, we need to use a generalized red and
white trees operad. It is defined as the set of trees where one can put a dot on the
edges between two white nodes. The associated fraction is the fraction associated to
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non-dotted tree times the product on each label of the variable associated to it to the
power the number of dotted edges on the path from the root. This clearly defines an
injection φM from dotted red and white trees toMFF .

Here are two examples:

{8}

{3,4}

{}

{2} {1}

{}

{7} {}

{6} {5}

u1u2u3u4u7[12][56]

[1][2][1234][5][6][7][567][12345678]

{8}

{3,4}

{}

{2} {1}

{}

{7} {}

{6} {5}

u5u6u
2
7[12][56]

[1][2][1234][5][6][7][567][12345678]

The extension of the rules for the operad composition is straightforward, except
for rule (R3) which should be modified as follows: let us consider two trees T1 and
T2 such that x is the only label of a leaf z. Suppose moreover that there is a dotted
edge from z′ to z. The composition T1 ◦x T2 is then defined as the tree obtained by
remove the leaf z and putting the children of the root of T2 as new dotted children
of z′. On can easily check that this defines an operad on dotted trees such that φM

is a morphism toMFF . For example, the following equality

{1}

{2} {3,4}
◦2

{}

{1} {3}

{2}

=

{1}

{2} {4}

{3}

{5,6}

is mapped to the following formal fraction composition

u2

[1234][2][34]
◦2

1

[1][23][2]
=

u2u3u4

[123456][2][34][3][56]

The number of those dotted trees can be obtained by counting the number of
white-white edges in the undotted tree compositions. This can be done by refining
Equation (36) using a variable t to record those edges. Then we can show that the
generating series verifies the following equations:

(70) F = −(t− 1)F 4 − (t− 1)F 3x− (t− 3)F 2x−
(

(t− 1)2 − 2
)

F 3

+ (2 t− 1)F 2 + 3Fx+ x

(71) x = F
(t− 1)F 3 + (t2 − 2 t− 1)F 2 − (2 t− 1)F + 1

(−(t− 1)F 3 − (t− 3)F 2 + 3F + 1)
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Here are the first generating polynomials:

(72)

1

2 t+ 2

7 t2 + 11 t+ 6

30 t3 + 65 t2 + 59 t+ 22

143 t4 + 397 t3 + 492 t2 + 318 t+ 90

728 t5 + 2471 t4 + 3857 t3 + 3430 t2 + 1728 t+ 394

One can check that substituting t = 2 in (70) gives back (68). This can be used to
show the following theorem:

Theorem 7.2. The set-operad FF6, the operad presented by Equation (66) and the
operad of recursively labelled dotted red and white trees are isomorphic.

Substituting t = 0 is the preceding generating series gives the cardinalities of the
operad of red and white trees with no white-white edges. It is isomorphic to the
operad generated by {◦,⊙} that is the operad with two associative operations and
no other relations. The cardinalities are known as large Schroeder number (Sloane’s
sequence A006318). The leading coefficient corresponds to the operad RWD.

Finally these t-parametrized generating series suggests the existence of a family of
operads RWk indexed by any integer k ∈ N whose generating series of dimensions is
given by the solution of Equation (70) with t = k. Such an operad can be defined as
the extension of the red and white trees where instead of putting dots of one color
on white-white edges one can put dots of k possible colors.

7.2. Symmetric counterparts. All the operads considered in the previous subsec-
tion have their symmetric counterparts. As a species, the t colored red and white
trees are given by the following equation system:

(73)

F =W +R

R = Set≥2(W)

W = Set≥1(Z) · Set(tW +R) +R · Set≥1(tW) + Set≥2(R) · Set(tW)

From the preceding system, one can of course extract equations for the exponential
generating series F(x). Here are the result after eliminating R and simplifying:

F = exp(W)− 1

W = exp(x+ tW + exp(W)−W − 1) +W − exp(tW)− exp(W) + 1
(74)
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The coefficients in x count the number of arbitrary labeled red and white trees, with
white-white edges colored with t possible color. Here are the first values:

(75)

1

2 t+ 2

9 t2 + 15 t+ 8

64 t3 + 156 t2 + 144 t+ 52

625 t4 + 2050 t3 + 2675 t2 + 1730 t+ 472

7776 t5 + 32430 t4 + 55000 t3 + 50310 t2 + 25108 t+ 5504

Dotted trees appear when t = 2, giving the following cardinalities:

(76) 1, 6, 74, 1476, 41032, 1464672, 63865328, 3290120832, 195537380704

Theorem 7.3. The symmetric set-operad FFΣ
6 and the symmetric operad of dotted

red and white trees are isomorphic.

As in the non symmetric case, the constant coefficients (Sloane’s A006351) are
the cardinalities of the operad of red and white trees with no white-white edges.
It is isomorphic to the operad generated by {◦,⊙} that is the operad with two
associative and commutative operations and no other relations. Indeed, this operad
can be naturally encoded by series-parallel networks with n labeled edges. Recall
that series-parallel networks are defined as a species by

(77)

N = Z + S + P

S = Set2(Z + P)

P = Set2(Z + S)

of course as a species S = P. The bijection φ with red and white trees goes inductively
as follows:

• The singleton Z is the identity of the operad and corresponds to the tree
consisting only of a leaf labeled 1;
• A series network with edges labeled by a, b, . . . and with parallel sub-networks
A,B, . . . corresponds to a white node labeled by the set {a, b, c . . . } and with
red sub-trees φ(A), φ(B), . . . .
• A parallel network with edges labelled by a, b, . . . and with series sub-networks
A,B, . . . corresponds to a red rooted sub-trees (of size ≥ 2) φ(A), φ(B), . . . ,
and leaves labeled by a, b . . . .

This bijection clearly commutes with the action of the symmetric groups by relabel-
ing, showing that red and white trees and series-parallel network are isomorphic as
species. One can then check that the morphism is actually a morphism of operads.

Finally, one can remark that, as in the non-symmetric case, the leading coefficient
corresponds to the operad RWΣ

D.
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[7] V. Dotsenko, A. Khoroshkin, Gröbner bases for operads., Duke Math. J. 153 (2010), no.
2, 363–396.

[8] J. Ecalle. A tale of three structures: the arithmetics of multizetas, the analysis of singularities,
the Lie algebra ARI, Differential equations and the Stokes phenomenon, 89–146, World Sci.
Publishing, River Edge, NJ, 2002.

[9] J. Ecalle. ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan, J.
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