Modular Schur numbers

Abstract : For any positive integers $l$ and $m$, a set of integers is said to be (weakly) $l$-sum-free modulo $m$ if it contains no (pairwise distinct) elements $x_1,x_2,\ldots,x_l,y$ satisfying the congruence $x_1+\ldots+x_l\equiv y\bmod{m}$. It is proved that, for any positive integers $k$ and $l$, there exists a largest integer $n$ for which the set of the first $n$ positive integers $\{1,2,\ldots,n\}$ admits a partition into $k$ (weakly) $l$-sum-free sets modulo $m$. This number is called the generalized (weak) Schur number modulo $m$, associated with $k$ and $l$. In this paper, for all positive integers $k$ and $l$, the exact value of these modular Schur numbers are determined for $m=1$, $2$ and $3$.
Liste complète des métadonnées

Cited literature [14 references]  Display  Hide  Download
Contributor : Jonathan Chappelon <>
Submitted on : Monday, June 24, 2013 - 1:17:20 AM
Last modification on : Wednesday, October 17, 2018 - 5:08:02 PM
Document(s) archivé(s) le : Wednesday, September 25, 2013 - 4:08:46 AM


Files produced by the author(s)


  • HAL Id : hal-00837647, version 1
  • ARXIV : 1306.5635


Jonathan Chappelon, María Pastora Revuelta Marchena, María Isabel Sanz Domínguez. Modular Schur numbers. The Electronic Journal of Combinatorics, Open Journal Systems, 2013, 20 (2), pp.P61. ⟨hal-00837647⟩



Record views


Files downloads