Robust Iris Segmentation on Uncalibrated Noisy Images Using Mathematical Morphology

Abstract : This paper proposes a new approach for fast iris segmentation that relies on the closed nested structures of iris anatomy (the sclera is brighter than the iris, and the iris is brighter than the pupil) and on its polar symmetry. The described method applies mathematical morphology for polar/radial-invariant image filtering and for circular segmentation using shortest paths from generalized grey-level distances. The proposed algorithm obtained good results on the NICE-I contest and showed a very robust behavior, especially when dealing with half-closed eyes, different skin colours/illumination or subjects wearing glasses. © 2009 Elsevier B.V. All rights reserved.
Type de document :
Article dans une revue
Image and Vision Computing, Elsevier, 2010, 28 (2), pp.278-284. <10.1016/j.imavis.2009.04.018>
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00836060
Contributeur : Sylvie Lavigne <>
Soumis le : jeudi 20 juin 2013 - 13:38:27
Dernière modification le : mardi 12 septembre 2017 - 11:41:38

Identifiants

Citation

Miguel Ángel Luengo-Oroz, Emmanuel Faure, Jesus Angulo. Robust Iris Segmentation on Uncalibrated Noisy Images Using Mathematical Morphology. Image and Vision Computing, Elsevier, 2010, 28 (2), pp.278-284. <10.1016/j.imavis.2009.04.018>. <hal-00836060>

Partager

Métriques

Consultations de la notice

406