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Abstract. In a computer supported distant collaboration, communication 

between users can be enhanced with a visual channel. Plain videos of individual 

users unfortunately fail to render their joint actions on the objects they share, 

which limits their mutual perception. Remote interaction can be enhanced by 

immersing user representations (avatars) and the shared objects in a networked 

3D virtual environment, so user actions are rendered by avatar mimicry. 

Communication gesture (not actions) are captured by real-time computer vision 

and rendered. We have developed a system based on a single-webcam for body 

and face 3D motion capture. We have used a library of communication gestures 

to learn statistical gesture models and used them as prior constraints for 

monocular motion capture, so improving tracking ambiguous poses and 

rendering some motion details. We have developed an open source library for 

real-time image analysis and computer vision that supports acceleration by 

consumer graphical processing units (GPUs). Finally, users are rendered with 

low-bandwidth avatar animation, thus opening the path to low-cost remote 

virtual presence at home. 

Keywords: 3D interaction networked virtual environment, motion capture, 

mocap, face tracking, computer vision, GPU acceleration, telepresence. 

1   Introduction 

Computer supported remote collaborative work environments usually allow limited 

perception of actions by other users. While multipoint videoconference allows 

perceiving remote users at the cost of some network bandwidth, it poorly supports 

immersion because each user appears in a separate window and it is difficult to know 

who is acting on the shared objects [1]. 

We aim at enhancing the perception of “who is doing what” during computer 

supported collaborative work remote session. Our approach is to gather users and the 

graphical objects they share in a multi-user 3D virtual space and to augment 

collaboration by virtual rendering user actions and motion. Gestures help focusing 

attention on objects of interest. Seeing somebody manipulating an object, rather than 

just observing the action output, will help perceiving that action. Furthermore, distant 

restitution of user gestures in a collaborative virtual environment allows non-verbal 

communication [1].  



We first describe an environment to immerse a shared 2D application in an 

inhabited virtual world, so virtually gathering users and the shared objects in a single 

place. Distant users are represented with animated avatars acting on the application. 

When a user is not acting on the application, his avatars should still be kept alive 

and rendering user motion. We have completed the previous environment with a 

perceptive interface to capture user face and body 3D motion in real-time using just a 

webcam.  

Finally, we address the issue of real-time image processing and analysis with 

consumer graphical processing units (GPUs) and describe GpuCV, our open source 

library for GPU-accelerated computer vision. 

2   Remote virtual 3D collaboration 

Group perception can be improved by immersing the shared application into a virtual 

multi-user 3D world. In NetICE [2], each user is represented with a humanoid avatar 

standing by the application mapped on a board in the virtual world. Unfortunately, 

users’ actions on the application are not associated with avatar animation. A further 

limitation is that the application board is usually poorly readable in the 3D world, so 

NetICE requires switching between the 3D interface and the 2D application view. 

We aim at enhancing perception of “who is doing what” by animating avatars in 

the collaborative virtual environment so they mimic user actions on the application. 

The avatar of the active user stands in front of the board. It is animated with inverse 

kinematics so that his hand follows the event position of the user's actions in the 

application. In the case of single user applications, avatars non-active users willing to 

interact raise a hand to show their request. 

Furthermore, perceiving other participants should be preserved even while acting 

on the application window. Thus, we have developed a hybrid interface with two 

parts: an application space that is a high quality view of the application that can be 

directly manipulated, and an immersive inhabited space that is the virtual meeting 

place gathering participants and the application they share (Fig. 1). Implementation 

   

Fig. 1. Remote collaboration in a virtual inhabited world: a shared application and 

representations of users are gathered in a single place. User actions on the 

application are rendered by avatar animation. Demonstration videos can be found at 

http://www-public.it-sudparis.eu/~horain/MarquesSoares/WB. 

http://www-public.it-sudparis.eu/~horain/MarquesSoares/WB


details are discussed in our previous paper [3]. It allows to render user actions with 

little bandwidth. 

The collaborative version augmented with voice over IP was briefly tested for 

remote learning. A lecture was given jointly by 2 teachers in 2 classrooms, each 

teacher with a group of students. Rather than using 2 cameras and a broadband video 

communication, the slides and virtual world were shared through our system and 

video projected in both rooms. A large majority of students stated they would 

volunteer to attend again lectures with that technology [4]. 

More than just an artifact extra communication channel, this system can also be a 

low cost approach for remote perception of a real scene. Consider video projecting the 

shared application window and capturing user’s actions on the projection board with a 

wireless pen system [5]. The virtual rendering can be close to the real scene (Fig. 2). 

This allows presence with low cost equipment and a low bandwidth communication 

channel for enhanced remote collaboration around a physical board. 

 

   

Fig. 2. Remotely rendering user actions from an augmented board. A demonstration video is 

available from http://www-public.it-sudparis.eu/~horain/MarquesSoares/WB. 

3   Real-time body motion capture with a webcam 

When the user is not active on the shared application, his gesturing still has to be 

captured in some way and rendered virtually. Marker-less human motion capture by 

computer vision allow inexpensive, non-obtrusive body tracking [6]. Research in this 

field has been motivated by many target applications: human-computer interfaces, 

animation, interaction with virtual environments, video surveillance, games, etc [7]. 

We have developed a real-time webcam-based system for 3D motion capture. 

It works by registering an articulated 3D model of the human body on a video stream 

(Fig. 3). 

 

http://www-public.it-sudparis.eu/~horain/MarquesSoares/WB


 

Fig. 3. Real time motion capture by computational vision and virtual rendering. 

Our 3D human model has 3 global position parameters and 20 joint angles of the upper-

body (bust, arms, forearms, hands, neck and head), so a body-pose is represented by a vector of 

23 parameters. For each input image we search for the model pose that best matches the image. 

Image features (colour regions, edges) are extracted and matched with model features (coloured 

limbs, occluding edges) projected in the candidate pose. For each captured image, optimal 

registration is searched with respect to the pose parameters by first iteratively maximizing the 

colour region overlap and refining registration by minimizing the distance between the image 

edges and the projected occluding edges of the model (Fig. 4) [8] [9]. 

 

 

Fig. 4. The captured image, the color-segmented image, map of distance to image edges in the 

foreground mask and finally the projection of the 3D human body model in the optimal 

matching pose. 



Joint angles are then output in real-time over the network as low bandwidth MPEG-4 body 

animation parameters (BAPs). They are rendered remotely the captured motion by animating 

the user avatar in the virtual space (Fig. 5).  

 

 

Fig. 5. Real-time motion capture using a single camera for each user and virtual rendering. 

Demonstration videos are available from http://MyBlog3D.com. 

4    Real-time face tracking and 3D avatar animation  

Face-to-face communication includes visually perceiving the face of engaged people. 

When interacting in a virtual environment, face perception should be supported 

trough that environment which implies detecting human faces, tracking their motion, 

and rendering animated faces. This is a challenge because face appearance varies with 

the head pose (including out-of-plane head rotations), facial expressions, lighting 

conditions, occlusions, or combinations of them. 

Feature-based face tracking proceeds by matching local features. It can cope with 

illumination changes and affine deformations of the image. Instead, active appearance 

models work by globally registering a face model onto images. They usually require 

an extensive initial learning of the appearance and its variations from example images 

of the observed user. Appearance variations are learnt with respect to model 

parameters, so parameter variations can then be iteratively estimated to minimize the 

residual appearance difference between the reference input image and the model-

http://myblog3d.com/


generated appearance. Face tracking then consists in optimally registering the face 

model that was learnt onto input images using a gradient descent. The active 

appearance approach has been found be more precise than the feature-based 

approach [10]. 

We have used an active model approach for real-time 3D head pose and face 

expression tracking with a webcam (Fig. 6). We have used a statistical approach to 

dynamically fit the appearance model to unknown users by estimating the gradient 

and update matrices from the face texture. We have implemented this algorithm for 

tracking of the head position (6 parameters) as well as face motion (6 parameters in 

real-time) and experimentally demonstrated its robustness when tracking multiple or 

unknown users’ faces [11]. 

 

 

Fig. 6. Real-time 3D face tracking. Demonstration videos are available from 

http://MyBlog3D.com. 

Then the output face parameters are encoded in MPEG-4 face animation 

parameters (FAPs) so they can be sent to a remote player that will animate the face of 

the user avatar (Fig. 7). 

 

http://myblog3d.com/


 

Fig. 7. Face tracking by registering the Ahlberg’s CANDIDE-3 face model [12] and rendering 

with the GRETA player by Pelachaud et al. [13]. Demonstration videos are available from 

http://MyBlog3D.com. 

5    Statistical gesture modeling 

Monocular video based markerless 3D motion capture has the intrinsic limitation of 

poor precision and robustness. . This is a difficult problem because of the ambiguities 

resulting of the lack of depth information, partial occlusion of human body parts, high 

number of degrees of freedom, variations in the proportions of the human body and 

various clothing that may confuse the tracker. We have used statistical gesture models 

as guides to constrain and disambiguate 3D tracking for a set of human motions. 

Although people can perform very large variation of complex motions, their 

movements can be represented in a low-dimensional latent space, that is a subspace 

with a lower dimension than the full motion capture data [14] [15]. Because human 

motion is non-linear, basic dimensionality reduction methods such as principal 

component analysis (PCA) are inadequate to describe non-linear human motion [6]. 

Locally Linear Embedding (LLE) and Isomap either do not provide invertible 

mapping from the low dimensional latent space to the original pose space or do not 

provide probability distribution over data in latent space, so they are not suitable to 

build low dimensional gesture models [16]. Gaussian Process Latent Variable Models 

(GPLVM) [17] and then Gaussian Process Dynamic Models (GPDM) [16] can learn a 

non-linear mapping between the human motion parameter space and a latent space 

and so they provide an inverse mapping. They allow describing human motion in a 

low-dimensional latent space. Recently, latent gesture models have been used as prior 

constraints to help 3D human motion tracking. Urtasun [18] used GPLVM and 

GPDM to learn prior models for tracking 3D human walking. She achieved good 

results even in case of serious occlusion.  

Training these models requires relevant gesture databases. Most existing databases 

as CMU Graphics Lab Motion Capture Database [19] and HumanEva [20] gather data 

on human actions such as running, jumping and the like, but very few include 

communicative gestures. Since we aim at visually tracking communicative gesture 

rather than actions, we learnt gesture models from a set of example conversational 

gestures with variations [21] that was generated using the Greta expressive 

conversational agent [13]. 

http://myblog3d.com/


We modeled gesture with Gaussian Process Dynamic Models (GPDM) [16], a 

powerful approach for probabilistically modeling high dimensional time related data 

through dimension reduction. GPDM can learn probability motion models from small 

training data sets as a mapping between the full-dimensional data space and a low-

dimensional latent space and a dynamical model in the latent space. Fig. 8 shows two 

conversational gestures from the gesture library and their corresponding gesture 

trajectories in 3D latent space. Each circle on the trajectories corresponds to a body 

pose. 

 

    

Fig. 8. Conversational gestures described in a 3D latent space. Each circle on the trajectories 

represents a body pose. 

Those gesture models were then used as constraints while tracking specific 

gestures. Each candidate pose is projected into the latent gesture trajectory, so 

enforcing the captured motion regularity. 

For each iteration, the motion tracker outputs a candidate pose to be constrained 

with the gesture model. That pose is projected from the full motion parameter space to 

the 3D latent model space and then replaced with the closest point on the latent 

motion trajectory. Since GPDM mapping is continuous, poses that are close in the full 

motion parameter space remain close in the latent space. The output constrained pose 

at each time step is the pose reconstructed into the full motion space. The point used 

for pose reconstruction is the closest point from the projected point on the model 

trajectory in the latent space. The resulting pose is then used as the initial pose for 

tracking at the next image (Fig. 9).  

 



 

Fig. 9. Gesture model working as constraints in tracking 

Because the output poses lay on the gesture model internal trajectory, most of the 

monocular vision ambiguities can be solved. Impossible poses will not happen in the 

gesture model space, so heuristic biomechanical constraints, which otherwise must be 

used for pruning the pose space, can be replaced with the gesture model that constrain 

the output poses to be on the learnt motion trajectory (Fig. 10). Another benefit of this 

approach is that the poses reconstructed in the latent space include motion details that 

cannot be captured from the input video sequence (such as hand shapes) 

(Fig. 11) [21]. 

 

   

Fig. 10. Motion tracking with biomechanical constraints vs. gesture model. Left: An input 

image where the left hand orientation can hardly be distinguished. Middle: Motion capture 

result with heuristic biomechanical constraints: the unlikely pose of the left hand is 

biomechanically possible, so it is accepted. Right: Tracking with gesture model instead of 

biomechanical constraints: the gesture model avoids the awkward pose. 



   

Fig. 11. Augmenting motion capture with gesture models. Left: Input image. Middle: Tracking 

without gesture model: the hand shape is not captured to meet real-time computation 

constraints. Right: The gesture model augments the motion capture with fingers movements. 

6    GPU acceleration for image processing 

These real-time computer vision algorithms require more computing power than even 

high end CPUs can offer. Registering 3D models can be accelerated with graphical 

processing units (GPUs) that have made their way to consumers PCs through video 

games and multimedia, and are now coming to cell phones.  

We harnessed this readily available resource for image processing and analysis. 

Since 2005, we have developed GpuCV, an open-source GPU-accelerated image 

processing and Computer Vision library [22] [23]. It is meant to help computer vision 

scientist porting existing applications or developing new algorithm to GPU, so taking 

advantage of the high level of parallelism and computing power available from GPUs, 

without bothering with the complexity of GPUs. 

GpuCV programming interface is compatible with the popular OpenCV 

library [24] for CPU-based applications. It supplies a set of GPU-accelerated 

OpenCV-like operators that are ready to be used in OpenCV applications as well as a 

framework for creating custom GPU-accelerated operators based on OpenGL GLSL 

or NVIDIA CUDA APIs. It can transparently manage hardware capabilities and data 

synchronization. A GpuCV specific and innovative feature is that it supports multiple 

implementations for a single image processing routine with on-the-fly benchmarking 

and switching to the most efficient implementation.  

It is available as a free software under the CeCILL-B license from 

http://picoforge.int-evry.fr/projects/gpucv. 

7    Conclusion and perspective 

We have described an approach to enhance remote interaction by gathering user 

representations and the objects they share in a single virtual place, and by rendering 

users from their action on objects and from their motion perceived with computer 

vision. These tools are demonstrated to work in real-time with consumer PCs and 

webcams. This allows low-bandwidth distant gesture-based communication through 

virtual environments. 

http://picoforge.int-evry.fr/projects/gpucv


This opens a new communication channel between distant people that can be a 

basis for remote presence and for enhanced interaction and collaboration with low 

cost equipment. 

Such a perceptive interface could even make its way to the mass market. While 

networked 3D virtual environments such as Second Life [25] generated quite a buzz a 

few years ago, attention now rather goes to social networks with more conventional 

interface. Indeed, avatars are meant to be the virtual counterpart of human users, but 

the current technology only offers difficult and tedious control and animation of those 

representatives. User perception system we described allows achieving full avatar 

control in real time with just consumer hardware, at home. 
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