A New Spatio-Spectral Morphological Segmentation For Multi-Spectral Remote-Sensing Images

Abstract : A general framework of spatio-spectral segmentation for multi-spectral images is introduced in this paper. The method is based on classification-driven stochastic watershed (WS) by Monte Carlo simulations, and it gives more regular and reliable contours than standard WS. The present approach is decomposed into several sequential steps. First, a dimensionality-reduction stage is performed using the factor-correspondence analysis method. In this context, a new way to select the factor axes (eigenvectors) according to their spatial information is introduced. Then, a spectral classification produces a spectral pre-segmentation of the image. Subsequently, a probability density function (pdf) of contours containing spatial and spectral information is estimated by simulation using a stochastic WS approach driven by the spectral classification. The pdf of the contours is finally segmented by a WS controlled by markers from a regularization of the initial classification.
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00836063
Contributeur : Guillaume Noyel <>
Soumis le : mardi 9 février 2016 - 16:07:19
Dernière modification le : mardi 12 septembre 2017 - 11:41:33
Document(s) archivé(s) le : samedi 12 novembre 2016 - 13:40:03

Fichiers

NoyelAnguloJeulin_JRemoteSensi...
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Collections

Citation

Guillaume Noyel, Jesus Angulo, Dominique Jeulin. A New Spatio-Spectral Morphological Segmentation For Multi-Spectral Remote-Sensing Images. International Journal of Remote Sensing, Taylor & Francis, 2010, 31 (22), pp.5895-5920. <10.1080/01431161.2010.512314>. <hal-00836063>

Partager

Métriques

Consultations de
la notice

394

Téléchargements du document

57