Compatible structures on Lie algebroids and Monge-Ampére operators

Abstract : We study pairs of structures, such as the Poisson-Nijenhuis structures, on the tangent bundle of a manifold or, more generally, on a Lie algebroid or a Courant algebroid. These composite structures are defined by two of the following, a closed 2-form, a Poisson bivector or a Nijenhuis tensor, with suitable compatibility assumptions. We establish the relationships between such composite structures. We then show that the non-degenerate Monge-Ampére structures on 2-dimensional manifolds satisfying an integrability condition provide numerous examples of such structures, while in the case of 3-dimensional manifolds, such Monge-Ampére operators give rise to generalized complex structures or generalized product structures on the cotangent bundle of the manifold.
Type de document :
Article dans une revue
Acta Applicandae Mathematicae, Springer Verlag, 2010, 109 (1), pp.101-135. 〈10.1007/s10440-009-9444-2〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00836619
Contributeur : Carole Juppin <>
Soumis le : vendredi 21 juin 2013 - 11:35:33
Dernière modification le : jeudi 10 mai 2018 - 01:57:28

Lien texte intégral

Identifiants

Collections

Citation

Yvette Kosmann-Schwarzbach, Vladimir Rubtsov. Compatible structures on Lie algebroids and Monge-Ampére operators. Acta Applicandae Mathematicae, Springer Verlag, 2010, 109 (1), pp.101-135. 〈10.1007/s10440-009-9444-2〉. 〈hal-00836619〉

Partager

Métriques

Consultations de la notice

215