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Abstract

In this paper we derive a posteriori error estimates for the compositional model of multiphase
Darcy flow in porous media, consisting of a system of strongly coupled nonlinear unsteady partial
differential and algebraic equations. We show how to control the dual norm of the residual aug-
mented by a nonconformity evaluation term by fully computable estimators. We then decompose
the estimators into the space, time, linearization, and algebraic error components. This allows to
formulate criteria for stopping the iterative algebraic solver and the iterative linearization solver
when the corresponding error components do not affect significantly the overall error. Moreover, the
spatial and temporal error components can be balanced by time step and space mesh adaptation.
Our analysis applies to a broad class of standard numerical methods, and is independent of the
linearization and of the iterative algebraic solvers employed. We exemplify it for the two-point finite
volume method with fully implicit Euler time stepping, the Newton linearization, and the GMRes
algebraic solver. Numerical results on two real-life reservoir engineering examples confirm that sig-
nificant computational gains can be achieved thanks to our adaptive stopping criteria, already on
fixed meshes, without any noticeable loss of precision.

Key words: a posteriori error analysis, adaptive algorithms, compositional Darcy flow, finite
volume methods.

1 Introduction

Reservoir modeling is an important branch of petroleum engineering which provides predictive tools
to elaborate reservoir exploration and oil production strategies. From a mathematical standpoint, the
underlying models require the numerical solution of highly nontrivial problems resulting from nonlinear,
strongly coupled systems of partial differential and algebraic equations. Our goal is to show that also in
such complex cases, one can devise efficient solution algorithms based on a posteriori error estimates that
ensure error control and allow significant computational savings in numerical simulations. Improving the
performance of reservoir simulators is a key point, since the simulation of complex Darcian flows in three
space dimensions accounts for the largest part of the computational effort in optimization models for
petroleum fields exploitation.

We focus on the Darcy flow of several fluids through a subsurface porous medium. We suppose that the
fluids are composed of a finite number of components that constitute the phases in the reservoir. Under
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the assumption that the flow process is isothermal, the equations that govern the compositional model are
the conservation of the amount of each component supplemented by algebraic equations expressing the
conservation of volume, the conservation of the quantity of matter, and the thermodynamic equilibrium.

Several numerical methods have been proposed for the discretization of the compositional model.
Finite difference and finite element methods can be used under some assumptions on the physical data,
see [4, [T0} 26] [70] and references therein, but it may be difficult to recover local mass conservation therein.
Mixed finite element methods do not suffer from such a drawback and have been extensively used and
analyzed, see, e.g. [30] 24} 25] and references therein.

Finite volume methods have long been popular in reservoir engineering owing to their numerous
advantages: they meet the industrial constraints of robustness and low computational cost, they satisfy
local conservation, are simple to code, and can be used on a large variety of meshes. Several node-
centered finite volume discretizations are presented and compared by Huber and Helming [45] and a
recent study is given in Eymard et al. [39]. Cell-centered finite volume methods have been considered
in [54) [66] B8, [40]. A symmetric and coercive cell-centered finite volume scheme for discretizing Darcy
fluxes has been proposed in [6]. A particularly popular family of cell-centered finite volume schemes in
the oil industry is that of multi-point methods, which can be easily plugged into traditional simulators
thereby allowing to handle very complicated geometries. They have been studied in the multiphase
compositional context by Aavatsmark et al. [T 2], see also the references therein. More recently, a
variation with compact stencil and increased stability has been proposed and analyzed in [5]. For an
up-to-date review of discretization methods for diffusive fluxes in the context of geoscience models we
refer to [28]; see also Droniou [31] for a wider-scope introduction to finite volume methods for diffusive
problems on general meshes.

To the best of our knowledge, almost no work has been done to this day on a posteriori error estimates
and stopping criteria for the general version of the multiphase compositional model allowing an arbitrary
number of phases and components. The goal of the present work is to fill this gap.

A posteriori error estimates enable to monitor the computational error. For model unsteady nonlinear
problems, some of the first rigorous results were obtained by Eriksson and Johnson [34] and by Verfiirth
[64,[65]. Degenerate problems have subsequently been studied by Nochetto et al. [56], Ohlberger [57], and
lastly in [29]. An adaptation of the estimators for finite volume discretizations of hyperbolic conservation
laws of Kroner and Ohlberger [50] to a steam-assisted gravity drainage two-component, three-phase
flow has been presented by Mamaghani et al. [55]. For multiphase reservoir simulation, dynamic local
grid refinement was first considered by Heinemann [42] and Ewing et al. [37]. Then, in [61], Sammon
discussed the development of adaptive techniques in the context of unstructured grids for compositional
simulation. Local refinement based on structured grid adaptive mesh refinement was probably first
applied by Hornung and Trangenstein in [44] and Trangenstein and Bi [63]. In Pau et al. [58,[59], another
development of a structured grid adaptive mesh refinement algorithm for incompressible/compressible
two-phase flow in porous media is discussed. Recently, first rigorous results for immiscible incompressible
two-phase flow have appeared. Reference [68] develops a general abstract framework for a posteriori
estimates of the dual norm of the residual augmented by a nonconformity evaluation term, and proposes
an adaptive algorithm with stopping criteria for the iterative solution of the arising linear systems and
iterative linearization/iterative coupling, wherein the spatial and temporal errors are equilibrated. This
leads to both error control and important computational savings. Rigorous energy-spaces-type bounds
have then been obtained for vertex-centered finite volume discretizations in [20].

In this paper we derive fully computable a posteriori error estimates for a general version of the
multiphase compositional model. Following [68], the results are derived for the error measured as the
dual norm of the residual augmented by a nonconformity evaluation term. This error measure stems
directly from the given model and simplifies the analysis. It has recently been proved, for conforming
discretizations of model nonlinear problems such as the immiscible incompressible two-phase flow in [20]
and of the two-phase Stefan problem in [29], that this error measure is an upper bound for an energy-
spaces-type norm of the difference between the exact and approximate solutions.

Our a posteriori error estimate can be separated into parts identifying the various sources of the
error in the numerical solution. More specifically, we construct: a spatial estimator incorporating the
errors related to the space discretization and to the nonconformity of the scheme; a temporal esti-
mator accounting for the time discretization error; a linearization estimator due to the approximate
linearization; and, finally, an algebraic estimator due to the inexact solution of the arising linear alge-
braic systems. Distinguishing the different error components allows to formulate stopping criteria for



the iterative linearization and iterative algebraic solvers that halt the iterations when the corresponding
error components no longer affect significantly the overall error. We also propose to equilibrate the space
and time errors by adapting the choice of the time step and adjusting adaptively the computational
mesh. These criteria are collected to design an adaptive algorithm for the resolution of the multiphase
compositional model ensuring a user-given precision and significant computational savings compared to
the classical resolution of the model, and this already on fixed meshes. Additionally, our estimators
prove capable of identifying relevant features of the solution such as well singularities and moving fronts.
This anticipates them to be a good tool for the local adaptation of the spatial mesh. This topic will be
treated in detail in a future work.

The paper is organized as follows. In Section[2]we describe the system of equations for the multiphase
compositional model and identify the unknowns and relevant physical properties along with their de-
pendencies. We also discuss therein a fully implicit cell-centered finite volume discretization with phase
upwind and two-point discretization of the diffusive fluxes. In Section [3| we introduce the corresponding
weak formulation, define the error measure, and state our a posteriori error estimate. In Section [ we
distinguish the different arising error components and propose a fully adaptive algorithm. Finally, in
Section [5| we illustrate our theoretical analysis by numerical results; already on fixed meshes, we obtain
the same precision and a speed-up factor of order 10 in terms of the total number of algebraic solver
iterations in comparison with the classical resolution.

2 Setting

We introduce in this section the multiphase compositional model and its finite volume discretization.

2.1 The multiphase compositional model

The compositional Darcy model describes the flow of several fluids through a porous medium reservoir
occupying the space region Q C R?, d € {2,3}, over the time interval (0,tp), tr > 0. We assume that
is a bounded connected polygon if d = 2 or polyhedron if d = 3 and follows essentially [26] [39].

2.1.1 Model unknowns

We consider a system where matter is present in different phases collected in the set P = {p}, each
containing one or more components from the set C = {c}. For a given phase p € P, let C, C C be the set
of its components, and, for a given component ¢ € C, denote by P, the set of the phases which contain
c. For a given phase p € P, S, denotes the saturation, i.e., the fraction of the pore volume occupied
by p, and, for each component ¢ € Cp, Cp . is the corresponding molar fraction in p. Saturations are
collected in the vector S = (Sp),ep while, for all p € P, molar fractions are collected in the vectors
Cp = (Cp,c)cec,. We tackle here the isothermal case where no energy source or sink is present and the
temperature of both the fluids and the porous medium are fixed to a given value. The dependence on
the temperature is hence not taken into account in what follows. We denote by P the reference pressure
such that the phase pressures P,, p € P, are expressed as

P, = Py(P,S) := P+ P. (S), (2.1)

where P (S) is a generalized capillary pressure. In a two-phase system, the standard capillary pressure
is defined as the difference between the non-wetting and wetting phase pressures. In multiphase systems,
capillary pressures are usually obtained by combining the expressions of capillary pressures for each
couple of non-wetting and wetting phases. Formula allows to deal with this aspect in a more
abstract and mathematically convenient way by introducing a symmetry in the treatment of the phases.
In practice, the reference pressure is chosen as the pressure of a suitable phase p € P, whose generalized
capillary pressure is hence identically zero. The unknowns of the model are collected in the vector

P
X = (Sp)pep
(CP,C)pEP,ceCP

This gives a total of 1 + Np + >
cardinality of the set S).

peP Ne¢, unknowns, (here and in what follows, Ns stands for the



2.1.2 Physical properties

The porous medium is characterized by its porosity ¢ and its absolute permeability A, both of which are
assumed constant in time for the sake of simplicity. For each fluid phase p € P, the following properties
are relevant to the model (the usual dependence is provided in brackets): (i) the molar density (,(Py, Cp);
(ii) the mass density p,(P,, Cp); (iil) the viscosity p,(Pp, Cp); (iv) the relative permeability ky ,(S); (v) for
all ¢ € Cp, the fugacity f.,(Pp, Cp). It is also convenient to define for each phase p € P the mobility
given by v,(Py, S, Cy) = G( Py, Cp) 50

2.1.3 Governing partial differential equations

The governing partial differential equations (PDEs) are obtained by enforcing the conservation of the
amounts of each component, using a constitutive law to relate the average phase velocities to the un-
knowns of the model. The conservation of the amount of each component is expressed by the following
system of N¢ PDEs:

O¢le + V- ®. = q,, Ve e C, (2.2)
where, for each ¢ € C, the component flur ®. has the following expression:
o= Y Bpe  Bpo=2,0(P, S, Cp) i=1(By, S, Cp)Cp (P, ), (2.3)
pEP.

and for all p € P, v, represents the average phase velocity given by Darcy’s law,
vy = yp(F, Cp) = —A(VE, — pp(Py, Cp)g) = —A (VE, + py(Fp, Cp)gVz) (2.4)

where g denotes the gravity vector acting in the negative z direction and g its Euclidian norm. Addi-
tionally, in ([2.2)), ¢. € L?((0,tr); L?>(Q2)) denotes a source or sink and [. is the amount (in moles) of
component ¢ per unit volume,

le=1.(X)=¢ Z Cp(va Cp)SpCp,c- (2.5)

pEP.

For the sake of simplicity, we assume that no-flow boundary conditions are prescribed for all the com-

ponent fluxes,
P.ng=0 on 09 x (0,tr) Ve e C, (2.6)

where 0f) denotes the boundary of 2 and ng its unit outward normal. At ¢t = 0 we prescribe the initial

amount of each component,
l.(,0)=1° Vcec. (2.7)

2.1.4 Closure algebraic equations

The governing PDEs of the previous section need to be supplemented by a system of algebraic equations
imposing the volume conservation, the conservation of the quantity of matter, and local thermodynamic
equilibria. First, it is assumed that the pore volume is saturated by the phases, i.e.,

> S, =1 (2.8)

peP

Next, by definition, the molar fractions satisfy

> Cphe=1 VpeP, (2.9)

ceCy

which corresponds to a total of Np algebraic equations. Finally, we assume the thermodynamic equilib-
rium expressed by
> (Np,—=1)=> Ne, — Ne (2.10)
ceC peEP
equalities of fugacities. Formulating the thermodynamic equilibrium (2.10) for an arbitrary number of
phases and components lies out of the scope of the present work, and we limit ourselves in the next
section to two examples. For further details we refer to Bear [14] or Chen et al. [25].



2.1.5 Examples

To fix the ideas, we now present two common examples of multiphase compositional flows in the context
of reservoir simulation.

Example 1 (Three-phase flow). We consider three phases, typically water, gas, and oil, P = {w,g,0},
containing Ne components decomposed into Ny := N¢ — 1 hydrocarbon components from the set H, and
one water component e. Usually, under isothermal conditions, mass interchange occurs only between the
gas phase and the oil phase. Thus, the water phase contains only the water component e with molar
fraction Cy, o = 1. The equations from expressing the thermodynamic equilibrium between the oil
and gas phases take here the form

feo(P,Co) = feo(P,Cy), Ve e H, (2.11)
which corresponds to Ny algebraic equations. Condition (2.11)) is often reformulated as
KZ(P,C,)Co = KE(P,Cy)Cy Ve € H, (2.12)

where K3, K& are the so-called equilibrium constants for the component ¢ € H in the oil and gas phases,

o
K&, we can write (2.11)) as

Cyo = K28(P,Co,Cy)Co., Ve e, (2.13)

respectively. Letting K2® := K

with K% the equilibrium constant between the oil and gas phases for the component ¢ € H. Using
the equations of mass conservation (2.2)), volume conservation (2.8)), conservation of the quantity of
matter (2.9)), and the thermodynamic equilibrium (2.13)), the three-phase compositional model reads

wkr w
O($CuSuCue) + V- <C’thevw> ~ o,

Hw
Cokro Cgkrg
0L(9(CSoCe + S5 Cge)) + V- | 22O+ EEECy vy | = ac Ve e H,
o g
Syt So+ S =1,
Coul. (2.14)
Z Co,c = 1;
ceCo
Z C ,c — la
ceCyq

Kg’g(P7 Co, Cg)co,c = Cgvc, Ve e H,

where the phase pressures are given by (2.1) and the Darcy velocities by (2.4), while the boundary and
initial conditions are respectively specified by (2.6) and (2.7). The total number of equations is 2N¢ + 3.
Recall that the unknowns are one reference pressure, Np saturations, and Y Nc, molar fractions,
totaling

pEP

14+ Np+> Ne, =143+ (1+2x (Ne—1)) =2Nc +3,
peEP

which gives us the same number of equations as unknowns.

Example 2 (Miscible two-phase flow). We next examine how the model of Example|l| simplifies when
water is not present. This is precisely the case considered in the numerical examples of Section [J] below.
The phases are now gas and oil, corresponding to P = {g,0}, composed of N¢ hydrocarbon components
with, using the notation of Fxample |1, C = H. Mass interchange is allowed between these two phases,
and the thermodynamic equilibrium relations are given by or as in the previous example.



The system of equations (2.14) simplifies to

okr o kr
9 (6(€6596Co,c + (55C4.c)) + V- (CMC’U + Cgﬂ L Cg,cvg) =q., Veel,
o g

So+S8g=1,
> Coe=1, (2.15)
ceCo
Z Cg,c = 17
c€Cyq

K§7g(P’ CO7 Cg)co,c = Cg,m Ve e C,

amounting to 2N¢ + 3 equations. Also in this case we have the same number of equations as unknowns,
the latter equaling to
1+ Np+ > Ne,=1+2+(2x (Ne)) =2Nc +3.
peP

2.2 An implicit finite volume scheme with phase-upwind and two-point dis-
cretization of diffusive fluxes

In this section we briefly discuss a fully implicit numerical scheme for the multiphase compositional model
of Section based on phase-upwind and two-point finite volume discretization of diffusive fluxes. The
use of phase-upwind for the finite volume discretization of the Darcy problem is considered, e.g., in
Brenier and Jaffré [I6] and Eymard et al. [40]. This scheme is of primary importance due to its stability
and consequent popularity in the oil industry.

2.2.1 Space-time meshes

Let (7,)1<n<n denote a sequence of positive real numbers corresponding to the discrete time steps such
that tp = ZnN:1 7. We consider the discrete times (£")o<n<n such that t := 0 and, for 1 < n < N,
t" :=3"" | 7; then we define the time intervals I,, := ("1, ¢"). For a function of time v with sufficient
regularity we denote v™ := v(t"),0 <n < N, and, for 1 < n < N, we define the backward differencing
operator

Ofv := Tin(v" — o™ (2.16)
that we shall use for both scalar and vector functions.

Let (M™)o<n<n denote a family of meshes of the space domain 2 superadmissible in the sense of
Eymard et al. [38], Definition 3.1]. Common instances of superadmissible meshes are Cartesian orthogonal
grids or matching simplicial meshes that satisfy the (strict) Delaunay condition. Superadmissibility
requires, in particular, that for all M € M"™ there exists a point &y, € M (the cell center), and for all
mesh faces o, there exists a point Z, € o (the face center) such that, for all faces o lying on the boundary
of an element M, the line segment joining @, with Z, is A~!-orthogonal to . In what follows we let,
for all M € M™ and all o € &, du,, = dist(zr, T, ), where £ denotes the faces of an element
M € M™ not lying on ). For every element M € M™, we denote by |M| its d-dimensional Lebesgue
measure and by hj; its diameter. For 0 < n < N, we denote by £™ the set of mesh faces. Boundary
faces are collected in the set £P" := {0 € £"; 0 C 9N} and we let E4" := €™\ £>™. For an internal face
o € £ we fix an arbitrary orientation and denote the corresponding unit normal vector by n,. For a
boundary face o € £P", n, coincides with the exterior unit normal ng of Q.

2.2.2 Finite volume discretization

In the context of cell-centered finite volume methods, the unknowns of the model are discretized using
one value per cell: For all 0 <n < N we let

Py
X/’(LA = (XI"\?{)I\/IGM'IL, X]\Z = (Sg7M)p677 VM S Mn
(Og,gM)pe’P,Cecp



In particular, in practice, the initial condition (2.7)) needs to be augmented to

where XRA typically results from a steady-state equilibrium computation. For simplicity, we suppose
that 19 in (2.7)) is piecewise constant on M° and exactly satisfied by the corresponding components of
Xﬁ,l. For all time steps 0 < n < N and all M € M™, the discrete phase saturations are collected in

the vector Sy, := (S} yr)per while, for all p € P, the discrete molar fractions are collected in the vector
Coy = (C’p , a)eec,- We consider in what follows an isotropic, possibly heterogeneous medium such

that the local (cell) permeability tensor satisfies A|yy = Ay Id for all M € M™ and a scalar Ay > 0.
Since we consider superadmissible meshes, this assumption ensures the consistency of the two-point finite
volume discretization of diffusive fluxes. We observe, in passing, that the consistency of the discretization
scheme is not required in the a posteriori error analysis in the sense that the estimate of Theorem
holds true even if consistency does not, and its proof does not require to specify the origin of the discrete
approximation. This property may have some interest in practice when superadmissibility cannot be
guaranteed, since a consistency estimator could be devised. Of course, in practice, we advocate the
systematic use of unconditionally consistent schemes.
For each phase p € P, the corresponding phase pressure inside each cell M € M™ at time step
0 <n < N is given by
Ppyv = Poa(Pry, Siy) = Pry + Pe, (Shy)- (2.18)

The PDEs (2.2)) expressing the conservation of the amount of each component are discretized as follows:
For all 1 <n < N, we require

MO lens + Y Forro(Xiy) =|Mlqly, — VeeC, VM €M™, (2.19)
UES;\’;

where ¢ 5 = [ I, Jas @/ (|M|7,,)dxdt (more details about the source term will be given in the numerical
tests), and the accumulation term is given, for all 0 < n < N, by the following discrete version of .

Uoap = lear(X30) =0 Y G(Prar, Cpan)SpnCieny Ve €C, VM € M™. (2.20)
PEP:

For each component ¢ € C, its total flux across o results from the sum of the corresponding fluxes for
each phase p € P, i.e.,

Fento(XR0) == > Foenro(XR), (2.21)
pEP.

where, for all p € P., all M € M", and all o € EM with 0 = M NOL,

Fp,c,M,J(X_/T\L/l) = V;(XXA)CZ,C,M;F ’M’O-(X}\L,l), MT = P = (222)

p

M it P}y, — P >0,
L otherwise,

and with C;”C’M; and V;(X/r\l/() = (P MT’S;\L/IT’CZ,M;)

fraction and upstream mobility. In || we have introduced the two-point finite volume approximation
of the normal component of the average phase velocity on o given by

denoting, respectively, the upstream molar

AK
dKa'

aprQ,
o ————

VK M, L 2.23
s e {M,L}, (223

Fpato (X)) == [P;?,M - P;:L,L + pZ,Ug (zm — ZL)} ) QK =
where pp; , is an approximation of the mass density of the phase p on the face o given by (other choices
are possible),

K € {M,L}.

P (Xp 2100 (Pyars Cyar) + X 10p(Pyr, Cp 1) n {1 if 5p x >0,
n = -

Xp.m +XpL ’ XK 0 otherwise,

Boundary fluxes are set to zero for all components to account for the homogeneous natural boundary

condition ([2.6]).



Remark 2.1 (General meshes and full permeability tensors). A straightforward variation of this scheme
that is consistent on more general meshes and for full permeability tensors consists in using a multi-
point expression for Fy, o (cf. ) in the spirit of [2, [32]; see also [3]. However, resorting to multi-
point finite volume methods is only a partial answer to the problem, since those schemes add arithmetic
complezity, may suffer from coercivity loss, and are in general nonmonotone.

At the discrete level, volume conservation is expressed by the following relation: For all 1 <n < N,

Y Spu=1 YMeM" (2.24)

peEP

Similarly, the discrete conservation of matter in each phase reads, for all 1 <n < N,

Y Crow=1 VpeP,VYMeM" (2.25)
ceCyp

Finally, the thermodynamic equilibrium is enforced by requiring the equality of fugacities for all time
steps inside each cell, leading to

Z Ne¢, — Nc¢  equations V1 <n < N,VM e M". (2.26)
pEP

An important remark which can be exploited in the implementation is that (2.24), (2.25), and the
thermodynamic equilibrium express local algebraic relations between the unknowns in each cell.
This allows to reduce the size of the global linear system to Na» X N¢ equations stemming from . A
detailed treatment of local elimination strategies is out of the scope of the present work. We emphasize,
however, that a local elimination procedure is indeed used in the numerical examples of Section

3 A basic a posteriori error estimate

We derive here an a posteriori estimate for the error measured by the dual norm of the residual augmented
by a nonconformity evaluation term. This choice of the error measure is naturally inspired by the problem,
and allows to obtain a fully computable error upper bound. The results of this section are generic for
an arbitrary approximation; we show how to apply them to the finite volume setting of Section [2:2] in
Section [ below.

3.1 Weak solution

At this stage, we need to characterize a weak solution for the multiphase compositional model ({2.1f)—
[2.10). Let (-,-)p stand for the L?-scalar product on D C  and ||-||p for the associated norm; the same
notation is used for both scalar and vector arguments, and the subscript is dropped whenever D = Q.
We define

X = L2((0,tp); HY()), (3.1a)
Y := H'((0,tp); L*(Q)). (3.1b)

Let € > 0 be a (small) parameter which only needs to satisfy ¢ < 1. We equip the space X with the
norm

1

N 2

lellx = {Z/I > |I¢||§<,Mdt} el = erafllelll + Vel  eeX. (3.2)
n=1 n MeMn

This choice is motivated by the homogeneous Neumann boundary condition ; taking e = 0 is possible
and classical when Dirichlet (pressure) boundary conditions prescribed at least on a part of the boundary,
cf. [35 [68] 20]. In the numerical experiments of Section |5 we set € = 1.

We suppose sufficient regularity to satisfy:



Assumption 3.1 (Weak solution). There exists a weak solution X of (2.1)—(2.10) which can be char-
acterized as follows:

lceY Ve eC, (3.3a)
P,(P,S)e X Vp € P, (3.3b)
®. c [L3((0,tp); L2 (Q)]¢  Veed, (3.3¢)
tp tp
{(Bele, p)(t) — (e, Vip) (1)} dt = / (g, p)(H)dt V€ X, Veel, (3.3d)
0 0
the initial condition holds, (3.3¢)

the algebraic closure equations (2.8)—(2.10) hold, (3.3f)

where Py, o, and ®. are defined, respectively, by (2.1), (2.5)), and (2.3).

Existence and uniqueness of a weak solution has to our knowledge not been established for the
multiphase compositional model. In simplified settings, with typically only two phases present and each
phase composed of a single component, such results can be found in [49, 22, [8] [9] 23] 19} 48] [7] and the
references therein.

Remark 3.2 (Component fluxes). It follows from (3.3al), the assumption q. € L*((0,tr); L?(Q)), (3.3d),
and (3.3d) that actually

&, c L?((0,tp); H(div,Q))  VceC, (3.4a)
V-®,. = q.— 0l Ve € C, (3.4b)
®.ng=0 on 9Q x (0,1tp) Ve eC, (3.4¢)

so that the component fluzes ®. have the mnormal trace continuous in a proper sense, the governing
equation (2.2)) is satisfied with a weak divergence, and the boundary conditions (2.6|) hold in the normal
trace sense.

3.2 A generic approximate solution

In order to present the results of this section abstractly, not linked to any specific numerical discretization,
we suppose here that for each 0 < n < N and p € P, we are given a piecewise H' in space (typically
piecewise polynomial of degree > 1, possibly discontinuous) phase pressure Bl Therefrom, the space—
time functions P, , are created by prescribing P, hT( = P, 0<n <N, P hr thus being piecewise
affine and COI’I'EIDUOUb in time. By such an asbumptlon B, , are not necebbarlly included in the energy
space X; we henceforth understand by V the broken gradlent operator on the meshes M™. Similarly, the
amounts of components [(!),, 0 <n < N, ¢ € C, are supposed L? in space (typically piecewise polynomial
of degree > 0, possibly discontinuous) and form the piecewise affine and continuous—in—time functions
lewr, ¢ €C, by lepr (t7) = l" . Thus l. pr € Y, in a discrete equivalent of ([3.32]

We suppose that the space time reference pressure, saturation, and molar fractlon approxunatlons
Pur, Sphr, and Cpepr, p € P, ¢ € C, are linked to P, and lc hT via and (2.5), respectively.
Similarly, we suppose that the algebralc closure equatlons are satlsﬁed exactly, and, for
simplicity, that ZO h satisfies exactly the initial condition , ie., lO = ZO Below, the concise notation
for the Vector—valued space—time functions Py, = (PpJ”_)pep, ShT = (Sp’}”—)pe'p and, for all p € P,
Cphr = (Cpye, hr)cecp7 will be employed. We show how we obtain the above quantities in the finite volume
setting of Section [2:2] or more precisely during the calculation including also an iterative linearization
and iterative solution of the arising linear systems, in Section [1.2] below.

3.3 Error measure

Following [68], we consider an error measure for the above approximate solution inspired from the weak
formulation , which consists of the dual norm of the residual supplemented by a nonconformity
evaluation term. For nonlinear problems, it has been argued in, e.g., [21l [33] [36, 29] that the dual
norm of the residual is a more natural choice than the energy norm. Moreover, in the two-phase flow
setting with conforming approximations and Dirichlet boundary conditions, it has been shown in [20}



Theorem 5.7] that the dual norm of the residual is an upper bound for an energy-type difference between
the exact pressures and saturations. Concretely, our error measure is defined as

N =N (Pur, Shr, (Cpir)pep) {Z/W} {ZN,ﬁ} , (3.5)

ceC peEP

where the quantities N,c € C, and N,,,p € P, have the same dependence as N. They are defined,
respectively, as

tp
j\/c = sup {(8tlc — Otle hrs ©)(t) — (‘I’C - ‘I)CJ”_, V(p) (t)} dt, (3.6)
PEX,|lellx=1J0
with the exact component fluxes ®. defined by (2.3)) and @, ), given by
= Z (I’p,c,h‘ﬂ ¢p,c7h‘r =V ( p,hT ShT’ CP7hT)CP’C,hT'UP(Pp,hT7 CP,hT)’ (37>

PEP.

and 1
2

=g<{z [ 100 -, <6p><t>2dt}, (33)

where, for a space-time function ¢ € L%((0,tr); H'(M)) (piecewise regular with respect to the partitions
M™), we have let
Uy () = vp(P, p,hTs Shry Cpnr)Cpe,nr AV . (3.9)

The first term A/, evaluates the non-satisfaction of (3.3d) at the discrete level, as @, given by (3.7) do
not necessarily satisfy the conditions (3.4]), while the second term J\fp quantifies the possible departure
of the discrete phase pressures P, from the energy space X.

3.4 Flux and pressure reconstructions

To estimate the terms Nc in the error measure we, for all 1 < n < N, introduce N¢ component flux
reconstructions (O },)cec such that, for all c € C, ©7, € H(div;2) and the following local conservation
property holds:

(Gep = Otlenr —V-OL, Dy =0 VYeeC,VM € M", (3.10a)

where we have introduced the piecewise constant space functions Qeps € € C, such that (qfh)| M =
J I / 21 e/ (|M|7,)dxdt. For further use we also define the space-time functions gcn,, ¢ € C, such that
denrlr, = den for all 1 <n < N. It is also assumed that the boundary condition ([2.6) is satisfied exactly,
ie.,

O.,ng =0 on . (3.10Db)

We denote by ©, p, the space-time function such that @, 7, = @C p forall 1 <n < N. Note that
©_ 1+ mimic the properties of the weak component fluxes ®. as expressed in Remark [3.2] . In practice,
®7, are constructed in the Raviart—-Thomas—Nédélec finite-dimensional subspaces of H(div; 2); details
in ‘éhe finite volume context are given in Section [£:4] below.

To estimate the terms J\/p in , we need Np phase pressure reconstructions P, ., p € P, such that
Bonr €X for all p € P. These reconstructions are typically piecewise polynomial continuous in space
and piecewise affine continuous in time. Details in the finite volume context are given in Section
below.

3.5 A posteriori error estimate

We now derive a fully computable upper bound for the approximate solution as specified in Section
the error measure introduced in Section [3.3] and based on the pressure and flux reconstructions of
Section [3:4] A key ingredient is the following Poincaré inequality:

H(P_SOMHMSCP,Mh]\/IHVSDHM V(,DEHl(M),VMEMn, 1§n§N, (3.11)
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where @y = [,, ¢/|M|dx denotes the mean value of the function ¢ on M. We recall that Cp ay = 1/m
for convex cells M (see [60] [15]).

Forall1 <n <N, M € M", and c € C, we define the residual estimators ng_,, ., the fluz estimators
N% ar.(t), t € In, and the nonconformity estimators nic s p.o(t); t € In, p € Pe, as follows:

nﬁ»M,C = min{CPvM’ Eié}hMHqZh - 6?l0,h‘r - V'GZ’,h”l\/b (312&)
ng,M,c(t) = Hgg,h - (I)c,h‘r(t>||M7 (312b)
MNC M pe(t) = ([ Wpe(Ppnr ) (8) = Wpe (B pr) ()l ar- (3.12¢)

Theorem 3.3 (A posteriori estimate for the error measure (3.5))). Under Assumption for the flux
and pressure reconstructions of Section and with the estimators given by (3.12), there holds

1

N 2
2
Ncé{Z / S (foare + 1R are(D) dt} + e = gensllxr cec, (3.13a)
n=1

n MeMn

N 3
N, < { > /I > (nIT\LIC,M,p,c(t))th} peP. (3.13)

ceCpn=1""n MeMn

Remark 3.4 (Source term). In reservoir simulation, the source terms q., ¢ € C, are typically piecewise
constant on the space—time mesh. Then, the last term in the estimate (3.13al), called data oscillation in
numerical analysis literature, vanishes.

Proof. The proof is simple using the equilibrated flux reconstructions © . To bound N, let ¢ € X be
such that ||¢]|x = 1. There holds

tg
D) = [ @ = Bl 2)(0) = (B = By Vi) ()
0
tp
= ) {(qv: - atlc,h'rv @)(t) + ((I)c,h'r’ V@)(t)}dt
tg
= / {(qc,hr - 8tlc,h7' - v'ec,hra @)(t) - (GC,hT - @c,h'r’ V@)(t)}dt
0
tp
+ / (QC - qc,h'r, 30) (t)dt
0
N
-y / (@0 = OFlepr — VO, 9)(1) — (O, — B, Vo) ()}t
n=1 n

tg
+ / (qc — qc,hT @)(t)dtv
0

where we have used in the second line and where we have added and subtracted (@ pr, Vip)(t)
and used Green’s theorem along with to infer (V-O¢ pr, 9)(t) + (O pr, Vi) (t) = 0 in the third
line. For all 1 < n < N and t € I,, using the local conservation property followed by the
Cauchy—Schwarz and Poincaré’s inequalities, and recalling , it is inferred,

(QZh = O¢lenr — V'G)Z,m @)(t) = Z (q?,h = O¢lenr — V'ezhv ©)m(t)
MeMn

= Z (e — OFlenr = V-OL 0 — oar) m(t)
MemMn

> laln = 0 lenr — V-OLllrlle — onrllae(t)
MemMm

. _1
> min{Cr a2 Yl aly, — Olenr—V-O bl aallipl x,au (£)
MemMn

= > nharellellxa(®).

MemMn

IN

IN
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Using again the Cauchy—Schwarz inequality yields for all 1 <n < N and t € I,,,

(O, =P, VO)E) = D (O, — @ VO () < D 0 ar o (DIVellar (0).

MemMn MEM"
Thus,

Z/ Y AR are + nF are Ol (OYE+ lge = geprllx 2] x- (3.14)
In prepn
Finally, using the Cauchy-Schwarz inequality together with the definition (3.2)) of the norm on X and
llellx =1 to bound the first term in equation yields the estimate
The estimate is obtained using the X-regularity of the phase pressure reconstructions B, ,
defined in Section to bound the infimum in (3.8). O

4 Application to finite volume method and adaptivity based on
distinguishing the different error components

We apply here the abstract result of the previous section to the finite volume discretization introduced in
Section Moreover, we consider a practical implementation of 7, requiring the solution of
the arising system of nonlinear algebraic equations at each time step. Distinguishing the different error
components in the basic a posteriori error estimate of Theorem we propose stopping criteria for the
employed iterative algebraic and linearization solvers. An entirely adaptive algorithm, also balancing
the time and space error components via adaptive time step choice and adaptive mesh refinement, is
proposed. For the sake of simplicity, we assume henceforth that the source terms q., ¢ € C, are piecewise
constant on the space-time mesh, so that the last term in the estimate vanishes, cf. Remark

4.1 Linearization and algebraic resolution

The finite volume method discussed in Section requires to solve a system of nonlinear algebraic
equations at each time step. Recalling (2.16)), for all 1 < n < N, the discrete conservation of compo-

nents (2.19) can be rewritten as

P () = P (M) 1) £ Y Funro (XR) — Ml =0 Ve, VM € M. (41)

JESM
System (4.1) can be solved by any suitable linearization. In what follows, we focus on the Newton
linearization algorithm, although the a posteriori error analysis developed in this work can be easily

adapted to accommodate other linearization algorithms in the spirit of [36].
For 1 <n < N and X}\L,’lo fixed (typically, X}\l/’lo = X}\l/l_l), the Newton algorithm generates a sequence

(Xf\b/’lk)kzl with Xf\b/’lk solution to the following system of linear algebraic equations: For all ¢ € C and all
M e M",
OR? y;

’I’L
M eMn aX

The (approximate) solution to (4.2) is typically obtained using an iterative algebraic solver. For 1 <n <
N, a given Newton iteration k£ > 1, and X}\’/’lk’o fixed (typically, XJQ’“’O = Xj\i’lk_l), the iterative solver
generates a sequence (Xﬂk’z)izl solving (4.2) up to the residuals, given for all ¢ € C and all M € M"

b
Y OR!
Rn,]l\c42 - z : c,M
c, : n
M'eMn OX%

Plugging (4.1)) into (4.3)), it is inferred

n,k,t |M‘ 816 n, n,k,t n,k—
Rc,z\]} = Z n 6XTIL\/I (%4 - 1) ’ (XM’k _XM’k 1)
M'e Mn

8F(, ,0 — n,k,i - n -
+ > > ach (XY (At = X ) + RE (Y.
M'eMn eg;\"

(XN - (gt = Y + RE () = 0. (4.2)

(XY (it = AT 4+ R (R, (4.3)

(4.4)

12



The first and the second terms in the right-hand side of (4.4]) are linear perturbations of the corresponding
terms in (4.1]). The linear perturbation in the accumulation is

Ole,mr
oxXy,,

ki _
£CJ4 T
M'eMn

(XN - (At = &, (4.5)

whereas the linearized component flux reads
n,k,g . n,k,i
Foiie = Fyiine (4.6)
PEP.
with linearized phase component fluxes

n,k,i R n,k—1
F;xJLU'_'FhCJLU<Aa4 ) + : :
M'eMn

OFp .m0

e () (e ). )

In conclusion, at time step n, Newton iteration & > 1, and linear solver iteration ¢ > 1, the residual
vector Rg’ff is given by
| M|

n,k,i
]%qu - n

(e () + 220 =) + 30 FUh — IMlgla VeeC VM e M™. (43)

in
oEEy,

4.2 Approximate solution

In this section we identify the approximate solutions, as discussed in Section for the finite volume
setting of Sections and We will need some finite-dimensional subspaces of H(div,). When
the meshes M™ consist of rectangular parallelepipeds, as it is the case in the numerical experiments of
Section [5] below, we use the lowest-order Raviart-Thomas-Nédélec spaces

RTN(M") := {v, € H(div; Q); vp|amr € Qo1 (M) x Q10(M) if d =2,

4.9
Qo,1,1(M) x Q101(M) x Q11,0(M)ifd=3,VM e M"}, (4.9)

whereas for simplicial meshes, we employ
RTN(M") := {vh € H(div; Q); vp|ar € [Po(M)]¢ 4 xPy(M), YM € M”} , (4.10)

see Brezzi and Fortin [I7] for details.

Remark 4.1 (General meshes). For general polygonal meshes, one option is to introduce matching
sitmplicial submeshes of M™ and use (4.10). One can alternatively consider the constructions proposed
in [52, [51), [27], or [69].

4.2.1 Phase pressure postprocessings

As explained in Sections [3.2] and [3:3] we need to evaluate the broken gradient of the discrete phase
pressures P’y pe P, 0 <n < N. The original finite volume pressure approximations P}, of -,

or, more precisely, va’M’ obtained from X}\IA " in Section are only piecewise constant. We thus,
following [67], define piecewise quadratic, possibly discontinuous phase pressures as follows. Let 1 < n <
N, a Newton linearization iteration & > 1, and an algebraic solver iteration ¢ > 1 be fixed. For all p € P
we define I‘Z”:” € RTN(M™) such that, for all M € M"™ and all o € £}/,

n,k,i n,k,i
(th ‘N, ) —'F%Jia(A%A %

with F), a7, defined by (2.23 and I‘"f g = 0 on 9. The fluxes p’h’i are thus discrete versions of
the Darcy velocities v, from Motlvated by (2.4] ., we then, for each p € P, introduce the piecewise

quadratic phase pressure Pp7 f ot such that, for all M € M™,

(P23E" 1)

(FAVELE Dl = (O = (Ao (B Ol and - =20r

n,k,i
= Pp,M . (4.11)

The space—time function P; ’ ;l is then as usual continuous and piecewise affine in time, given by P; ,f ot
at the discrete times t"; for n = 0, the initial datum from is used.
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Remark 4.2 (General meshes). On general polygonal or polyhedral meshes, one can either again in-
troduce a simplicial submesh, or define for all p € P a piecewise affine, possibly discontinuous pressure
Pg’:’z, replacing the Raviart-Thomas—Nédélec vectors (I‘Z::’NM in (4.11) by the constant vectors

o] ki
> MFP,M,U(XXZ Nxo — M)
0653\’;

The use of the above formula to lift fluzes is justified in [5, Section 2.3].

4.2.2 Reference pressure, saturations, molar fractions, and amounts of components

The approximations of all saturations, molar fractions, and amounts of components by the finite volume
approach of Sections and is piecewise constant on the meshes M"™. We keep them as such and
use the notations (recall the definition of the function . as of (2.20))

n,k,i n,k,i
(SponMar = Sy (4.12a)
n,k,i n,k,i
(Coei)l =Cpars (4.12Db)
(en e = 107" = Lo (XR™), (4.12¢)

for0<n<N,k>1,i>1, M € M", p e P, and ¢ € Cp. The space-time functions Sgy’,]f;i, C’;’f’};, and

1" are then defined therefrom while being continuous and piecewise affine in time. In what concerns

n,k,i - .. .
the reference pressure P,’"", it does not appear explicitly in what follows.
In Section we have made the assumption that the links (2.1) and (2.5]), as well as the algebraic

closure equations (2.8)—(2.10)), are satisfied exactly for the discrete approximations P/, §mk-i cn-k.i

ht p,hT? “p,c,hT?
P;f;lk;i, and lg’f]f;i. This may not hold precisely for all of the required links for the above construction
but we suppose the error from this non-satisfaction negligible. Typically and hold precisely
but and are violated (the capillary pressure function applied to a piecewise polynomial is
typically no more a piecewise polynomial and a product of two piecewise affine-in-time functions is a
piecewise quadratic-in-time function) and will be violated if the local fugacity equations are not

resolved exactly.

4.3 Phase pressure reconstructions
We define the phase pressure reconstructions discussed in Section (3.4) from P;f }i” of (4.11)) by

Bon' =L(B)  peP, (4.13)

0<n < N,k >1,4>1, where Z denotes the vertex-averaging interpolator. This operator has
been introduced in the context of a posteriori error estimates for finite volume discretizations of Darcy’s
equations by Achdou et al. [3] and in the discontinuous Galerkin setting by Karakashian and Pascal [47].
As usual, B, »- is then continuous and piecewise affine in time, given by ‘BZ: " at the discrete times ™.

Most importantly, it satisfies Bynr € X.

4.4 Component flux reconstructions

We provide here details on how to build the component flux reconstructions in the spirit of Section 3.4 for
the finite volume setting of Sections 2.2] and [£:1} Several different flux reconstructions will be introduced
to accommodate the presence of different error components.

Let a time step 1 < n < N, a Newton linearization iteration k£ > 1, and an algebraic solver iteration
i > 1 be fixed. For all ¢ € C, the discretization fluz reconstruction O , € RTN(M™) is such that,

disc,c,
for all M € M™ and all 0 € &}/,

(©%k T 1)y = Fonro (X5, (4.14a)

disc,c,
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with F, ar,» defined by (2.21)), while ki no = 0 on 0Q coherently with (2.6)). For all ¢ € C we also

disc,c, ’
define a linearization error flux reconstruction @ﬁr’lkgh € RTN(M™) such that, for all M € M™ and for
all o € &7,
ki ks ki
(@ﬁn’;h.’n]\/[, 1)0 = Fc”,LM,ILU — C7M7(T(X./<L/1 l), (414b)

with F C" ]\Isza defined by (4.6]), and, similarly, an algebraic error fluz reconstruction ®Zl7g,7j,h € RTN(M™)
such that, for all M € M™ and for all o € 5;\’;,

(O5F mar, Donr = =Ry (4.14c)

with Rgllf/ defined by (4.8). To complete both (4.14b)) and (4.14c)), we set respectively @ﬁ;l’féfh~ng =0

and @Zl’k’ci Lo = 0on dQ. For all c € C, the equivalent of the component flux reconstruction @2 ,, from

Section is then given by

@ﬂ}lz:z —@uki L @nki | gk (4.144d)

c, disc,c,h lin,c,h alg,c,h"

Remark 4.3 (Algebraic error). In practice it is rather difficult to satisfy (4.14d)) exactly, though it is
possible following, e.g., [{6, Section 7.3]. Following [43, [{1] and [36, Section 4] we prefer to compute

our algebraic error flux reconstructions @Zl’gk’z n by: (i) performing j additional iterations of the algebraic

solver from the stage (4.3)), with j a user-defined fized number; (ii) computing @gi’fc’ij,{ and @ﬁff;{j
as in and respectively, with i replaced by i + j; (i) defining the aléébmz'c error’ﬂux
reconstruction as @Zl’g’z’h = @lekcljfl + @ﬁfgzj - (@foé,ic,h + Gﬁﬁ]fzh)' Then, only holds ap-
prozimately, the better the bigger j is. A rigorous analysis including an adaptive choice of the parameter
J has been carried out in [36]. In the numerical experiments below, a surprisingly good performance of
this procedure is reported for the very low value j = 2. This may be attributed to the use of an efficient
preconditioning, possible without any change in the above considerations.

4.5 Distinguishing the space, time, linearization, and algebraic errors

In this section, we first give a time-localized version of Theorem Subsequently, we derive an a
posteriori error estimate distinguishing the space, time, linearization, and algebraic error components.
4.5.1 A time-localized a posteriori error estimate

Let 1 <n < N, a Newton linearization iteration k£ > 1, and an algebraic solver iteration ¢ > 1 be fixed.
It follows from (4.8)), the definition (4.14d]) of the flux reconstruction @?: ', and Green’s theorem that
there holds, for all ¢ € C,

lc Xn,k—l + En,k,i _ lnfl )
(q;Zh . 7M< M )Tn oM oM V,@Zﬁ,l? 1 -0 YM e M. (415)
M

Unfortunately, owing to the nonlinear accumulation term, compare the definition (4.12¢|) of l?’,f;i with (4.8]),
(4.15) is not a full equivalent of (3.10al). However, we can still elaborate Theorem as follows. For
all ¢ € C, define the following refined version of the estimators of (3.12]), with the additional nonlinear

. . n,k,i
accumulation estimator nga a .

. . L - _ _— .
Myite = min{Cr,ar e 3 gy — (7) 7 (e (X + £007 = 157) = VO [,

(4.16a)

Mnte(t) == 1@0 =L ()| tE L, (4.16b)
M) = 1Ry (PR () = Wy o (Boi ) B tE€ Ly, p € P, (4.16c)
N e = 2 har(T™) " ller (X) = e (X" ) = L2907 lar (4.16d)

where the functions ¥, ., p € P, ¢ € C,, are defined by (3.9)), while

n,k,g ,__ n,k,i n,k,g . n,k,i n,k,i n,k,i n,k,i n,k,i n,k,i
Qc,hr T E : (I)p,c,hT’ (I)p,c,h'r T VP(Pp,hT 7Sh'r 7(jp,hr )Cp,c,hTUP(Pp,hT 7(jp,hf )
PEP.
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In the spirit of Section we define the time-localized error measure,

N = {Z(N3)2}2 + { Z(Ng)2}2, (4.17)

ceC pEP

where N, ¢ € C, and /\/;IL , p € P, are defined as (3.6)) and (3.8]), respectively, with the current approx-

imations indexed n, k,7 and the time integration performed on the time intervals I,, instead of (0,tp).
Note that

N N
NCZZ(NCn)zv Np:Z(N;)Q
n=1 n=1
We then have:

Corollary 4.4 (Time-localized a posteriori error estimate). Consider a time step 1 <n < N, a Newton
linearization iteration k > 1, and an algebraic solver iteration i > 1. Under Assumption for the
approzimate solution of Section [{.3, the phase pressure reconstructions of Section [{.3, the component
flux reconstructions of Section and with the estimators given by , there holds

2
NE < { / > (nﬁ:’fv’},ﬁnﬁzm(t)+n§;’i:’M,C)zdt} cec, (4.18a)
I

1
2

Ny < { Z /1 Z (n;g;;[,p,c@))zdt} peP. (4.18b)
ceCy

n MeMn
Proof. The proof is a slight modification of that of Theorem We only need to estimate

N
S [ @ = ) e () + £~ ) e ()
n=1"In Mecmn

N
= Z/I Z ((Tn)_l(lc7M(X;\L/7lk7i) . lC,M(X‘/(L;[k_l) _ ﬁg’]]\iji),@)]\/[(t)dt
n=1

n MemMn

N N

n,k,i 1, n,k,i
> / M e hatllelar(dt < / S i cllellxartdt,
n=1 n=1

" Memn In Memn

IA

to combine this bound with (3.14]) and the definition (3.2)) of the norm on the space X, and restrict the
result to the given time interval. O

4.5.2 Distinguishing the different error components

Forall1 <n <N, k>1,i>1, M € M", and c € C, we define the spatial estimators evaluating the
error related to the spatial mesh resolution,

2
L . L L ki K 2
T]:p,l\/zl,c(t) = 771?{,]\41,0 + ||®2isc,lc,h - ‘I)Zhrl(tn)”M + { Z (n;LTC,;\J,p,C(t)) } te I”’ (4193)
PEPe

the temporal estimators evaluating the error related to the size of the time step,

i () = 1T () — @I ()t € L, (4.19D)

c,ht c,ht
the linearization estimators measuring the error in the linearization of the nonlinear system (4.1J),

ko Skt Skt
Min e = 15w p Iar + 188 4 e (4.19¢)

and the algebraic estimators that quantify the error in the algebraic iterative resolution of the linear

system (4.2)),

koo ki
n:lg,li/f,c = H(-):lg,cl,hHM' (419d)
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For all ¢ € C, global versions of these estimators are given by

n (2 2
Ml - { / Z né‘pﬁ}c dt}7 (4.20a)

In premn

N

(NI

n,k,t n,k,t 2

ntmkc { / ntmk]wc(t)) dt} 5 (420b)

In prepn
1

2
! ::{27” > (nf},f;“)z} : (4.20¢)

MeMn

1
2
Mhtee ::{27" > (n;ﬁﬁ&,f} : (4.20d)

MeMn

Using the triangle inequality and Corollary we can estimate the time-localized norm N™ of (4.17)
as follows:

Corollary 4.5 (Distinguishing the space, time, linearization, and algebraic errors). Under the assump-
tions of Corollary there holds, with the estimators given by (4.20)),

2
k k iy 2
N < {Z (st mpks? et } - (4.21)

ceC

Remark 4.6 (Anisotropic meshes and full permeability tensors). For more general polygonal or polyhe-
dral meshes and for full permeability tensors, the accuracy of RTN flux reconstructions may deteriorate.
As one alternative, the choice of the norm[3.3 can be adapted to account for anisotropies and inhomo-
geneities.

4.6 A fully adaptive algorithm

In this section we propose an adaptive algorithm based on the estimators . Let Yiin, Yalg € (0,1) be
user-given parameters; these express respectively the fraction allowed for the linearization and algebraic
error components. Similarly, let the parameters for balancing the spatial and temporal errors I'y,, >
~Yem > 0 be fixed. Finally, let crit! stand for the maximal error allowed in the component ¢ on the time
interval I,,. Our algorithm is as follows:

1. Initialization

(a) Choose an initial mesh MY an initial time step 7°, and set t° := 0 and n := 0.

(b) Set up the initial approximation XY,.
2. Loop in time

(a) Set n:=n+1, M":=M""1 77 :=7""1 and k := 0.
(b) Define Xy;" := Xpt.
(c) Spatial and temporal errors balancing loop
i. Newton linearization loop
A. Newton initialization
e Set k:=k+1andi:=0.
e Define X}\l/’lk’o = X}\L/’[k_l.
B. Set up the linear system.
e Compute the linearized component fluxes F C”AI}Z, c € C, following ([4.6)).
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e Compute the perturbation of the accumulation term E?ﬁ’f/, ¢ € C, following .
e Assemble the linear system following .
C. Algebraic solver loop
e Seti:=i+1.
e Perform a step of the iterative algebraic solver for the solution of .
e A posteriori estimators
Build the postprocessed phase pressures following .
Construct the approximations of the saturations, molar fractions, and amounts

of components following (4.12)).
— Prescribe the continuous phase pressure reconstructions following (4.13)).

. ki ki ki
— Construct the component flux reconstructions @}:>" , @', O™ and

: lin,c,h? alg,c,h’
@Z’,’f " following (4.14)).
— Evaluate the different estimators defined by (4.20)).
e Terminate the algebraic solver loop if
nglgn, ki < Yalg (ngpn, k,i+ neun, k, 1+ ni,n, k, i), Ve eC. (4.22)
D. Update _
e Update the unknowns; set X}f/’(k = X/T\L/’lk’l.
E. Terminate the Newton linearization loop if
Min®, K, 7 < Yiin (nscpn, kyi+nian, k, i), Ve e C. (4.23)

ii. Adapt the time step if necessary.

iii. If spatial mesh adaptation is considered, refine or coarsen the mesh M" in function of
the distribution of the local spatial error estimators 1% (t) of (4.19a).
iv. Terminate the spatial and temporal errors balancing loop if

YVemNpns kot < M ki < TemmSon, kyi and  ngon, kyi 4+ ni,n, ki <crit?  Veel.
(4.24)
(d) Data update
i. Set XY, := Xfclk’i and " =" 1 4 1,
(e) End: Loop in time if (t" > ).

Note that in we propose to stop the iterative algebraic solver when the algebraic error com-
ponents do not affect significantly the overall error. A variation in the spirit of Remark can be
considered where a user-defined number j of linear iterations are performed before recomputing the esti-
mators, and the algebraic estimator is replaced by its approximate version. Similarly, the criterion
expresses the fact that there is no need to continue with the linearization iterations if the overall error
is dominated by the space and time errors. Finally, by we give a way to select the time step
7" in order to equilibrate the space and time error components; congruently, the spatial mesh should
be refined/derefined. If local adaptive mesh refinement is considered, M™ should be such that, for all
My, My € M™ with M, 7& Mo,

n,k,i n,k,i
nsp,c,Ml ~ nsp,c,Mg’ VeeC.

Local (elementwise) versions of the criteria and can be formulated using the local estima-
tors ; see [46] 133, [36].

Remark 4.7 (Mass balance and stopping criteria). OQur a posteriori analysis is based on the recon-
struction of N¢ conservative component fluzes, see m Section and (4.15)) in Section . We
achieve in a straightforward way if a) the accumulation term l. of (2.5)) is linear and b) the
arising algebraic systems are solved “exactly” (up to machine precision) or if (4.14c)) is satisfied. Then,
on each step of the algorithm of Section [{.6, we have full mass conservation regardless of the value of
the parameters yiin and 7yae. Unfortunately, for nonlinear accumulation terms and for the construction
of the algebraic error fluzes of Remark[{.3, the mass balance conservation may be violated. A rigorous
analysis of the error related to the mass balance violation by the approach of Remark is done in [306].
In the numerical results below we study the mass balance violation in our adaptive resolution and compare
it to the classical one.
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neous test case of Section

Figure 1: Configuration for the numerical test cases

5 Numerical results

In this section we illustrate our theoretical results on two test cases representative of enhanced oil
recovery techniques. More specifically, we focus on the case when oil recovery is improved by injecting
components that are not originally present in the reservoir to increase the mobility, cf., e.g., [53 62].
Both homogeneous and heterogeneous (but isotropic) porous media are considered.

5.1 Setting

We consider the injection of gas composed of carbon dioxide CO, (component g;) and nitrogen N,
(component gs) into a reservoir initially saturated with heptanol C,H;; (component o). The three
components, collected in the set C := {0, g1, g2}, can be present in a liquid or gaseous phase corresponding
to P := {l,g}. This is therefore a special case of the more general problem considered in Example
The spatial domain is © = (0,1000)mx (0,1000)m and the process is simulated for ¢ty = 7 years. We
consider a two-spot pattern, see Figure [[a] where we have one injection well with pressure fixed to
P =11x 10'°Pa and one production well with pressure fixed to Poro =9 X 10%Pa. Wells are modeled
as nonlinear source terms as detailed in the following. Denoting by M;,; and My, the cells containing
the injection and production wells, respectively, the rates of injection and production of the component
c € C, denoted by gc s, and gc .., are given by the following expressions:

inj pro?

|Minj ‘qC,Minj = —Vg, Miy; (‘Piﬂj’ Sgiﬂja Cg1inj)cgvcwindPMinj (Pg1Minj - Hnj)
and

|MPT0|qC7Mpro = - Z {ypyMpro (Pp;Mpro’ SpyMpro’ prMpro)Cp)CaMprOIPMpro (PpyMpro - PPYO)} ?
p€eCy

where Sy inj = 1 is the injected gas saturation, Cj inj is the vector of injected components molar fractions
in gas
Cy,inj = {Cgr0,inj = 0, Cygy,inj = 0.8, Cy gy inj = 0.2},

and I[Py, is the well’s production index given, for isotropic medium, by Peaceman’s formula:

27T>\MAZM
Py i= ———— =/ Az, + Ay?
M log(0.1azry “aa S

with 7, the well radius set to 0.5m, rq the equivalent block well radius, AZj; the perforated mesh height,
and Az, Ayps the linear dimensions of the perforated cell M along the z and y axis, respectively.
The required physical properties are chosen as follows: (i) porosity ¢ = 0.1. (ii) phase molar density
Cp = Doeec Ce(P)Ceyp, p € {l,g}, where (., ¢ € C, takes the form

P_-Pinj +Bc P_Ppro

Cc P) = Q¢ y
( ) Ppro - Pinj f)inj - Ppro
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with (ao,Bo) = (6640.88,6669.32), (g, Bs,) = (4703.4,5567.0), and (o, Bg,) = (3062.5,3676.4).
(iii) The liquid phase viscosity u = 3.2 x 10~*Pas, the gas phase viscosity y1; = 3.5 x 107°Pas. (iv) The
relative permeability

1 if S, > 1,
5_sm

kep(Sp) = g i S2< S, <1,
0 if S, < Sres,

where the residual saturations are respectively given by S[* = 0.2 and S5, = 0.1. Concerning the
thermodynamic equilibrium between the oil and gas phases

Cye = KO5(P,Co,C,)Cop,  VeeCl,

we consider here a simple formula, depending just on the pressure, for the equilibrium constant K¢ =
K28(P) between the oil and gas phases for the component ¢ € C given by
P — Pin' P - PR T
Ve S+ 0 o
Ppro - Hnj ]Dinj - Ppro

Ke#(P) =

with (70,00) = (1.2 x 1072,1 x 1072), (vg,,0g,) = (1.3 x 10%,1.64 x 10%), and (vg,, 6g,) = (64, 76). Note
that, as we consider a horizontal 2D case, gravitational effects are not taken into account in the numerical
tests, and the phase mass densities p,, p € P, need not be specified. We shall test two cases, with a
homogeneous porous medium and a heterogeneous one. The capillary pressure curves and the absolute
permeability A are problem-specific and will be described below.

We consider a uniform spatial mesh (mesh adaptation will be considered in a future work) and
choose the initial time step as 70 = 5.184 x 10°s, which equals to 6 days. We consider the finite volume
discretization of Section with the Newton linearization detailed in Section we obtain
with the GMRes iterative solver and ILU preconditioner with zero level fill-in. Our implementation uses
PETSc [12, [IT], T3] with the function KSPSetConvergenceTest allowing to enter a user-defined convergence
criterion.

In order to compare the adaptive resolution with a classical one, we introduce the relative residuals
related to the linearization and algebraic resolutions. Consider, at every time step n, a resolution of a
system of nonlinear algebraic equations F"(X) = 0 by the Newton method. Starting from X" the
relative linearization residual at step k is defined as

n . [EHX™H)]
S T )|
Similarly, consider the linear system resulting from the Newton method and written in the following

form: A™k-1Xmk = pnk=1 An iterative algebraic solver for this linear system looks at each step i for
a vector X™F whose relative algebraic residual is expressed by

”An,k—lxn,k,i _ bn,k—l”
[ =]

n,k,g
errlg

The comparison in numerical tests below will be done between the adaptive resolution where the stopping
criteria for the GMRes and Newton iterations are given by, respectively, (4.22) and (4.23) with yaz =
vin = 1073, and a classical algorithm where iterations are stopped using a fixed threshold, i.e.,

eyt <1075, (5.1)

for the GMRes iterations and
eHl < 10~ 8 (5.2)

for the Newton linearization. Please note the above relative residuals errlnl’lk and errnl’;C ** are not directly

comparable to our linearization and algebraic estimators 7711f1 j and 77a1 ' given respectively by m
and (| m Thus in particular the classical stopping criteria and . ) do not mean that our
estimators should be below the 1078 threshold. The algebraic error flux reconstruction @”l’k’cl 5, is ob-
tained in the spirit of Remark [4:3 with j = 2. We thus perform two additional GMRes iterations before
checking the criterion 2) (these additional steps are not wasted as we continue the iteration from the

last obtained solution in the next GMRes step).
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5.2 Compressible flow in a homogeneous porous medium

We first consider a simplified test case with a homogeneous permeability A = (9.869233 x 10~ 14m?)I,
where I is the identity tensor, and no capillary effects, setting P, (S) = 0 for all p € P. For a fixed time
step and the first Newton iteration, we first show in the left part of Figure[2| the evolution of the different
estimators as a function of the GMRes iterations at the classical resolution stopped following . We
remark that the algebraic error steadily decreases, while the other components stagnate starting from
the first iteration. For the same time step, in the right part of Figure [2] we depict the evolution of the
spatial, temporal, and linearization error estimators as a function of the number of Newton iterations.
The spatial and temporal errors stagnate starting from the third step while the linearization error nﬁnkl&
decreases until 10~°, which is equivalent to the value 108 for the relative linearization residual at
which we satisfy the classical stopping criterion (5.2]). These results justify our stopping criteria which
economize many useless iterations.

—e— total —— space —¢— time —&— linearization —A— algebraic I

T T T T T T T 10* T T T T T T
. l g . Tt
% % 102 [ -
= AL = adaptive stopping criterion ‘
% 10—1 - . P . %
) adaptive stopping criterion o 100 L |
) -
S| =1
3 5]
8 a4 g
? 10 g« 10-2 | B
3 9]
o 3]
8 10-7 8
£ 10 £ 10—4 - -
£a) £a)

classical stopping criterion F)«A classical stopping criterion P
10710 £ | | | | | | 1076 b1 | | | | [
0 5 10 15 20 25 30 35 1 2 3 4 ) 6
PETSC-GMRes iteration Newton iteration

Figure 2: Evolution of the spatial, temporal, linearization, and algebraic error estimators (4.20) for a
fixed mesh at time 1.04 - 10%s, as a function of GMRes iterations on the first Newton iteration (left) and
of Newton iterations (right)

1071 E E § ‘ 6
F b 1071 g E
1072 E r 1
§ b 1072 E
-3 L i £ E|
:% 1074 L 1 % § §
8 F ] S 1074 E E
%1075 - 4 2 g ]
B F El 2 10-5L _
= e r —e— classical |] = 10 E —e— classical ]
10 g —e—adaptive |} 10-6 [ —e—adaptive |
1077 F . g :
- . 1077 g £
1078k ! ! ! ! E| £ ! ! ! ! ]

0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time -108 Time -108

Figure 3: Evolution of mass balance violation for the test case of Section (left) and for the test case

of Section [5.3] (right)

Figure [3|illustrates the evolution of the mass balance violation due to the inexact algebraic resolution
discussed in Remark [£.7} The violation of the mass balance at each time step is measured by the quantity
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Figure 4: Instantaneous (left) and cumulated oil production (right) during the simulation, classical
resolution vs. adaptive resolution for the test case of Section
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Figure 5: Liquid saturation (left) and distribution of the spatial estimators (right) for the adaptive
resolution at times 7.8 x 107s and 2.1 x 103s, the test case of Section
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7717\1/[}3::{ Z (771?\1/[8,0)2} ’ nlr\L/IB,c::{ /I Z ||q2,h - 8tnlc7h7' - Ve?,h”?wdt} ’ cecC. (53)

ceC n MeMn

We observe in the left part of Figure [3| that the adaptive resolution yields mass balance to an average
precision of 2-3 digits, while the classical resolution provides on average 7 digits.Figure [4] shows on the
left the instantaneous oil production at each time step, and on the right the cumulated oil production
during the simulation for the classical and adaptive resolutions. For those crucial outputs, no sensible
loss of the precision is observed due to the use of the adaptive algorithm. We next in Figure [5| show the
evolution of the saturation in the liquid phase and the corresponding spatial estimators for the
oil component at two selected time values during the simulation. We see that this estimator detects the
error caused by the two wells, as well as the error following the saturation front. This result pleads for
a space mesh refinement/coarsening strategy using our estimators which will be considered in a future
work.

w
2
T T o T T T T
12} —e— classical || 2 — classical 1758 iterations
—e— adaptive E — adaptive
= 1,500 | .
10 |- * o
2 2
8 z
: s 1 :
P Z 1,000 |- .
= s}
: :
R . 2 500 y
g
2| ] z
g 0 a
0 | | | | | | | =} | | | | |
0 0.5 1 15 2 o 0 0.5 1 1.5 2
Time 108 Time -108

Figure 6: Newton iterations at each time step (left) and cumulated number of Newton iterations as a
function of time (right) for the test case of Section Average number of Newton iterations per time
step: 4 iterations (classical), 2 iterations (adaptive)

T T T I I é 10? T T I T
. . o
sical —— relaxed —e— adaptive ‘ p= —— classical || 54067 iterations
0l | E — relaxed
. % —— adaptive
] 0.7
S g ar |
= =
£ &)
£ a0f : =
7o} -
g g, |
= g
=1
(@) 10| . <]
!‘ LN E
MR = ol |
g
oLt | I | | | = | | | | |
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Figure 7: GMRes iterations for each time and Newton iteration step (left) and cumulated number of
GMRes iterations as a function of time (right) for the test case of Section Average number of
GMRes iterations per time and Newton iteration step: 31 iterations (classical), 12 iterations (relaxed),
6 iterations (adaptive). Average number of GMRes iterations per time step: 126 iterations (classical),
51 iterations (relaxed), 12 iterations (adaptive)

We next focus on computational savings resulting from our adaptive stopping criteria. In the left
part of Figure [§, we show the number of Newton iterations at each time step after the total simulation.
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The cumulated number of Newton iterations as a function of time is then presented in the right part
of Figure [} The overall gain in terms of linearization iterations obtained using our stopping criteria is
quite significant.

To evaluate the influence of the algebraic stopping criterion, we compare the classical criterion ,
the adaptive criterion , and a relaxed criterion

et <1075, (5.4)

Criterion is representative of choices sometimes made in industrial simulators to speed-up the
calculations. We represent in the left part of Figure [7] the number of GMRes iterations at each time and
Newton step. In the right part of Figure [7] we then depict the cumulated number of GMRes iterations
as a function of time steps. The gain in GMRes iterations reaches a factor of roughly 10 for the adaptive
resolution compared with the classical one, and a factor of 4.2 compared with the relaxed one.

5.3 Compressible flow in a heterogeneous porous medium

We consider here the heterogeneous permeability field shown in Figure [Lb|corresponding to a log-normal
distribution. For the phase pressures, we choose P, as the reference pressure P, i.e. P, = 0, and follow
the Brooks—Corey model [I8] for the gas phase capillary pressure law, i.e.,

Sy — 51

Pg:P+PCg(Sg)7 PCg(Sg):Pe'(Se) ) Sezliwﬂ%‘%’

with P, = 8.73 x 10°Pa, m = — 545, and S;, S1° the residual saturations defined previously.
-10—° 1072
T T
9h . 3 i
g g 2r .
£ 8 1 g
kS, 3
2 2
=7} o 1+ |
S S
a —e— Classical resolution | | —e— Classical resolution
—— adaptive resolution 0 —— adaptive resolution ||
| | | | | | | | | |
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time (second) -10° Time (second) -10°

Figure 8: Rate (left) and cumulated rate (right) of oil production during the simulation, classical reso-
lution vs. adaptive resolution for the test case of Section

Figure [3| shows the evolution of the mass balance violation measured as in , cf. Remark
We observe that the simulation based on the adaptive algorithm provides on average 2 digits accurate
mass balance, while the classical algorithm based on fixed threshold algebraic stopping criterion yields
on average 7 digits accuracy. As for the homogeneous case, we verify in Figure [§ that the adaptive
resolution does not affect significantly the accuracy of the predicted oil production rate. Figure [0] shows
the evolution of the liquid saturation and of the spatial estimator at three different time steps.
The error around the injection and production wells is again well detected, and the saturation front is
accurately followed. As in the homogeneous case, we thus deem our estimators to be a good tool for
adaptive mesh refinement.

The saved iterations from the linearization at each time step can be found in the left part of Figure[I0]
In the right part of this figure we show the cumulated number of Newton iterations during the simulation
as a function of time steps; again a considerable gain in terms of the number of Newton iterations is
achieved. In Figure we compare the results obtained using the algebraic stopping criteria ,
, and . At every time step and Newton iteration, the economy of the GMRes iterations using
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Figure 9: Liquid saturation (left) and distribution of the spatial estimators (right) for the adaptive
resolution at times 5.2 x 107s, 1.04 x 10%s, and 1.6 x 10%s, the test case of Section
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Figure 10: Newton iterations at each time step (left) and cumulated number of Newton iterations as a
function of time (right) for the test case of Section Average number of Newton iterations per time
step: b iterations (classical), 2 iterations (adaptive)
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Figure 11: GMRes iterations at each time and Newton step (left) and cumulated number of GMRes
iterations as a function of time (right) for the test case of Section Average number of GMRes
iterations per time and Newton iteration step: 33 iterations (classical), 13 iterations (relaxed), 6 iterations
(adaptive). Average number of GMRes iterations per time step: 150 iterations (classical), 61 iterations
(relaxed), 14 iterations (adaptive)

the stopping criterion (4.22)) can be appreciated in the left part of Figure|11] In its right part, the overall

gai

n is presented. We observe a gain factor for the adaptive criterion (4.22)) of 10 compared with the

classical criterion (5.1) and of 4.4 compared with the resolution using the relaxed criterion These
results are consistent with those found in the homogeneous case.
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