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Abstract—Many critical embedded systems perform floating-
point computations yet their accuracy is difficult to assert and
strongly depends on how formulas are written in programs.
In this article, we focus on the synthesis of accurate formulas
mathematically equal to the original formulas occurring in source
codes. In general, an expression may be rewritten in many ways.
To avoid any combinatorial explosion, we use an intermediate
representation, called APEG, enabling us to represent many
equivalent expressions in the same structure. In this article,
we specifically address the problem of selecting an accurate
formula among all the expressions of an APEG. To validate
our approach, we present experimental results showing how
APEGs, combined with profitability analysis, make it possible to
significantly improve the accuracy of floating-point computations.

I. INTRODUCTION

Most critical control systems of recent planes, spatial vehi-

cles or power-plants rely on floating-point computations [1] yet

this arithmetic is not intuitive [11]. Indeed, it is very difficult

to predict by hand the accuracy of the evaluation of a formula,

given certain ranges for the inputs and, recently, static analysis

techniques have been developed to infer safe error bounds for

the computations arising in critical programs written in C [6],

[7]. However these techniques do not indicate how to improve

the accuracy if the inferred error bounds are not satisfying.

Our work concerns the synthesis at compile-time of accurate

formulas, for given input ranges, to replace the expressions

written by the programmers in source codes [10]. We consider

that a program would return an exact result if the computations

were carried out using real numbers. In practice, roundoff

errors arise during the execution and these errors are closely

related to the way formulas are written. Our approach is based

on abstract interpretation [5]. We build Abstract Program

Equivalence Graphs (APEGs) to represent in polynomial size

an exponential number of mathematically equivalent expres-

sions [8]. APEGs are abstractions of the Equivalence Program

Expression Graphs introduced in [14]. The concretization of

an APEG yields expressions of very different shapes and

accuracies. To synthesize expressions from APEGs, we use

a profitability analysis which searches the most accurate ex-

pressions among all the expressions represented by the APEG.

This article focuses on our profitability analysis. An APEG

is an abstraction of an exponential number of expressions

and the profitability has to extract an accurate formula. We

† This work was partly supported by the SARDANES project from the
french Aeronautic and Space National Foundation.

compute safe error bounds using established static analysis

techniques for numerical accuracy [10] and we use a limited

depth search algorithm to explore the APEG structure. In

addition, APEGs contain abstraction boxes representing any

parsing of a sequence of operations defined by a set of

operands and one commutative operator. We also define a way

to synthesize an accurate formula from abstraction boxes.

For tractability reasons, we require our profitability analysis

to be polynomial in the size of the APEGs. The APEGs repre-

senting an exponential number of expressions, our profitability

is then a heuristic and we present experimental results to assert

its efficiency. We implemented our techniques in a tool, named

Sardana which takes as entry Lustre programs [4]. Inputs are

represented by abstract streams which indicate, at each instant,

a range for the values of the variables and a range for the

roundoff errors on these variables. We present experimental

results showing how our techniques improve the numerical

formulas arising of several relevant pieces of codes extracted

from an industrial critical software coming from aeronautics.

II. APEG CONSTRUCTION

In this section, we present our intermediate representation of

programs, called Abstract Program Expansion Graph (APEG).

This intermediate representation is inspired from the EPEGs

introduced in [14]. However, as an EPEG is not necessarily

complete, we define the APEGs as an intermediate structure

between the initial PEGs and the theoretical complete EPEGs

which can be intractable or infinite. The main objective of

APEGs is to use abstractions in order to remain polynomial

in size while still representing the largest number of equiv-

alent expressions. APEGs contain a compact representation

of many transformations of expressions in abstraction boxes

which allow one to represent very large sets of expressions

in polynomial size, despite that these expressions are of

very different shape. An abstraction box is defined by a

commutative binary operator, such as + or ×, and by a list

of nodes which correspond to the operands. These nodes can

be either constants, variable identifiers, sub-trees, equivalence

classes or abstraction boxes. An abstraction box stands for

all the parsings of the given leaves using the binary operator.

For example, +, (a, b, c, d) stands for all parsings of the sum

a + b + c + d. Also, +, (a, b, c, ×, (x1, x2, x3) ) stands for

all the summations of the sum a+ b+ c+X , where X stands

for any parsings of the product x1×x2×x3. So, an abstraction
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Fig. 1. Example of an APEG.
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Fig. 2. Abstract semantics of the elementary operations for the floating-point

arithmetic.

box is a very compact structure which is able to represent up

to 1 × 3 × 5 · · · × 2n − 3 possible evaluation schemes [12,

§6.3], where n in the number of operands in the box.

APEG construction rely on two kinds of transformation

algorithms: the propagation algorithms, and the expansion

algorithms. Our approach consists of composing each of these

algorithms together in order to produce the largest APEG, in

the sense of the number of versions of a program it repre-

sents, while staying polynomial. We have designed several

algorithms to add new shapes of expressions in an APEG.

For example, we recursively propagate subtractions into the

concerned operands, we propagate products, and we factorize

common factors through the structure. Figure 1 represents an

APEG, gray nodes and gray rectangles are the original PEG

nodes, dashed circles are equivalence classes, the rectangle

with a double outline on the left is an abstraction box. Except

for the abstraction box present, this APEG illustrates how the

propagation of the minus operator is done.

The expansion algorithms are designed to introduce abstrac-

tion boxes into the APEG. These algorithms search recursively

in the APEG where a symmetric binary operator is repeated

(we referred at these parts as homogeneous parts). When

an expansion algorithm finds a homogeneous part it inserts

a polynomial number of abstraction boxes into it, each of

these abstraction boxes representing alternative versions of

the homogeneous part. We have designed several polynomial

algorithms to build APEG, described in [8]

III. PROFITABILITY ANALYSIS

To compute safe bounds on the numerical accuracy of

arithmetic expressions, we use abstract values (x♯, µ♯) ∈ E
♯

where x♯ and µ♯ are intervals whose bounds are floating-

point numbers, and where x♯ represents the interval of values

of the input and µ♯ represents the intervals of errors on the

input [10]. A value (x♯, µ♯) abstracts a set of concrete values

{(xi, µi), i ∈ I} by intervals in a component-wise way.

For an arithmetic expression, the propagation of roundoff

errors corresponds to the semantics of [10] and is given in

Figure 2. The abstract function ↑♯◦ corresponds to the concrete

function ↑◦ which calculate the difference between a real value

and its rounded floating-point value. We have:

↑♯◦ ([x, x]) = [↑−∞ (x), ↑+∞ (x)] (1)

The function ↓♯◦ is a safe abstraction of ↓◦, i.e. ∀x ∈ [x, x], ↓◦
(x) ∈ ↓♯◦ ([x, x]). For example, if the current rounding mode

◦ is to the nearest, one may choose

↓♯◦ ([x, x]) = [−y, y] with y =
1

2
ulp

(

max(|x|, |x|)
)

(2)

where the unit in the last place ulp(x) is the weight of the least

significant digit of the floating-point number x [13]. For an

addition, the errors on the operands are added to the error due

to the roundoff of the result. For a subtraction, the errors on the

operands are subtracted. Finally, the semantics of the multipli-

cation comes from the development of (x♯
1 +µ

♯
1)× (x♯

2 +µ
♯
2).

The semantics of other operations is described in [10]. We use

the former arithmetic for the elementary operations between

floating-point values. In Lustre, values are streams and the

operations have to be extended to streams.
As a synchronous language, Lustre [4] handles streams of

values recording the values of a program point at each time
instant. For example, let us consider the following program:

a = 1.0 / 3.0;

b = 1.0 -> a * pre(b);

A constant stream mapping each instant to the internal repre-

sentation of 1
3 is associated to a. The stream b is the stream

whose value is b(0) = 1.0 at time 0 and whose value at time

i is b(i) = a(i)× b(i− 1).
Following the notations of [3], we denote s = 〈m, t0 :

x0 ∧ t1 : x1 ∧ . . . ∧ tN : xN 〉 the stream s such that, at each

instant i mod m, s(i) = xk if tk ≤ i mod m < tk+1 for

some k ∈ [0, N − 1] or s(i) = xN if tN ≤ i mod m < m.

By extension, we consider that if m = 0 then no modulo holds

and ∀i ≥ tN , s(i) = xN . We also assume that always t0 = 0.

Our streams associate at each instant a value in the domain

E of intervals of floating-point numbers with errors introduced

in Section III. Hence, a stream s ∈ S is a mapping s : N→ E

where N denotes the set of non-negative integers. Coming back

to our former example, the stream associated to a is

〈0, 0 : ([3.33333333333325E − 1, 3.33333333333334E − 1],
[1.85037170770855E − 17, 1.85037170770861E − 17])〉

and the stream associated to b is

〈4, 0 : ([2.09075158128704E − 7, 1.0],
[−6.49870810424242E − 23, 3.89955157246792E − 22])∧

1 : ([2.09075158128704E − 7, 3.33333333333334E − 1],
[−2.77556273678202E − 17, 4.62596578069798E − 17])∧

2 : ([2.09075158128704E − 7, 1.11111111111112E − 1],
[−1.61907865481218E − 17, 2.85268996889166E − 17])∧

3 : ([2.09075158128704E − 7, 3.70370370370373E − 2],
[−8.86638677409539E − 18, 1.50345826165255E − 17])

Elementary operations are applied at each instant, i.e if s =
〈m, 0 : x0∧ t1 : x1∧ . . .∧ tN : xN 〉 and s′ = 〈m′, 0 : x′

0∧ t′1 :



x′
1 ∧ . . . ∧ t′N ′ : x′

N 〉 then, for an operation ∗ ∈ {+,−,×},
we have (s ∗ s′)(i mod k) = s(i mod m) ∗ s′(i mod m′)
where k is the least common multiple of m and m′.

The profitability has to search an expression which mini-

mizes the roundoff errors. As our values are element of E
♯,

we have to define in what sense we aim at minimizing the

errors. First, let us introduce some notations. For a value

v = (x♯, µ♯) ∈ E
♯, let E(v) = µ♯. The function E gives the

error term of an abstract value. Next, if E(v) = µ♯ = [µ, µ],

then M+
E (v) = µ, M−

E (v) = µ, and ME(v) = max(|µ|, |µ|).

In other words, M+
E (v), M−

E (v) and ME(v) denote the upper

and lower bounds of the error and the maximal absolute error

bound, respectively. We consider several orders:

• Strict order: s ≺s s′ if ∀i ∈ N, E(s(i)) ⊆ E(s′(i)).
This order requires that, if s ≺s s′ then at any time the

error bound on s is less than the error bound on s′. The

accuracy is improved at each instant.

• Max order: s ≺m s′ if maxi∈N ME(s(i)) ≤ ME(s′(i)).
This order only considers the worst errors, i.e. s ≺m s′

if the worst intensity of the error possibly associated to

a value at a given instant is always smaller in s than in

s′. Elsewhere, the errors may be greater in s′ than in s.

• Integral order: s ≺i s′ if
∑i=m−1

i=0 M+
E (s(i)) −

M−
E (s(i)) ≤

∑i=m−1
i=0 M+

E (s′(i)) − M−
E (s′(i)). This

order compares the integrals of the error functions E(s)
and E(s′). We have s ≺i s′ if the sums of the errors at

each instant is smaller in s than in s′. If s ≺i s′ then

at some instant i, the error s(i) may be greater than the

error s′(i). If m = 0 or m′ = 0, the integral is computed

up to max(m, m′)−1. If m = 0 and m′ = 0, the integral

is computed up to max(tN , t′N ′).

The Strict order ≺s would require to synthesize a program

which always improves the error bounds on the computed

values. We consider that this order is too restrictive and we do

not use it in practice. The Max order≺m may be interesting

in certain applicative contexts where the main objective is to

lower the worst error bound and where the average error is

not relevant. The Integral order ≺i gives a measure of the

average error. We consider this order as the most interesting.

In practice, our experiments confirm that the integral order is

the order for which we may optimize the most the programs.

To synthesize an optimized program, the profitability has

to be performed on the APEGs as defined in Section II.

A main difficulty is that, thanks to equivalence classes, an

APEG may represent an exponential number of expressions

whose accuracy should be individually evaluated. To cope with

this combinatorial explosion, we use a limited depth search

strategy with memoization. We select the way an expression

is evaluated by considering only the best way to evaluate its

sub-expressions. This corresponds to a local choice.

Algorithm 1 illustrates how we perform the profitability

when the depth is set to 1. The operator :: appends a value to a

list. It considers, for each node in the given equivalence class,

the cartesian product of the elements of the node. It uses the

equivalence classes of the node parameters and evaluates the

Algorithm 1: Profitability of an equivalence class

Result: The minimal error wrt. the local depth search.

E ← [ ];
for pi ∈ 〈p1, . . . , pn〉 do

if pi = 〈p′1, . . . , p′k〉 ∗ 〈q
′′
1 , . . . , q′′m〉 then

for each p′j ∈ 〈p
′
1, . . . , p′k〉 do

for each p′′k ∈ 〈q
′′
1 , . . . , q′′m〉 do

E ← (↓♯◦ (p′j ∗ p′′k)) :: E;

else
if pi = l ∗ 〈q1, . . . , qm〉 or pi = 〈q1, . . . , qm〉 ∗ l

then

for qj ∈ 〈q1, . . . , qm〉 do

E ← (↓♯◦ (l ∗ qj)) :: E ;

else

E ← (↓♯◦ (l1 ∗ l2)) :: E ;

return Min≺(E);

roundoff error generated by the operator using the semantics

introduced above. Then it returns the minimal roundoff error

for the desired order (≺s, ≺m or ≺i) after memoization of the

accuracies of the expressions encountered. Algorithm 1 does

not detail how to synthesize the final expression once we have

found the minimal stream. This step is a simple propagation

of the expressions along with the streams.

The next point concerns the synthesis of an expression for

an abstraction box B = ∗, (p1, . . . , pn) . In this case, we use

an heuristic which generates an accurate expression (yet not

always optimal). This heuristic is a greedy algorithm which

searches at each step the pair pi and pj such that ↓♯◦ (pi ∗ pj)
is minimal. Once it finds pi and pj it replaces both terms in the

box by a new term pij whose accuracy is equal to ↓♯◦ (pi ∗ pj).
This heuristic computes in O(n3) iterations.

IV. CASE STUDY : AVIONIC BENCHMARKS

We present in this section several experimental results

obtained on pieces of code extracted from embedded critical

industrial avionic codes. These experimental results concern

in one hand programs using the IEEE-754 binary 32 format

(Table I), and, on the other hand, programs using the IEEE-754

binary 64 format (Table II). For both floating-point formats, we

have tested each program for many contexts, each having its

own input values. Again, input values are described by means

of streams of intervals of floating-point numbers. All the

contexts we used have been kindly provided by the ASTRÉE

team [2] who currently analyzes these programs and have

access to realistic simulations of them. Note that even if some

programs appear in both tables these programs have different

codes and performances, yet they aim at achieving a similar

task. In this case study, we use the Integral order. To perform

our benchmarks, we used for each program and each context

three identical scenarios in which Sardana computes streams of

size 5, 15 or 35 instants. For all the contexts of each program,



Program #Contexts %Opt
#Integral from

0 to 5 0 to 15 0 to 35

Interpol 2135 3.5% 0.4% 0.4% 0.4%

L-P filter 1 32 96.9% 13.5% 6.7% 3.1%

L-P filter 2 501 57% 6.6% 3.1% 1.3%

H-P filter 414 80.9% 11.7% 23% 25.6%

Transfer 477 100% 15.9% 18.4% 20.2%

% accuracy gain

TABLE I
RESULTS ON PROGRAMS USING IEEE-754 BINARY 32 FORMAT.

Program #Contexts %Opt
#Integral from

0 to 5 0 to 15 0 to 35

Interpol 7817 4.9% 7.1% 7.1% 7.1%

L-P filter 1 44 85,2% 9,2% 8,3% 7%

L-P filter 2 618 50,3% 7,5% 5,2% 4,1%

H-P filter 1 42 61,9% 14% 9,5% 2,5%

H-P filter 2 125 52% 7,4% 6,1% 3,9%

Transfer 364 98,5% 14,4% 17,7% 19,4%

Sqrt 76 80.2% 6.3% 6.3% 6.3%

% accuracy gain

TABLE II
RESULTS ON PROGRAMS USING IEEE-754 BINARY 64 FORMAT.

we present in Tables I and II the improvement of the integral

value of the errors for these scenarii. For industrial property

reasons, we denote the programs used by the following generic

terms: Interpol stands for a first order interpolation, L-P

filter are respectively a first order low-pass filter, H-P

filter is a first order high-pass filter, Transfer denotes a

second order transfer function between two inputs, and Sqrt

is a polynomial interpolation of the square root. We can

draw two conclusions with these experiments. First, in many

cases, the gain in accuracy decreases as the length of the

streams increases. This can be observed on all low-pass filters

described here. We explain this phenomenon by the fact that

in most of these cases the values generated by the program

tend towards zero and the errors on these values then decreases

as well over time. Thus, the gain at each step of the integral

tends to become smaller leading the integral gain to decrease

as well. This conclusion is even more accurate to us, that in the

other cases where the values are growing without limit (like

with the high-pass filter in Table I or the Transfer program

in Table II) the gain on the integral value increases as the

stream length increases. The second conclusion is that our

approach is able to improve the overall numerical accuracy

of very different programs in many different contexts. For

most programs this gain is between 2% and 20% for 50%
to 90% of the contexts. For the few programs we are unable

to improve such as Interpol in Table I, we may argue that

these programs do not allow much syntactic transformations.

V. CONCLUSION

In this article we have presented a new profitability heuristic

which allows us to extract a more accurate version of a

program from our intermediate representation called APEG.

This article briefly describes how APEGs are constructed,

and how they are able to represent many equivalent versions

of a program in order to find one with better numerical

accuracy. We have designed a profitability analysis which runs

in polynomial time recursively into the APEG and synthesize

a well-formed, new, but yet mathematically equivalent, version

of a program. Our experimental results show significant im-

provement for real case examples of industrial avionic code.

We believe that our approach could be extended in many ways,

we are confident that the profitability heuristic we currently use

could be improve in order to synthesize even more accurate

programs. Finally we consider that many other orders over

the streams of values could be defined, and may improve the

quality of the profitability heuristic we use.
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Miné and all the ASTRÉE team for their contribution on the

avionic benchmarks, also Laurent Thévenoux and Christophe
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