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BOUNDARY LAYERS, RELLICH ESTIMATES AND
EXTRAPOLATION OF SOLVABILITY FOR ELLIPTIC SYSTEMS

PASCAL AUSCHER AND MIHALIS MOURGOGLOU

ABSTRACT. The purpose of this article is to study extrapolation of solvability
for boundary value problems of elliptic systems in divergence form on the upper
half-space assuming De Giorgi type conditions. We develop a method allowing to
treat each boundary value problem independently of the others. We shall base our
study on solvability for energy solutions, estimates for boundary layers, equivalence
of certain boundary estimates with interior control so that solvability reduces to
a one-sided Rellich inequality. Our method then amounts to extrapolating this
Rellich inequality using atomic Hardy spaces, interpolation and duality. In the
way, we reprove the Regularity-Dirichlet duality principle between dual systems
and extend it to H!—BMO. We also exhibit and use a similar Neumann-Neumann
duality principle.
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1. INTRODUCTION

Boundary value problems for second order elliptic equations have a long history.
The breakthroughs of Dahlberg [Da] for the Laplace equation on Lipschitz domains
and the boundedness of the corresponding layer potentials by Coifman, McIntosh
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and Meyer [CMcM] opened the door to a thorough study of such problems, gen-
eralizing domains or operators. By flattening the boundary, one instead looks at
equations with measurable coefficients and considers two types of domains, either
the upper-half space as a prototype for unbounded domains or the unit ball as a
prototype for a bounded domain. There one can study boundary value problems
with different types of data spaces. All of this is well explained in the book by
Kenig [Ke]. Solving these boundary value problems can be a difficult task; there
is no comprehensive nor unified treatment of this issue at this time. Let us just
mention that the solution of the Kato conjecture [AHLMcT]| and its developments
gave rise to new estimates and new methods so that progress in the area is rather
impressive as of now.

The purpose of this article is to study extrapolation of boundary value problems
for elliptic systems in divergence form on the upper half-space Rf”, 14+n > 2.
Extrapolation means that, assuming the problem can be solved for some space X
of data, one can push the solvability range to some other spaces. For Regularity
and Neumann problems, X is an L” space, r > 1 and one extrapolates to L” for
1 < p < r and H? data for some range of p below 1. For Dirichlet problems, one
starts from L? for some ¢ < oo and extrapolates to LP for ¢ < p < oo, BMO and
Holder spaces up to some exponent. In fact, one can see the Dirichlet problem as
a Regularity problem in spaces of data with regularity exponent -1. One can also
formulate Neumann problems in spaces of data with regularity -1.

We do not treat here the openness property of extrapolation, that is that solv-
ability at one space of data can be perturbed to nearby spaces in the given scale.
This will be treated in [AS] using further developments.

These types of extrapolation results are not new, at least for equations, starting
from the seminal works of [DaK]| for the Laplace equation on Lipschitz domains
and [KP] for real symmetric equations. Further contributions are in [Br| for the
Laplace equation looking at H? data for p < 1, in [Di] in the context of the Laplace
equation on smooth domains of Riemannian manifolds and in [DK] for real equations
on bounded Lipschitz domains. See also some comments in [HKMP2] outlining a
strategy using Kalton-Mitrea extrapolation [KM]| when layer potentials associated
to the operators are invertible. Of course, we are just mentioning the works related
to extrapolation in this subject and not the numerous ones on solvability for second
order elliptic operators under various assumptions. In some sense, we are after a
sort of extrapolation reminiscent to the Calderén and Zygmund extrapolation for
singular integrals because the operators under considerations can be thought of as
generalized singular integrals.

To do so, we introduce a new method which allows to treat each boundary value
problem independently of the other ones and to consider systems and not just equa-
tions, assuming De Giorgi-Nash type local Holder regularity, in the interior and for
reflections across the boundary. For the Neumann problem, this is completely new:
in [KP], which is the closest antecedent to our results here, extrapolation of solv-
ability for the Neumann problem was linked to that of the Regularity problem. Our
method will clarify the Regularity-Dirichlet duality principle for solvability obtained
in [HKMP2], extend its range to H' — BMO and we will also formulate and use a
new duality principle for Neumann problems. Also our exponents are explicitly de-
termined by the ones in the De Giorgi conditions. Our strategy can be summarized
as follows: try to distinguish as much as possible interior and boundary estimates
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so as to use a priori estimates most of the time. To do so, we have to reverse the
order in which we use some tools compared to other works.

Our divergence operators will be precisely defined in Section 2 and ellipticity will
be taken in the sense of some Garding inequality. The boundary value problems are
treated for operators whose coefficients do not depend on ¢, the transverse variable to
the boundary, but some results do not need this. For the purpose of the introduction,
it is best to assume t-independence.

We shall rely on energy solutions. Indeed, Regularity and Neumann problems
are always well-posed (modulo constants) in the energy class without any further
information. We deviate here from the treatment done in [KR] or [HKMP2] by
using the “natural” energy space given by the Dirichlet integral [ |Vu|?. Even in
the unbounded situation of the upper half-space, things turn out to work rather well
with this space. Solvability of Regularity and Neumann problems means here that
energy solutions satisfy the required inequality respectively: control of || N.(Vu)|l,,
the LP norm of (a modified) non-tangential maximal function of Vu, by ||V u|i—o|lp,
where V,u|;—¢ is the tangential gradient at the boundary or by |0, ,u|i=ol,, where
Oy, tt]t=o is the conormal derivative at the boundary. For the boundary estimates,
the norm || ||, denotes an L” norm if p > 1 and a Hardy H? norm if p < 1.

One of the main results here is the following. Assuming interior De Giorgi
type conditions, there is an a priori equivalence between ||N.(Vu)||, and the sum
10y 41|10l + |V 2tt]t=0]|, in a range 1 —e < p < 2 for energy solutions (and for other
types of solutions as well) with e specified by our assumptions.! For p = 2, this was
one of the key result in [AA]. The bound from below holds for any weak solution:
it was known in the range 1 < p < oo from [KP] and has been proved recently in a
range 1 —e < p <1 in [HMiMo]. The bound from above has been addressed in the
range 1 < p < 2+4¢" in [HKMP2] for a class of solutions u which can be represented
by the layer potentials built in [AAAHK] using Green’s representation formula

(1) u(t, x) = S¢(9y,uli=o)(x) — Di(uli=o)(x)

where S; and Dy are respectively the single and double layer potentials associated to
divAV on R We shall prove (Theorem 9.1) that the bound from above holds in
the range 1—¢ < p < 2 for any solution in the energy class and other classes. Here, we
use the newly discovered relation by A. Rosén [R1] between the layer potentials and
the first order formalism of [A AMc], which gives L? boundedness of the double layer
potential and L2 — W2 boundedness of the single layer potential in full generality.

It allows to use instead the differentiated form of (1) which actually comes before in
the analysis (and one does not care about the constant of integration at this stage)

(2) Vu(t, ) = V5,(0,,uli=0)(x) = VDi(uli=o)(2)

and one only needs to have two a prior: bounds for the layer potentials. The first
one is ||N.(VD:h)|, < ||Vzh||, that we obtain in the range 1 — e < p < 2 (again,

recall that boundary norms are H? norms when p < 1). We note this was proved
for 1 < p < 2+ ¢’ for complex equations and 1 4+ n > 3 in [HKMP2, Proposition
5.9] and there is an interesting comment to make as an illustration of reversing the

order in which we use tools. The argument there uses an estimate for what is called

IWe shall not attempt to treat here the range 2 < p < 2+ ¢’. In fact, it can be shown to hold

without the De Giorgi condition, at the expense of some further work which shall be presented in
[AS].
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L-harmonic conjugates (such an estimate is a one-sided Rellich inequality in disguise
(see below)) and seems therefore to be limited to p > 1. Instead, our argument for
this inequality does not require such an estimate; it only uses atomic theory and
interpolation. This is made possible because we use (2) and not (1); the Rellich
inequality is used later. The other needed a priori bound ||N,(VS:h)|l, < ||A], in
the range 1 —e < p < 2 + &’ was known from [HMiMo] at least in the equation case
and 1+4+n > 3. With this in hand, solvability for a given p in this range is equivalent

to a boundary estimate of Rellich type (again for energy solutions) which is

(3) 1004 uli=ollp S [Vaul=ollp
for the Regularity problem and
(4) IVauli=ollp S 1100 ult=oll

for the Neumann problem.

The outcome of this is that in order to extrapolate solvability, it suffices to ex-
trapolate a one-sided Rellich inequality. This step, therefore, completely happens
at the boundary. Basically, in the spirit of the ideas in [DaK] and [KP], we can use
Hardy space atomic theory on the boundary and interpolation. But the difference
is that we only have to prove (3) or (4) with given data a 2-atom (Section 4) and we
do this by showing that the missing data is a molecule (Section 10) without going
back to non-tangential maximal estimates. Aside from some pointwise estimates on
solutions shown in Section 6 relying on some form of boundary regularity, this step
uses, of course, the initial solvability assumption even to get the molecular decay.
Note also that harmonic measure techniques are forbidden to us as we work with
systems. The way it works is that we use in fact the dual formulation of the in-
equalities (3) or (4) when p > 1. We were therefore led to investigate this further
(Section 3). The dual of (3) is an inequality akin to the one needed to solve the
adjoint Dirichlet problem in L”". The dual formulation of (4) is new. What is also
new is that these dual formulations do not require any assumption on the operator,
not even t-independence, but the ellipticity, because we use duality brackets and not
integrals. We also use the integrated layer potential representation (1) for solutions
of the dual system: the De Giorgi condition comes into play to show that (1) holds
whenever u|,—o € L? and 0, ul|i—o € WL for p > 2.

As for the Dirichlet problem, we can basically treat it with the duality principle
that Regularity solvability with L? data is equivalent to Dirichlet solvability for L¥'
data of the dual system. While the Regularity to Dirichlet direction has been known
since [KP] for real symmetric equations, the converse is fairly recent for general
systems (some partial results for real symmetric equations in Lipschitz domains are
in [S]) and requires to incorporate square functions in the formulation of the Dirichlet
problem. This was proved in full generality in [AR] for p = 2 and then in [HKMP2]
for equations and 1 +n > 3 and p # 2 (Both articles allow some tdependence as
well). We reprove and strengthen it even with the hypotheses there and also extend
it to H' for Regularity vs BMO (or VMO) for Dirichlet. The Dirichlet problem is
stated only with a square function estimate and no non-tangential maximal control
which in fact comes as a prior: information. We shall use in this part a recent result
obtained by one of us together with S. Stahlhut [AS].

We only discuss the case of the upper half-space, but of course, the analogous
results hold for systems in the lower half-space. Also by change of variable, one can
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treat the case of special Lipschitz domains with operators that do not depend on
the vertical variable. The principal example is the Laplacian for which extrapolation
results were proved in the seminal paper [DaK] and pursued in [Br]. We also mention
that the same strategy can certainly be developed in the unit ball with radially
independent coefficients instead, that is, the framework of [KP], using the first order
formalism developed in [AR]. This would require writing out some details on layer
potentials. We leave this to further developments.

All our estimates in this article depend only on ellipticity constants || Al and
the largest A in the specified ellipticity inequality, and on the constants in the De
Giorgi condition when assumed.

The second author is supported by the Fondation Mathématique Jacques Hadamard.
The authors were partially supported by the ANR project “Harmonic analysis at
its boundaries” ANR-12-BS01-0013-01 and they thank the ICMAT for hospitality
during the writing of this article. We warmly thank S. Hofmann for discussions
pertaining to this work, for providing us with unpublished material and letting us
use some of it, and for helping us with historical comments.

2. GENERAL THEORY AND ENERGY SOLUTIONS

If £(€2) is a normed space of C-valued functions on a set {2 and F’ a normed space,
then E(Q; F) is the space of F-valued functions with ||| f|r| gy < oo.

Denote points in R by boldface letter x,y, ... and in coordmates in R x R™ by
(t,x) etc. We set RY™ = (0, 00) x R™. Consider the system of m equations given by

(5) ZZ@(Aa’ﬁ u’ (x ))zO, a=1,...,m

1,7=0 B 1
in ]RH” where 0y = and 0; = 5~ ifi=1,...,n. For short, we write divAVu = 0
to mean (5), where we always assume that the matrix
(© Ax) = (AT ()50 € LXRY™ £(C70)),

is bounded and measurable and satlsﬁes some ellipticity. For systems, we use several
forms of ellipticity. One is the Garding inequality

M R0 Tatax =AY [0t oax

for all g € CH(RI™;C™) (C! functions with compact support) and some A > 0, and
sometimes one needs the stronger Garding inequality

(8) /RHnRe(A( X)Vg(x) - V() dx>>\ZZ/ 1019 (%)

=0 a=1
for all g € Cj(R*™; C™) and some A > 0. We have set

A(x £n—2 ZA“’ﬁ

1,7=0 a,5=1
Note that the integrals are on the upper-half space. For systems, an elementary
computation shows that (8) is equivalent to the Garding inequality (17) on R
(see below) for the extended matrix A* to R'*" obtained by changing the sign when
t changes sign of the coefficients for the mixed ¢, z; derivatives in (5). The scalar case
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corresponding to equations is when m = 1. In this case, the accretivity condition
above are equivalent to the usual pointwise accretivity condition

(9) Re(A(x)¢€- &) > NEf?, € € C) ace. on RYT™

Alternately, scalar can mean a diagonal system in the sense that Afff = A; ;6% us-
ing the Kronecker symbol. When A has t-independent coefficients, that is A(t, z) =
A(x), (8) is implied by the strict accretivity of A on the subspace H° of L?(R"; C™(+7))
defined by (ff*);=1,..n is curl free in R™ for all o, that is, for some A > 0

(10) Re(A()f () F@)) do =AY Y [ Ife ()P, ¥ 1 o,

R™ =0 a=1

Even when A is t-independent, (9) is stronger than (10) when m > 2 except when
n = 1. See [AAMc] and [AR] for details. Such conditions are stable under taking
adjoint of A.

The system (5) is always considered in the sense of distributions with weak solu-
tions, that is H} (R1*"; C™) solutions.

There is an important space for the theory of energy (or variational) solutions in
RLT". We shall use the homogeneous space of energy solutions

£ = I(RL™C™),

which is different from the one used in [KR] and [HKMP2]. Recall that H'(RX™)

is the space of L (RY™) functions w with finite energy [pisn |[Vu(x)[?dx < oco.
+

The fact that we assume local square integrability is of particular help (in fact, it
suffices to even assume u to be a distribution as u can then be identified with an
L% function), even if the “norm” is defined modulo constant. Indeed, the proof of
Lemma 3.1 in [AMcM] shows that H'(RY™) imbeds into C([0, 00); L2, .(R™)), where
C(€2) stands for the space of continuous functions on €, (up to identification of
measurable functions on null sets) and that the restriction to RY™ of Cg°(RM") is
dense in H'(R1*™). In particular, the trace of H'(RL*™), identifying ORI with
R”, is the space of f € L2 (R") such that f € HY/?(R") and has C°(R") as
dense subspace. Thus we can interpret boundary equalities also in L2 . and measure
size only with the “homogeneous” norm in H?*(R"). Recall that H(R*") is the
subspace of H L(RI™) consisting of functions with constant trace: it is the closure
of C5°(RM™) for the semi-norm above. Note also that H'(R1") is stable (as a set)
under multiplication by C§°(R'*") functions restricted to R,

In what follows, we denote by H *(R™) the homogeneous Sobolev space with ex-
ponent s € R defined as the completion of L?(R") for the semi-norm ||(—A)%2f||,
where A is the self-adjoint Laplace operator on L?(R"). For s > 0, it is the closure
of C§°(R™) (= limits of Cauchy sequences for the homogeneous semi-norms) and can
be realized as a subset of L2 (R"), and it becomes a Banach space when moding
out polynomials of some order. For s < 0, it is a space of tempered distributions,
identified with the dual of H~*(R") in the usual sesquilinear pairing. It is convenient
to introduce the space HE(R™; C") := VH**(R") = V(—A)~/2H*(R"). Using the
boundedness of the Riesz transforms on H*(R") for all s € R, it is the subspace of
the curl free elements in H*(R"; C"). We will use them for s = —1/2 and s = 1/2,
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in which case they are dual spaces for the usual duality and notice that they both
have Dy (R"; C") := VC§°(R") as a dense subspace.

Let us continue with the definition of the conormal derivative and the abstract
Green’s formula.

Lemma 2.1. Let A(x) be any bounded measurable matriz in RY™. Let u € &
such that divAVu = 0 in RY™. Then, there exists a distribution in H—/2(R™;C™),

denoted by 0, ,u|i=o or 0,,,uo” and called the conormal derivative of u at the boundary,
such that for any ¢ € € with ¢pg = ¢li=o,

(11) AVUV—QS: _<81/Au07¢0>'

RIT"
In particular, for u,w € € with divAVu = 0 and divA*Vw = 0 in R}f”, one has
the abstract Green’s formula

(12) (UO, auA*w0> = <(9VAU0, wo>~

The brackets are interpreted in the H =2, H'/2 sesquilinear duality, but, by abuse,
in no definite order for the factors so as to make the formula look like the Green’s
formula obtained by integration by parts (when feasible). The conormal derivative
agrees with v - (AVu)|;—o whenever this makes sense, where v is the upward unit
vector in the t-direction (hence the inward normal for R1*™). This convention for
conormal derivatives will be useful later. This explains the negative sign in the
defining formula.

Proof. The definition of the conormal derivative is a consequence of the facts that
(11) is 0 when ¢ € £ with constant trace (because Cg°(RL™; C™) is dense in it) and
that the trace is bounded from £ onto H'/2(R"™). The details are left to the reader.
The abstract Green’s formula follows immediately from definition of the conormal
derivatives. m

Remark that the theory of energy solutions (that is, solutions of divAVu = 0
in £) done in [AMcM, Section 3] for ¢-independent systems satisfying (10) extends
immediately to t-dependent systems satisfying the appropriate Garding inequality
allowing to use the Lax-Milgram lemma. We state the well-posedness results for
convenience. Note that by density, (7) and (8) extend to all g in H}(RL™;C™) and
H'(RM™, C™) = £ respectively.

Lemma 2.2. Let A(x) be bounded measurable with the stronger Garding inequality
(8). Let g € H‘1/2(R”;Cm). Then, there is an energy solution u € &, unique
modulo constants in C™, of the system divAVu = 0 in RY™ with 0,,uli—o = g in

H_1/2(R”;(Cm).

This uses the Lax-Milgram lemma in £/C™. One can define the Neumann to
Dirichlet operator as the bounded linear operator

Typ : HTAR™,C™) — Hg (R (C™)")

in such a way that I'yp(0,,u|i=0) = Vaul|i—o, if u is one of the energy solution with
given Neumann datum 0, u|i—o.

2We shall use both notations.
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Lemma 2.3. Let A(x) be bounded measurable with the Garding inequality (7). Let
f €L} (R C™) N HY?(R™,C™). Then, there is a unique energy solution u € & of
the equation divAVu = 0 where ul—o = f holds in H?>(R™;C™) N L% _(R™;C™).

loc

Proof. Given an extension ¢ of f in £, by the Lax-Milgram lemma applied in
H&(Rf";@m), there exists, unique modulo C™, a solution w € & to divAVw =
—divAV¢ with w|,—g = 0 with equality in H'2(R";C™). Thus u = w + ¢ solves
divAVu = 0 with u|—g = f. Since f € L _(R";C™), we can fix the constant by

imposing the equality in L2 (R™;C™). Thus u is uniquely defined. O

loc

Similarly, one can define the Dirichlet to Neumann operator as the bounded linear

operator

Tpy i HgP(R™ (C™)") — H-V2(R™; C™)
in such a way that I'pn(V,uli—o) = 0,,u|i=0, if w is the energy solution with given
Dirichlet datum u|;—q (or alternately, any of the energy solution with given regularity
datum V, ul;—o).

Let us come to some local inequalities. We use the notation B(x,r) to denote
the open ball in R"™!, centred at x, of radius 7. Given such a ball B = B(x,r),
we let kB denote the concentric dilate of B by a factor of k. For x € R", we let
A = A(z,r) = B((0,z),r) N ({0} x R™) denote the “surface ball” on R™ centred at
x and with radius r and B (z,7) = B((0,2),7) "RY™ the half-ball.

If A(x) is bounded measurable with the Garding inequality (7), any weak solution
u in a ball B = B(x,r) with B C R of divAVu = 0 enjoys the Caccioppoli
inequality for any 0 < a < 8 < 1 and some C depending on the ellipticity constants,
n,m, o and 3,

(13) / Vul? < Cr? / up,
aB 8B

and any weak solution v € W1?(B,;C™) = H*(B,;C™) of divAVu = 0 on B, =
B (x,r) with ult—o = 0 on A(z,r) enjoys the boundary Caccioppoli inequality for
any 0 < a < f < 1 and some C depending on the ellipticity constants, n, m, o and

B,
(14) / IVl < cw?/ luf2.
aBy BB+

If A(x) satisfies the stronger boundary Garding inequality (8), then any weak so-

lution u € H*(B,;C™) of divAVu = 0 on B, = B, (x,r) with d,,ul;—o = 0° on

A(x,r) enjoys the boundary Caccioppoli inequality (14). The proofs are standard.
This gives for example the following kind of local boundary estimates.

Proposition 2.4. Let A(x) be bounded measurable with the Garding inequality (7).
Let u,w € & with divAVu = 0 and divA*Vw = 0 in R, Assume that vy is
supported in a surface ball Ay = A(xg,p) and wy is supported in a surface ball

A = Az, r) with AANAg = 0. Then

with Q+ = SB+ \ 2B+; B+ = B+(x,7’).

31t can be defined locally.
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Proof. Fix ¢ € C§°(R") supported in 3B, ¢ = 1 on 2B where B = B((0,z),r) with
ol <1 and ||Vl S 77t Let g be its restriction to R". Remark that pw € €

so its trace powy is well-defined in L2 N H'Y? and @owy = w, using that ¢y = 1 on
the support of wy. Thus (0, ,ug, wo) = (0, ,u0, powo). Next,

(O, o, owp) = —/AVu-V(apw) = +/uAVg0-W— /AVu-ngo

where the last equality uses the fact that divA*Vw = 0 and that pu € £ with
@oup = 0 so that — [ AV (pu) -Vw = (poug, Oy . wo) = 0. We conclude for both
terms by using Cauchy-Schwarz inequality, Caccioppoli and boundary Caccioppoli
inequalities, and that the support of Vi is contained in €2, . 0

Remark 2.5. There are variants for the right hand side. As u vanishes on 3A\ 2A,

1/2 1/2
one can show 7! <fQ+ |u|2) < <fQ+ \Vu|2) by using variants of Poincaré’s

inequality. The similar observation applies to w.
There is a similar statement for disjointly supported conormal derivatives.

Proposition 2.6. Let A(x) be bounded measurable with the stronger Garding in-
equality (8). Let u,w € & with divAVu = 0 and divA*Vw = 0 in RY™. Assume
that 0, ,uq is supported in a surface ball Ag = A(zg, p) and 0, ,.wq is supported in a
surface ball A = A(x,r) with AANAg = 0. Then

(16) |(ug, By, w0)] scr—2</ﬂ+ \uP)m </Q+ ‘w|2)1/2

with Q+ = SB+ \ 2B+; B+ = B+(x,7’).

Proof. Let ¢ € C5°(R™) be as above. Again gu € £ so its trace oug is well-defined
in L2 N HY2. Thus (ug,d,,,wo) = {¢ouo, d,,.wo) using that ¢y = 1 on the support
of 0,,.wy. We conclude exactly as in the previous argument. We skip details. [

Remark 2.7. Note that one can replace u by u — ¢ in this argument as they have
the same conormal derivative. Thus one can choose ¢ to our like. For example, if

1/2
we choose the solution u whose average on €2, equals 0, then 7! ( Jo. \uP) <

1/2
( f9+ |Vu\2> by Poincaré’s inequality. One can do similarly with w. In our

applications, we shall need decay estimates for u if Ay and A are far apart and some
control on w. See Theorem 10.6.

3. RELLICH ESTIMATES AND DUALITY PRINCIPLES FOR 1 < p < 00

We next want to shed a new light on duality principles for global boundary es-
timates of Rellich type. Recall that we will not assume anything but ellipticity on
the coefficients at this point.

For 1 < p < oo, let WHP(R™) = {f € L .(R"); Vf € LP(R";C")} (one can show
that this is the same space, upon identification, assuming instead f € D'(R"™)) and
set | fllyiie = IV £, For p =2, this is also H'(R"). Some well-known properties

are summarized here.

Proposition 3.1. (1) C°(R") is dense in WP(R").
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(2) W12 (R™), the dual of WHP(R™), is the space of distributions divg for some
g € LY (R"; C") with norm inf ||g||,» taken oven all choices of g.

1
loc

We note the importance of the L . requirement to get the density. The following

well-known lemma will be useful.

Lemma 3.2. For f € LL (R"), ||V flyy-1» ~ inf{||f + ¢l ; c € C}.

loc

The left hand side is the norm in W~ (R?;C"). In other words, the left hand
side is finite if and only if there exists one (and only one since constants are not in
L” (R™)) ¢ € C such that f + ¢ € L¥ (R™).

As we identify éﬂRf" with R™, we use here the subscript 0 to indicate the restric-
tion to the boundary. Thus Vug is short notation for V uy.

Theorem 3.3. Let A(x) be a bounded measurable matriz with the Garding inequality
(7). Let 1 < p < oo. The following are equivalent.

(1) There exists C, < oo such that for any v € & solution of divAVu = 0,
1004 uo0llp < Cpl| Vo]l

(2) There exists Cy < oo such that for any w € £ solution of divA*Vw = 0,
||aZ/A*wO||W71,p/ S Cp’vaOHWflyp/.

Theorem 3.4. Let A(x) be a bounded measurable matriz with the stronger Garding
inequality (8). Let 1 < p < co. The following are equivalent.

(1) There exists C, < oo such that for any uw € & solution of divAVu = 0,
[Vuollp < Cpl|Oyuollp-

(2) There exists Cpy < 0o such that for any w € & solution of divA*Vw = 0,
[Vl < Cor 100l

Some remarks are necessary. The tangential gradient and conormal derivative
at the boundary of an energy solution are distributions in R™ (in H~'/2). Thus,
finiteness of any of the norms above means that the distribution is identified with
an element in the considered space which is also embedded in the space of distribu-
tions. Theorem 3.3 concerns boundary inequalities needed for solving the regularity
problem for divAV in L? and the Dirichlet problem for divA*Vw = 0 in ¥, or
rather a regularity problem in W~="". For p = 2, this is akin to a result of [AR].
It can be compared with Theorem 3.1 of [HKMP2], stated only for ¢-independent
equations with De Giorgi condition and a restriction on p. In contrast, our result
here is independent of any kind of interior control on solutions besides the energy
estimate and this is why it holds for any p. The energy class is used here as an
existence and uniqueness class. Any other such class would do a similar job. The-
orem 3.4 is new and relates the Neumann problem for divAV in L? to a Neumann
problem for divA*V in W~'#' which has not been studied up to our knowledge. A
related statement appears in [R2] for p = 2.

Proof of Theorem 3.3. Assume (1) and let w € & be a solution of divA*Vw = 0.
Assume also |[Vwyl|}j-1 < 0o otherwise there is nothing to prove. By lemma 3.2
and the fact that for any ¢ € C™, w+c is also a solution with same conormal deriva-
tive as w, we may assume ||wy||,, < co. By Proposition 3.1, it is enough to estimate
(O . w0, g) for any g € C5°(R™; C™) with ||Vg||, < 1. Let u € € be the solution of
divAVu = 0 with vy = g (Lemma 2.3). By Lemma 2.1, (0,,.wo, g) = (wo, Oy, uo)-



RELLICH ESTIMATES AND SOLVABILITY 11

Now wy € L and by (1), [|0,,uoll, < Cpl|Vg|l, < C,. Hence, reinterpreting the last
bracket in the usual L?', L? duality and using Holder’s inequality, we obtain

{00 4w, 9)] < Mlwollp |00suollp < Collwolly

and we conclude for (2).

Conversely assume (2) and let u € £ solution of divAVu = 0. Assume also ug €
W2 and ||Vugl|, < oo otherwise there is nothing to prove. It is enough to estimate
(Oy,u0, g) for any g € Cg°(R™; C™) with ||g||,, < 1. Let w € £ be the solution of
divA*Vw = 0 with wy = ¢ (Lemma 2.3). By Lemma 2.1, (9,,u0, g) = (uo, O,,. o).
Now g € W' and, using (2) and Lemma 3.2, 100 - wollyir—10 < CplIVGllyir—1r S
llgll,, < 1. Thus reinterpreting the last bracket in the W», W~ duality, we obtain

[(Oy w0, 9)| < Nwollyirsn |00 wollyiy—1ar S 1V 0]l

and we conclude for (1) by density. O

Proof of Theorem 3.4. Assume (1) and let w € &€ be a solution of divA*Vw = 0.
Assume also ||, . wo|yi,—1» < 00 otherwise there is nothing to prove. By Propo-
sition 3.1 (in a vector-valued form), it is enough to estimate (Vwy,g) for any
g € CR™; (C™)™) with [|g]ljiie = [Vgll, < 1. Let u € &€ be a solution of
divAVu = 0 with 0,,up = —divg (Lemma 2.2). By Lemma 2.1, (Vwg,g) =
(w0, ~divg) = (B,.w0u0)- By (1), lluollirs < Coldnamoll, < Cylldivll, < 1

Hence, reinterpreting the last bracket in the W=, W'# duality we obtain

[(Vwo, 9)| < 1001 wol iy [ wollvirrs S 1004 wollvir-1r

and we conclude for (2).

Conversely, assume (2) and let v € &£ solution of divAVu = 0. Assume also
10,10, < 0o otherwise there is nothing to prove. It is enough to estimate (Vuy, g)
for any g € Cg°(R™; (C™)") with ||g||,y < 1. Let w € € be a solution of divA*Vw = 0
with 9,,,wy = —divg (Lemma 2.2). By (2), any such w satisfies ||[Vwp||y-1, <
Cpr |0 e wollyi-1r < Cprl|divg||yi-1.r < Cprllgllyy < Cp. By Lemma 3.2, there exists
c € C™ such that wy + ¢ € LP with ||wy + c|ly < [[Vwollyi-1- Since w + ¢ is
also a solution of the same problem, we may select w by imposing wy € L” which
we do. By Lemma 2.1, (Vug, g) = (ug, —divg) = (9,,uo, wo). As wy € L and
10, ,u0ll, < o0, it follows by reinterpreting the last bracket in the LP, L*" duality
that

[(Vuo, 9)| < Cyl|Ovauollpllwolly S [100uollp

and we conclude for (1). O

A consequence of the proofs is the following self-improvement of each of the 4
boundary inequalities in the above statements.
We say that an energy solution of divAVu = 0 has smooth Dirichlet data if

uy € Cg°(R™;C™) and has smooth Neumann data whenever 0,,uo € C§°(R";C™)
(necessarily with mean value 0).

Theorem 3.5. Let A(x) be a bounded measurable matriz with the Garding inequality
(7). Let 1 < p < oo. The following holds.

(1) If there exists C, < oo such that for any energy solution u of divAVu = 0
with smooth Dzmchlet data, one has |0y, uoll, < Cpl|Vuol|p, then this holds

for any energy solution u of divAVu = 0, possibly with a different constant.
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(ii) If there exists C,, < oo such that for any energy solution of divAVu = 0 with
smooth Dirichlet data one has |0y, uol -1, < Cpl|Vuollyi=1.0, then this holds
for any energy solution u of divAVu = 0, possibly with a different constant.

Proof. For (i), we remark that to prove (1) implies (2) in Theorem 3.3, we use (1)
with smooth data. Thus the assumption of (i) implies (2) in Theorem 3.3 and we
conclude using the converse (2) implies (1) in the same theorem. The proof of (ii)
is similar starting from (2) for A and p instead of A* and p’ in Theorem 3.3. O

For Neumann problems we have,

Theorem 3.6. Let A(x) be a bounded measurable matrix with the stronger Garding
inequality (8). Let 1 < p < 0o. The following holds.

() If there exists C), < oo such that for any energy solution u of divAVu = 0,
with smooth Neumann data one has ||Vuo|, < Cpl|0,,uollp, then this holds
for any energy solution u of divAVu = 0, possibly with a different constant.

(ii) If there exists C, < oo such that for any energy solution of divAVu = 0
with smooth Neumann data one has ||Vuo|lyiy-1o < Cpl|0y, ol yi-10, then
this holds for any energy solution u of divAVu = 0, possibly with a different
constant.

The proof is similar noting that we use smooth data of the form —divg in the
arguments. Details are left to the reader.

4. RELLICH ESTIMATES: THE CASE 5 <p <1

Here, the duality equivalence is a subtle issue for p < 1 but remains for p = 1.
We prove this first. Then we consider the problem of extension from estimates on
atoms to global estimates.

Let HP(R") denote the real Hardy space if .25 < p < 1. We have that H?(R") are

distributions spaces and, in this range, C3°(R™) functions with mean value 0 form a

dense subspace. For 25 < p <1, let HYY(R") = {f € S'(R");d,,f € H'(R"),i =

L,...,n} with norm || f|| j1pgny = |V fll#r@n.cny. This is the homogeneous Hardy-
Sobolev space which has been studied in many places ([Str|, [Mi], [ART], [BB],
[BGJ, [KS], [LMc]... ). In particular, elements in these spaces are known to be

locally integrable functions and C5°(R™) is a dense subspace.

Let us turn to recalling duality. For all of them, we use the standard hermitian
duality on functions, extended appropriately. Recall that if « = n(1/p — 1) €
0,1), the dual of H?(R") is identified with A°(R") := BMO(R") is p = 1 and
with the homogeneous Hélder space A*(R™) of those continuous functions such that
lu(z) —u(y)| < Cle —y| for all x,y € R, the smallest C' defining the semi-norm.
These spaces can also be seen within Dy(R™), the space of distributions modulo
constants, in which they are Banach. Recall also that H'(R™) is the dual space of
VMO(R") (sometimes called CMO), the closure of Cg°(R™) in BMO(R™). The dual
of H'"?(R") is identified with A®'(R") defined as the space of distributions divf,
f € A*(R™), equipped with the quotient norm.

Let us call X = H?(R";C?) with d = m or mn indifferently. Let Y = A® be the
dual space and Y ! = AoL,

First we complete Theorems 3.3 and 3.4 by the following results.
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Theorem 4.1. Let A(x) be a bounded measurable matriz with the Garding inequality
(7). Let ;25 <p<1,0<a= n(% —1) <1, and X and Y ! be the corresponding
boundary spaces. Then (1) implies (2), where
(1) There exists Cx < oo such that for any u € & solution of divAVu = 0,
10y, 0]l x < Cx|[[Vuol| x-
(2) There exists Cy-1 < oo such that for any w € & solution of divA*Vw = 0,
||8Z,A*w0||y_1 < CY—IHVU)OHy—l.

The converse holds in the case p = 1.

Theorem 4.2. Let A(x) be a bounded measurable matrix with the stronger Garding
inequality (8). Let ;25 <p <1, 0<a= n(}l7 —1) <1, and X and Y~ be the
corresponding boundary spaces. Then (1) implies (2), where
(1) There exists Cx < oo such that for any u € £ solution of divAVu = 0,
[Vuollx < Cx |8yl x-
(2) There ezists Cy-1 < oo such that for any w € & solution of divA*Vw = 0,
[Vwgly-1 < Cy-1][0, . wol[y-1.

The converse holds if p = 1.

The proofs are mutatis mutandi the same as when 1 < p < oo using Cg° functions
with mean value 0 as test functions in HP. The converses at p = 1 use the fact
that H' is the dual space of VMO in which test functions are dense and also that
IV fllsaro-1 ~ || fl|Bao for f € L} . Details are left to the reader.

We now turn to the extension problem. Recall that a 2-atom for HP(R") is a
function a € L*(R™) such that

(1) the support of a is contained in a ball A(zg, ),

(2) llally < rmr/p=172),

(3) [a=0.
A 2-atom for HP(R™) is smooth if it is C§°(R"). Set Dy(R™) the subspace of C§°(R")
of functions with mean 0. For our purpose here, observe that 2-atoms for H?(R")
are elements of H—'/2(R"). In fact, if a is such a function, a classical result of
Necas [N] asserts that there exists a function b € W'?(R™; C") (inhomogeneous
Sobolev space) with support in the ball supporting a such that a = divb on R™.
Thus, if f € Hl/z(R”), (a, f) = —(b,Vf) and we remark that by interpolation
101l fr1/2(gn oy < CL1Bl2l|VB][2)'/? < 00, while Vf € H/(R"; C").

Let

HEZ(R™C") = {g € HY(R";C");cwrlg = 0} = {V f; f € H'P(R")}

and Dy (R"; C") := V(C*(R™)). It is easy to see using H'? spaces that Dy (R"; C")
is dense in Hg(R™ C™). As for the duality, one can see that the dual (for the same
duality as the other spaces) of HZ(R™; C") is Ag(R"™; C") identified as the subspace
of AQ(R”; C™) with curl free elements. The identification is easy. For the duality, if
R = V(—A)~Y2 is the array of Riesz transforms, then the self-adjoint operator RR*
extends to a bounded projection from HP(R™;C") onto Hg(R"™;C") and similarly
from A®(R";C") onto A(R™ C"). From here, the duality for the ranges of the
projection follows from that of the source spaces.

For HE(R™; C"), the 2-atoms in [LMc] for differential forms on R™, identifying V
with the exterior derivative on functions, suit our needs. It was done for p = 1 there



14 PASCAL AUSCHER AND MIHALIS MOURGOGLOU

n

(Definition 6.1), but careful inspection shows it extends to ;25 < p < 1 with the
following definition.

Definition 4.3. Let -7 < p < 1. A 2-atom for Hg(R";C") is a function a €
L*([R"™;C") such that

(1) there exists b € L*(R™) such that a = Vb in D'(R"),

(2) the supports of a and b are contained in a ball A(xg,r),

(3) [laf]y < ront/o=t/2),

() [l < or0se
Note that 2-atoms for Hg(R™; C") are in particular 2-atoms for HP(R"; C") since
they satisfy [a =0. A 2-atom for HE(R"; C") is smooth when b € C*(R™).

It is easily seen from the definition that 2-atoms for H&(R™; C") belong to the
space H; 1/2 (R™; C™). We shall require the following result.

Proposition 4.4. (1)  Let T be a linear operator defined on Dy(R™) such that
sup || Tall gz, mn,cny < 00, where the supremum is taken over all smooth 2-
atoms for HP(R™). Then T has a bounded extension from HP(R™) into
HZ(R™;C™).

Suppose, in addition, that T was originally a bounded linear operator
from H=V2(R™) into H;lm(R"; C"™). Then T and the above extension coin-
cide on H-Y2(R™) N HP(R™).

(2)  LetT be a linear operator defined on Dy (R™; C") such that sup ||Ta|| gemny <
00, where the supremum is taken over all smooth 2-atoms for HG(R™ C™).
Then T has a bounded extension from HE(R™; C™) into HP(R™).

Suppose, in addition, that T was originally a bounded linear operator

from H;lm(R"; C") into H-Y2(R™). Then T and the above extension coin-
cide on H;lm(R"; C") N HZ(R"; C™).
Of course the statement applies with C™-valued functions instead of C-valued
functions.

Proof. The first part of (1) is a special case of Theorem 1.1 in [YZ]. For the second
part, we adapt a classical procedure found, for example as Proposition 4.2 of [MSV],
which is also reminiscent of the method of proof of Theorems 3.6 and 3.5. Call 7" the
extension defined above. First if f € Hém(R”; C") NAL(R™; C") and g € Dy(R™),

(9.T"f) =(Tg, [) = (Tg.f) = (9, T"f).
The first two brackets are interpreted in the H=Y2_H'Y2 duality, then we use that
Tg = Tg as g can be seen as a multiple of a 2-atom for H?(R™). This allows us to
reinterpret the last two brackets in the H?, A* duality. We conclude that T* f = T* f
in Dy(R™), hence they both belong to Hém(R”; C") N AL(R™;C") and differ by a
constant. Next, let f € Dg(R™ C") (contained in both Hé/Q(R”;C"),A%(R”;C")
and dense in the first) and g € H~/?(R") N H?(R™). Then

(Tg.f)=(9.T"f) = (9. T"f) = (Tg. [).
Here, the first two brackets are interpreted in the H /2, H'/? duality. The second

can be reinterpreted in the H?P A® duality. In the second equality, we then use
T*f = T*f up to a constant, which is annihilated. In particular, we obtain that
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(Tg, ) < ITgllj-r2llf|l 1. Thus, Tg € Hg'*(R";C") and we conclude that
Tg =Tg.

The proof of (2) is the same, once we make the following observation. The proof
of Theorem 1.1 in [YZ] depends only on having a Calderén reproducing formula
with smooth and compactly supported convolution kernels and the characterisation
of the Hardy space by the Lusin functional based on the kernels involved. Now,
the atomic decomposition of [LMc]| is exactly obtained via the same strategy with
further algebraic constraints on the kernels to obtain the gradient form of the 2-
atoms. Thus the analysis in [YZ] applies and their Theorem 1.1 extends to our
situation. This provides us with the extension. The second part of the argument is
mutatis mutandi the same. 0J

We can now state the results we are after.

Theorem 4.5. Let A(x) be a bounded measurable matriz with the Garding inequality
(7). Let 25 < p < 1. If sup |0, wol| o (rnicmy < Cp taken over all energy solutions
u of dlvAVu = 0 with (smooth) 2-atoms for HZ(R™; (C™)") as regularity data, then
10400 || o ®nsemy < Cpl| V| gz, s (cmyny for any energy solution u of divAVu = 0,
possibly with a dzﬁerent constcmt

Theorem 4.6. Let A( ) be a bounded measurable matriz with the stronger Garding
inequality (8). Let = < p < 1. Ifsup ||Vu0||Hp ®nycmymy < Oy taken over all energy
solutions u of dlvAVu = 0 with (smooth) 2-atoms for HP(R™;C™) as Neumann
data, then ||[Vuol gz @nycmyny < CpllOyuollmr@nicmy for any energy solution u of
divAVu = 0, possibly with a different constant.

The proof of the first theorem follows on applying (2) of the above proposition to
the Dirichlet to Neumann operator I'py and of the second on applying (1) of the
above proposition to the Neumann to Dirichlet operator I'yp.

5. FUNDAMENTAL SOLUTIONS

Assuming the De Giorgi condition for the operators divAV and divA*V in RY™"
these operators have fundamental solutions which have the expected estimates. It
is convenient to state the relevant statements and references. We use the notation
of section 2 for points and balls in R,

Consider an elliptic system divAV in R with bounded measurable matrix A(x)
depending on all variables. Ellipticity is taken in the sense the Garding inequality

(17) Re(A(x)Vg(x) - Vo) dx>)\ZZ/l+n 103 () 2dx,

Ri+n =0 a=1

for all g € H'(R'*";C™) and some A > 0. We say that divAV satisfies the De
Giorgi condition if

(19 [k semre [ v
B(x,7) B(x,R)

holds for all weak solutions u to divAVu = 0 in B(x,2R) C R*" and all x € RY™"
and 0 < r < R, for some p € (0,1]. It is known that (18) is equivalent to the Hélder
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estimate of Nash

[u(y) = u(@)| < pany2 2\

(19) €SS SUDy ,e B(x,R) y£2 — SR / [ul
ly — 2| B(x,2R)

whenever u is a weak solution to divAVu = 0 in B(x,3R) C R'*", for any x € R*"

and 0 < r < R, for some a € (0,1]. Furthermore, the upper bounds of u’s in (18)

and o’s in (19) are equal, which we set u7. and call the De Giorgi exponent of

divAV.

De Giorgi’s theorem [DeG]| states that (18), or equivalently (19) of Nash [Na],
holds for all divergence form equations (m = 1) divAVu = 0 when A is real. It also
holds for any system if dimension 1+ n = 2 [Mor|. [AAAHK], Section 11, shows it
is also the case in dimension 14 n = 3 (the argument presented for equations, works
for our systems as it relies on Meyers’ [Me] and Caccioppoli estimates which holds
for such systems) when, in addition, A has t-independent coefficients. Finally, in
[A], it is shown that (18) is a stable property under L> perturbations of A (again,
this is shown for equations but it holds for our systems).

Estimates (18) and (19) also imply the Moser local boundedness estimate [Mo]

1/2
(20) ess SUpye pemu(y)] S RO ( / |u|2)
7 B(x,2R)

whenever divAVu = 0 in B(x,3R) C R for all x € R and 0 < R < oo. We
refer to [HK, Sec. 2] for details.

Proposition 5.1. Let n+1 > 2 and assume that divAV and divA*V satisfy the De
Giorgi condition or equivalently, the Nash local reqularity condition. Then divAV
and divA*V have a fundamental solution T*(x;y) = T')(x) € WEL (R, £(C™))
at pole y € R and T4 (y;x) = T4 (y) € WL (R™™; L(C™)) at pole x € R
(ie, divi A(x)VilF(x) = 0y(x) and divy A*(y)VyTg*(y) = 0x(y)) with for some
0 < p < inf(upe: Hpa)s

1) Mxy)|SIx—ylt™ if 1+n >3, and <1+ |In|x—y||if 1 +n =2,

y_y/ K .
@) Pey) - Pyl S (U eyl ity - vl < -yl

and
A+ 5 pn—1+2u
(23) /B(z,p) ‘Vyr (y;X)| dy < O‘X—Z‘TM if p > 0 and ‘X — Z‘ > 2p,

and symmetrically by exchanging the roles of T4 and T4".

Proof. This result is in [R1], Theorem 1.2. Note that this result is stated slightly
differently there but all what is used is the De Giorgi condition. Note also that the
estimate (22) is stated with an extra multiplicative log factor when 1+ n = 2, but
the proof there does give what we state. O

Remark 5.2. 1) If p ~ |x — z|/2, then the right hand side of (23), |x — z|'™,
is obtained during the construction. The gain p comes from use of the De Giorgi
condition (18) with the balls B(z, p) C B(z, |z — x|/2).

2) Assume 1+4n > 3. There is a previous construction in [HK] under the stronger
pointwise ellipticity assumption on A. But examination shows that only (17) is



RELLICH ESTIMATES AND SOLVABILITY 17

required. More estimates are obtained there. These are the only ones we need here.
In particular, uniqueness of the fundamental solution is proved together with the
symmetry relation I'4" (y;x) = I'(x;y)", where the latter is the hermitian adjoint
of T4(x;y) as an m x m matrix.

3) Assume 1+n = 2. The first construction for complex coefficients is in [AMcT]
for scalar operators (m = 1). An analogous estimate was obtained in [DoK], Theo-
rem 2.21, for systems but was only carried out explicitly assuming strong ellipticity.
See also [CDoK]. [B, Chapter 4] used the construction in [AMcT] and showed
uniqueness and also that it is possible to choose the constant of integration in such
a way the symmetry relation holds. This construction extends mutatis mutandi to
systems and does give the above estimates, with possible exception of uniqueness as
the argument relies on properties of harmonic functions.

6. DECAY ESTIMATES FOR ENERGY SOLUTIONS

In this section, we consider without mention systems with A(x) bounded, measur-
able, non necessarily ¢-independent, with the stronger Garding inequality (8) and we
assume that the reflected matrix A* and its adjoint satisfy the De Giorgi condition
on R4 The number p > 0 in the statements below will be any number less than
the De Giorgi exponents for A* and its adjoint.

This situation covers dimension 1+n = 2 or dimensions 1 +n > 3 with A close in
L™ to a real and scalar matrix (for systems, scalar means diagonal). In particular

we cover the case of real equations. In this respect, our first result extends Lemma
4.9 of [HKMP1].

Lemma 6.1. Let xy € R", r > 0, and set xo := (0,z), B := B(Xq,r), A :=
A(zg,7). Suppose that w € L2 (R \ B;C™) with Vw € L*(RY™ \ B; (C™)'+")

is a weak solution of divAVw = 0 in RY™ \ B, and that wlgmx = 0. Then w

is (identified to) a bounded and continuous function on RY™\ 3B, and for some
constants C' and p > 0, depending only upon the assumption on A,

a2 1/2
w(x)| < C— (/ IwP) L x—xo| > 3r.
Q4

= 7 x = x|
Here, Q0 = 3B, \ 2B, and B, = Ry N B. In particular, w — 0 at infinity.

Proof. Let us drop the dependence on m in the notation to simplify the exposition.
First, the assumption w € L2 (RI*"\ B) with Vw € L*(RI™\ B) implies that

loc

w € O([0,00); L2 (R™ \ A)). See the argument in [AMcM]. In particular, the

equation w|g.x = 0 holds in L2 .. Set v = wy where Y is a smooth real-valued

function supported on R\ (11/5) B, which is 1 on R\ (14/5) B with ||x||oc <1
and |[Vx|leoe < C/r. One has that v € HYRY™), v|gn = 0 holds in L2, and

loc

divAVv = f + divg weakly in RI™ with f = AVy.Vw and g = AVyw. Note that

1/2
gl < ! ( / \wP) ,
Q4

4This is a way of saying that A and its adjoint satisfy both interior and boundary De Giorgi
condition on the upper half-space. Some variants in the hypotheses are certainly possible here.
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the implicit constant depending on the L* bound for A and dimension. Also

1/2 1/2
i< (] vup) st ([ wr)
RYF"N((14/5)B\(11/5)B) Qy

where the last inequality uses boundary and interior Caccioppoli inequalities.

One can represent v using the method of reflection. Let v#, f* be the odd extensions
of v, f and g is the extension of g defined by gf(y) = Ng(Ny), with N(t,y) =
(t,y)* = (—t,y). Remark that since f* € L?, with support in 3B and mean value
condition [ f* = 0, then f* € H~'(R'"*") with 14l -1 griny S 7l f¥]l2 Thus of €
H'(R™") with divA*Vo! = £ + divg?. As H'(R'*") is a uniqueness class modulo
constants for this equation (since we have (17) for A?), it follows that v is the
unique odd (with respect to N) element in H'(R") solving this equation. If vf is
the unique odd solution obtained from f* and vg is the unique odd solution obtained
from —divg?, one has v* = vf — v} (in L2_). Now using the fundamental solution
4, vg (x) and vg(x) have the respective integral representations for x € R!*" away
from the supports of f* and ¢,

de = [ TP ) dy,

d) = [ (O yE) dy.

One can check that changing x to x* change the signs of both integrals. That is,
both integrals are odd with respect to N. It follows that v§ and vg agree with these
integrals in L? , away of the supports of f* and ¢*. Next, restricting to x € RI™,
still away from the supports of f and g, we can rewrite the integrals as

o0 = [ (M7 ) = TGy ) dy,

t t
) = [ (D) xy) = (VT v)gy) .
+
We have shown that v is the difference of these 2 integrals in L7 . away from the
supports of f and g. As they have the desired pointwise bounds using Proposition
5.1 applied with A*, the conclusion follows from the fact that v = w on the range
where these pointwise inequalities hold. O

Lemma 6.2. Let f € L2(R™; C™)NHY2(R™; C™) with compact support in the surface
ball A = A(xg,r). Then the solution of divAVu = 0 where uli—g = [ given by
Lemma 2.5 is locally Hélder continuous on RY™, continuous up the boundary away
from B(x,3r), tends to 0 at 0o and, has the estimate for some C, > 0,

+1
a1

lu(x)| < Cm 1 || 22 sy [x = Xo| = 3r.
1/2 1/2

Proof. By Remark 2.5, one can change <f9+ \uP) by r <f9+ |Vu\2> in the right

hand side of the estimate of Lemma 6.1. The latter is controlled by 7| f| ;1/2(zn.cm)

by the existence theory for energy solutions.
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Here 3r is for convenience of the statements and can be changed to (1 + )r for
any € > 0.

It is worth relating the above results to solutions constructed by harmonic mea-
sure, even if we do not use this estimate.

Lemma 6.3. Assume 1 +n > 2 and A(x) has scalar and real (not necessarily t-
independent) coefficients and ellipticity is taken in the usual pointwise sense. Then
for all Lispchitz functions f with bounded support in a surface ball A(xq,r), the
solution u with boundary data f given by harmonic measure for divAV is an energy
solution. Hence it agrees with the solution given in Lemma 6.2. In particular, it has
further the estimate for any p > r

rrTH

(24) u(x)] < CW IV fllso, X =0 = p,

so that u — 0 at infinity.

Proof. First notice that writing f = f, — f_, the positive and negative parts both
satisfy the same assumptions as f. Hence we may assume f > 0.

Let R > 2r and Qp = RY™™ N B(xg, R). Now let us recall the construction of the
solution given by harmonic measure on R taken from granted the construction
on bounded domains (See [Ke]). Let w} be the harmonic measure for divAV on
Qg at pole x. Hence x — ug(x) = me f dw¥, is the unique continuous function

on Qp, solution of the classical Dirichlet problem divAVup = 0 with uloa, = f,
where we have naturally extended f by 0 on dQx NRIT™. Tt is also an energy
solution on (g, fQR |Vur(x)|* dx bounded by a uniform constant. Indeed, it is
constructed as ugr = ¢r + F where F' is a fixed Lipschitz extension of f and ¢g
solves divAV¢pr = —divAVFE with ¢ € W, *(Qgr), so that the constant in the
energy inequality depend on the Lipschitz norm of f and the ellipticity constants of
A.

Using the maximum principle of Stampacchia and the positivity of f, we have
0 < up < up < supgs f in Qg when R < R'. Thus for any x € RY™, ug(x) con-
verges to a finite number u(x) as R — oo (with u(0,-) = f on R” since ug(0,-) = f
on A(zg, R) ). Already, this and the density of the space of compactly supported
Lipschitz continuous functions on R™ into the space of compactly supported continu-
ous functions imply that w}|g» converges weakly to a finite positive measure on R”,
denoted w*, and that u(x) = [;, f dw*. Also, by Harnack’s principle and Ascoli’s
theorem, up (naturally extended by 0 outside Q) converges locally uniformly to u
on RI*™. Next, this extension of up is an element of H'(RL"), form a bounded
family in that space. It easily follows that u is an energy solution of divAVu = 0 in
Rf” by a weak limit argument with u|;—o = f. By uniqueness in Lemma 2.3, u is
the only one. The rest of the proof is left to the reader. O

We turn to decay estimates useful for Neumann solutions.

Lemma 6.4. Let u € £ be an energy solution of divAVu = 0 whose conormal
derivative at the boundary is further integrable and supported in some boundary ball
A(xg,r). After a suitable choice of the constant of integration, we have

rh

u(x)] < lelﬁmmzo!h
- &0
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whenever |x — xg| > 2r for some C depending on the assumptions on A, with xo =
(0,0). In particular, w — 0 at infinity in any direction.

Proof. Let o = 0,,ult—o. We assumed u belongs to the energy class, so it is de-
termined up to a constant. We shall select one in a moment. Using the reflection
principle, we see that the even extension of u across the boundary is a solution of
the equation

/ AV -V dx — —2/ (2)8(0.2) dz = —2(ad] s, &)
Rl+n n

for all ¢ € CZ(RY™;C™) where A is the reflected matrix of A (the — sign in
the formula comes from our convention for d,,). Observe that the bracket is
the H~ 1R C™), H (R C™) duality by seeing ad|—o € H~'(R"*";C™) from
trace theory. Let L! = divA*V on R'Y". By invertibility of Lf we have uf =
2L Y(al,—o) in H'(R™™;C™), which means that the two agree up to a constant.
Under the assumption of the lemma, Proposition 5.1 applies to A% and let ' be
the fundamental solution of divA*V. Using the fact that o € L' with support in
the surface ball A(xg,r), we have up to a constant for |x — xq| > 2r,

2L (o) (x) = 2 / T (x;0,y)a(y) dy

n

as the integral converges from the size condition (21). We now choose the constant
of integration so as u*(x) agrees with this integral when |x — xo| > 2r. As «a is the
conormal derivative of u and is integrable, we have necessarily [« = 0. Thus

W) = =2 [ (1 660.9) = T (0, 0))aly) dy
Then (22) readily gives the desired estimate using, in addition, the support of a. [J

7. SHORT REVIEW OF THE FIRST ORDER FORMALISM

In this section, we assume that the matrix A(x) is bounded, measurable, t-
independent (i.e., A(x) = A(x) when x = (¢,z)) and satisfies the accretivity as-
sumption (10) on R™. It is convenient to write A in a 2 x 2 block form. Identifying
CUFnm — (C™)H7 = C™ x (C™)", A(z) takes the form of a 2 x 2 matrix

a0 =[50 6]

where a(z) € L(C™), etc... Call A the set of such 2 x 2 block matrices A.

Following [AAMc| and [AA], one can characterize weak solutions u to the di-
vergence form equation (5), by replacing u by its conormal gradient V u as the
unknown function. More precisely (5) for u is replaced by (26) for

F(t,z) = Vau(t,x) = {%ﬁgfg} ’

and 0,,u(t,x) = (AV,,u), denotes the upward conormal derivative of u, that
is the first component of AV, u, consistently with earlier notation. Here we use

the notation v = [ZL} for vectors in (C™)*™ and v, € C™ is called the scalar
I
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part and v, € (C™)" the tangential part of v. For example, dyu = (V;,u), and
Vmu - (Vt7mu>”
We remark that there is the pointwise comparison |Vu| ~ |V qul.

Proposition 7.1. The pointwise transformation

-1
A 1 0f]a b a ! —a~ b
(25) A Ai= [c d] {O 1} - {ca‘l d—ca_lb]
is a self-inverse bijective transformation of the set of matrices in A.
For a pair of coefficient matrices A = B and B = A, the pointwise map V, ,u —

F = Vu gives a one-one correspondence, with inverse F' — V; u = [(BF]T)L} ,

I
between gradients of weak solutions u € HL (R C™) to (5) and solutions F €
L2 (R (C™)H1) of the generalized Cauchy—Riemann equations

(26) O.F 1 {_0 div,

v, 0 } BF =0 and curl,F, =0,

where the derivatives are taken in the RY™ distributional sense.

This originates from [AAMc| and is proved in this generality in [AA]. Denote by
D the self-adjoint operator on H = L*(R™; (C™)'™) defined by

0 div, : | D(V)
D = {_vx 0 } with D(D) = {D(div)] :
The closure of the range of D is the set of /' € H such that curl,F| = 0, that is
R(D) = H°. Tt is shown in [AKMc] that the operators DB and BD with respective
domains B~'D(D) and D(D) are bisectorial operators with bounded holomorphic

functional calculi on the closure of their range H® and BHO respectively. Observe
the similarity relation

(27) B(DB) = (BD)B on D(DB)

that allows to transfer functional properties between DB and BD. In particular, if
sgn(z) =1 for Rez > 0 and —1 for Rez < 0, the operators sgn(DB) and sgn(BD)
are well-defined bounded involutions on H° and BH' respectively. One defines
the spectral spaces Hy; = N(sgn(DB) F I) and Hy, = N(sgn(BD) F I). They
topologically split H" and BH" respectively. The restriction of DB to the invariant
space H%E is sectorial of type less than /2, hence it generates an analytic semi-
group e PB ¢ > 0, on it. Similarly, the restriction of BD to the invariant space
7-[%’;5 is sectorial of type less than 7/2, hence it generates an analytic semi-group
e~tBP >0, on Hoxp.

Theorem 7.2. Let u € H} (R C™). The function u is a weak solution of
divAVu = 0 with |N.(Vu)|ls < oo if and only if there exists Fy € HLE such
that Vau = e ™BF,. Moreover, Fy is unique and ||Folls ~ |[N.(Vu)|.. We set
V att|i=o := Fo.

The if part was obtained in [AAMc| and the only if part in [AA, Theorems 8.2].
Here N, (g) is the Kenig-Pipher modified non-tangential function where

N.(g)(z) :== Sup 2 gl o (e z € R",
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with W (t,z) = (cy't, cot) x A(z,cit), for some fixed constants co > 1, ¢; > 0. A
remark is that the same proof shows when coefficients are t-independent that for the
equivalence to hold one could replace || N.(Vu)|js by supp(2 ft |Vy2ul|2ds)/? or
the stronger sup,. ||Vizull2 or even the square function (fRf” t|atVt,gCu‘?altalas)l/z7
so that in the end all these quantities are a priori equivalent for weak solutions.
Let us pursue further the discussion by extending this to Sobolev spaces with
negative order. Say that u € & with s < 0 if fan t7257 YV, puldtde < oo while

u € & if |[N,(Vu)||; < oo. With this notation Ep=E.

Proposition 7.3. Let s € [-1,0).
(1) The operator DB|ggy can be extended to a bi-sectorial operator on the ho-

mogeneous Sobolev space H* which is the closure of RMD) = H° for the homo-

geneous Sobolev norm ||(—A)~*/2f||y. This operator, which we keep writing

DB for simplicity, has a bounded holomorphic functional calculus on He. In

particular, the operators sgn(DB)F I are well-defined projections on H* and

their ranges ”Hf)’j; form a splitting of H*.

(2) Let u € HE (RY™). Then u is a weak solution of divAVu = 0 in RI™
with u € &, if and only if there exists Fy € Hyh such that V au = e PP Fy.
Moreover, Fy is unique and

1/2
s R (/ t_2s_1\Vt,xu\2dtdx> )
Rl+n

+

IFol

We set V quli—g := Fp.

Here A is the self-adjoint Laplacian acting componentwise on L*(R™; (C™)'™).

It agrees with —D? on R(D).

Proof. Item (1) is in Proposition 4.5 of [AMcM] where DB|ggy is called T' there.

Item 2 for s = —1 is Corollary 4.5 of [AMcM], for s = —1/2 is Proposition 4.7 of
[AMcM]. The other cases are treated in [R2]. O

Remark 7.4. We have introduced a notion of conormal gradient at the boundary
V att|i= for solutions in . Strictly speaking this notion depends on s as well and in
particular for s = —1/2, we recover the notions already defined for energy solutions.
What allows us not to distinguish s in the notation is that it is a consistent notion
for two different values of s. More precisely, if u € £ N Ey with s, 8" € [—1,0], then
the convergence of V 4u(t,-) as t — 0 is both in H* and M, hence the limits agree
in the space of distributions.

8. BOUNDARY LAYER OPERATORS

In this section, we assume that A is bounded measurable t-independent matrix
which is strictly accretive on H°, that is satisfying (10).

It has been proved recently in [R1] using the functional calculi for DB and BD
that the classical single and double layer operators for divAV, V.S; and D;, can be
defined as L? bounded operators, uniformly with respect to t > 0, with limits at
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t = 0. More precisely, for ¢t > 0, define V48; and D; for h € L*(R™;C™) by

29 Vasiio) = (e2x,m8) [{] )
and
(29 D)=~ ) [g) ) (@)

where X, (2) = 1 if Rez > 0 and 0 if Rez < 0 so that X (2) = 3(sgn(z) + 1).
Remark that at this general level, there is an abuse of language as the operator S;
is not defined (although it will in H*(R™;C™)), only V4&; is. It follows from the
bounded holomorphic functional calculus for DB and BD that the right hand sides
are L?-bounded operators and have strong limits when ¢ — 0.

Lemma 8.1. Whenever h € Wh2?(R";C™),

_ 0
(30) VuDih = —e PEX (DB) {Vh] :

Proof. From the calculations in [AA], we have

Va (e_tBDX+(BD) m) = —De PP X (BD) g
—tBD -h-

=-De ""PX(BD) |,

—tDB _h_

=—ePPX.(DB)D |,

— +e¢PBX (DB 0]
= te +(DB) Vh!-

O

The right-hand side in (30) makes sense for any distribution h such that Vh €
L*(R™; (C™)"), that is, h € Wh2(R™; C™),

Lemma 8.2 (Boundary layer representation). Assume thatu € &, i.c., |[N,(Vu)|2 <
0o. Then

Vaul(t, ) = VaSi(0y,uli=0) — VaDi(uli—o)

where V 4Dy(uli=o) is interpreted as the right hand side of (30). The equality holds
in E N C([0, +o0); Hyh).

Proof. Using Theorem 7.2, if | N, (Vu)||s < oo then V u = e ™PBE, with Fy € HSE
and Fy = Vuli—g. As X,(DB) is a projection on Hy%, we have X, (DB)F = F
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when F' € Hy;5, so that

Vu = o tDB auAu|t:0
Vmu|t:0

_ —tDB auAU\tzo
—= e X+(DB) |:Vzu‘t:0

_ Oy U= _ 0
o tDB v Wit=0 tDB
= ¢ PBX, (DB) { 0 ] + ¢ PBX (DB) {Vzu\t:o}

= VASt(auAu‘t:0> - VADt(U|t:0)-
O

Remark 8.3. If one can make sense of both S;(0, ,u|;=9) and D;(u|i—o) as distribu-
tions and fixing the constants of integration, one has the representation

u = S0y uli=0) — Dy(uli=0).”

This, of course, is the classical formula obtained from Green’s theorem if one can
write S; and D; in integral form using the fundamental solution of L*. We come to
this below.

Corollary 8.4 (Generalized boundary layer representation). Let s € [—1,0], and
u € &, be a weak solution of Lu = 0 in RY™. Then

Vaul(t, ) = Va8i(0y,uli=0) — VaDi(uli—o)

where V oDy (uli—o) is interpreted as the right hand side of (30) with Vh € HE(R™; (C™))
and V aul—o = Fy given by Theorem 7.2 for s = 0 and Proposition 7.3 for s < 0.
The equality holds in £ N C([0, +00); Hyl)-

Proof. For s = 0, this is Lemma 8.2. For s < 0, using the extension of functional
calculus of DB|W on H? in Proposition 7.3, one defines V 4S; on the scalar Sobolev
space H*(R™;C™) and VD, by (30) with Vh € HE(R™; (C™)"). The proof is now
the same as for s = 0. O

Remark 8.5. Let Lu = 0 with v € & and s < 0. We know that the semigroup
equation V qu(t,-) = eV 4u(0,-) holds in C([0, +00); Hi35). Thus for all € > 0
and t > 0, Vau(t +¢,-) = e PPV u(e, ). From fR1++n t7257 1V, pudtde < oo,
for almost every £ > 0, Vau(e, ) € L*(R™; (C™)"*), hence to Vu(e,-) € R(D)
as any L%-conormal gradient. Set w.(t,z) = u(t + €,x). By Theorem 7.2, the
semigroup equation implies that u. € &, that is || N,(Vau)|s < oo and Vau. €
C([0,00); Hysh). An easy argument shows that this must hold for all ¢ > 0. In
particular, the generalized boundary layer representation in the statement above
holds in C'((0,00); L2(R™, (C™)'*™) (not at the boundary t = 0) as well, and even
in C*°((0,00); L*(R", (C™)*™) by semigroup theory. Thus there is instantaneous
regularisation of solutions in the upper half-space.

5Since we have upward convention for conormal derivatives and fundamental solutions for divAV
(usually it is taken for —divAV), we obtain the same sign rule as in the usual Green’s formula,
due to the cancellation of two minus signs. Had we been working in the lower-half space though,
the upward normal is the outward normal and the sign rule would be opposite.
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Proposition 8.6 ([R1]). Let A be as in the beginning of this section. Assume further
that divAV and divA*V satisfy the De Giorgi condition or equivalently, the Nash
local reqularity condition. Let T4 and T'4" be the fundamental solutions constructed
in Proposition 5.1.

i) Fort € R, t # 0, let D; be the operator given by the double layer integral
(when it converges for suitable h)

B Do) = [ ()0, T (st ) ) dy

=/ (h(y), (A" (y) Vs, L0, 58, 2)).) dy, ¢ > 0,2 € R

Here, (, ) stands for the canonical complex inner product on C™. Then, the
abstract operator Dy agrees with the usual double layer potential in the sense
that one has for h € L*(R™; C™) with compact support and t > 0, D;h = D;h
and thus showing that Dy extends to a bounded map on L*(R™; C™), uniformly
int >0, with strong limit as t — 0.

ii) Fort € R, t # 0, let S; be the operator defined by the single layer integral
(when it converges for suitable h)

(32) Sih(a) = [ TA(tw:0,5)h(0) dy.

Then for h € L*(R™;C™) with compact support and t > 0, VaSih = V 4Sih,
thus allowing to define S;h(x) by the single layer integral S;h(z) and showing
that Sy extends to a bounded map, uniformly in t, from L?*(R™;C™) into
WL2(R™;, C™), with strong limit as t — 0.

We next recall estimates on the layer potentials.

Lemma 8.7. Let A be as in the beginning of this section and assume that divAV
and divA*V satisfy the De Giorgi condition or equivalently, the Nash local reqularity
condition. Then
(1) The single layer operator S; maps LP(R™; C™) to Wh2(R™;C™) for1 < p < 2
uniformly int > 0, and converges when t — 0 for the weak operator topology.
(2) The single layer operator Sy maps W=1?(R"™; C™) to LP(R™; C™) for2 < p <
oo uniformly in t > 0, and converges when t — 0 for the weak operator
topology.
(3) The double layer operator is bounded on LP(R™;C™) for 2 < p < oo, uni-
formly int > 0, and converges when t — 0 for the weak operator topology.

Proof. The proof of (1) and (3) is given for equations and 1+mn > 3 in [HMiMo], but
the arguments using the De Giorgi conditions are applicable here. We skip details.
(2) is the dual statement of (1) as the adjoint of the single layer for A is the single
layer for A* and we use De Giorgi condition for both. O

The next result was observed in a special case as part of the proof of Theorem
5.35 in [HKMP2]. It receives a much simpler proof here.

Corollary 8.8. Let A be as in the beginning of this section and assume that divAV
and divA*V satisfy the De Giorgi condition or equivalently, the Nash local reqularity
condition. Let u be an energy solution to divAVu = 0 in R, Assume that for



26 PASCAL AUSCHER AND MIHALIS MOURGOGLOU

some 2 < p < 00, ul—g € LP(R™";C™) and 0,,u|—g € WIP(R™;C™). Then the
abstract boundary layer representation

u(t, z) = 81(0y,uli=0) (x) — Di(ule=o)(x)
holds for all t > 0 in L}, (R™;C™). In particular, sup,s |[u(t,-)||Lr@ncm) < 00.

loc

Proof. By Corollary 8.4, the equality holds up to a constant, that is
u(t, ) = S0y uli=0)(x) — Di(uli=o)(x) + ¢, >0,
in L2 (R, C™), but also in L2 _(R™;C™) for each t > 0 as p > 2 and the right

loc loc

hand side belongs to LP(R™;C™) + C™ by the previous lemma and the left hand
side is in L (R";C™). One can pass to the limit in ¢ — 0, after testing against a
Cg°(R™; C™) function. For the right hand side, we use the previous lemma and for
the left hand side, this is because ¢ — u(t, -) is continuous at 0 in L2 _(R";C™) as u
is an energy solution. One obtains u|;—o(z) = Sp(0,,u|i=0)(x) — Do+ (u)i=0)(z) + ¢

As all the functions belong to LP(R™; C™), we conclude that ¢ = 0. O

Remark 8.9. The same statement holds for solutions in the classes &, for all s €
[—~1,0]. For s > —1, & can be shown to imbed into C([0, 00); L2 (R™; C™)), so the
proof is the same. For s = —1, it follows from [AA] that any solution of divAVu = 0
in the class £_1, that is with the square function bound [[ ¢|Vu|? dtdx < oo, belongs
in fact to C(]0, 00); L*(R™; C™)) + C™ C C([0, 00); L .(R™; C™)). This is enough to
finish the argument. It can be shown that the boundary layer representation also
holds in the space of continuous functions valued in LP(R"; C™) equipped with the

weak topology.

9. INTERIOR NON-TANGENTIAL MAXIMAL ESTIMATES

We prove here the following a priori inequality.® See the introduction for history
and differences in approach for this result.

Theorem 9.1. Let divAV be a uniformly elliptic system with A(x) measurable,
bounded, t-independent, complex coefficients on RY™™ with the strict Gdrding inequal-
ity on H°, namely (10). Assume that divAV and divA*V satisfy the De Giorgi con-
dition and call 0 < ppe the exponent that works for both. Then for all —— < p < 2

n+pupa
and for any weak solution of Lu = 0 on the upper half-space RIT™, 14+n > 2, in any

of the classes €, —1 < s < 0, we have

(33) IN(Vu)llp S 0vauli=oll v @niemy + [ Vauli=oll rr @enscmm),
where HP(R™) denotes the real Hardy space if p <1 and LP(R™) forp > 1.

Recall that for h € L*(R";C™) and ¢ > 0,
VaSh=ePEX (DB) m
and for h € WH3(R™;C™) and ¢ > 0,

VADih = —e ™PEX, (DB) {Voh} .

6This inequality will be proved in larger generality in [AS] with a different argument.



RELLICH ESTIMATES AND SOLVABILITY 27

Remark that V means here the tangential gradient V,, while V4 still means the
full conormal gradient. Recall also that the size of the full conormal gradient is
pointwise comparable to that of the full gradient V, .

It is convenient to set HZ(R™; (C™)") = VIW?(R™;C™) (or again, those L? curl-
free functions) for p > 1 (for p < 1 it was defined in Section 4) and to define the
operator V; on HZ(R™; (C™)") by

Vig = —e PP X, (DB) B}
for any g € HZ(R™; (C™)").

Theorem 9.1 follows immediately from the next a priori boundedness result, to-
gether with Proposition 8.4.

Theorem 9.2. Let L be as in Theorem 9.1. Then for —— < p < 2,

n+upa -
(34) [NV a8l S |l e @nicm)
(35) IN(Vig)llp < 9]l 2 nscmymy

This means that there is a linear extension of the map h — (VaSih)iso defined on
L*(R™,C™) N HP(R™;C™) to HP(R™;C™) with such an estimate, and of the map
g+ (Vig)i=o from HZ(R™ (C™)™) N HL(R™; (C™)") to all of HL(R™; (C™)") with
such an estimate.

In particular, this yields
(36) IN«(VaDih)lp S [IVA]| 2 es(cmymy

whenever h € L*(R";C™) and Vh € L*(R"; (C™)") as well (in fact more general h
can be used provided one makes sense of the various objects).
We use the notation N} (R™) to denote the (quasi-)Banach space of all L7, (R}™)

loc
functions such that ||N.(f)|, < 00, 0 < p < co. These spaces are further studied in
[HR]. See also [Hu] for a more systematic approach.
For this purpose, we use again the 2-atoms for H¢(R™;C™) but in a slightly
different way:.

Lemma 9.3. Let HLH <p<1.

(1) HZ(R™ C™) has the following atomic characterization: Let g € D'(R™; C™).
Then g € HE(R™; C™) if and only if g = Y Nja; in D'(R™; C™) with > |\;|P <
0o and a; are 2-atoms for Hg (R™; C"). Moreover, ||g|| gz, @nicny ~ inf [|(Aj)ller
with the infimum taken over all such decompositions.

(2) HZ(R™;,C™) N H&(R™;C") is the subspace of HL(R"™; C") of those g having
an atomic decomposition with ||g| g wncry ~ [[(Aj)ller and which converges
also in HE(R™; C"). It is dense in HS(R™;C™).

(3) A bounded linear operator T : HZ(R™; C") — NZ(R™) with sup ||N*(Ta)||p <
0o, where the supremum is taken over all 2-atoms for Hg(R™; C"), extends
to a bounded map from HL(R™; C") to NJ(R™), for p < q < 2.

(4) A bounded linear operator T : HG(R™;C") — N3 (R™) for some 1 < r < 2
with sup HN*(Ta)Hp < 00, where the supremum is taken over all 2-atoms
for HE(R™; C™), extends to a bounded map from HEL(R™; C™) to NJ(R"), for
pP<q=r.
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All this extends straightforwardly to H&(R™; (C™)™) spaces.

Proof. The proof of (1) is done in [LMc] when p = 1. As already mentioned, the
method in [LMc] is to construct a Calderén reproducing formula that allows to see
that H&(R™) is a retract of the tent space T3 of [CMS] : HE(R™; C") is isomorphic to
closed and complemented subspace of T3 and one can use the atomic decomposition
of T} which, given the particular form of the retract mappings in [LMc], gives (1).
Their method extends to the range ;25 < p <1 without difficulty. We skip details.

The proof of (2) is as follows. The retract mappings are of Littlewood-Paley
type with smooth and compactly supported convolution kernels with mean 0 so
they work simultaneously and boundedly for all %5 < p < oco. Denoting by S
the mapping from 73 to HZ(R"; C") of the retract diagram, we have S(T5 NT%) =
HE(R™; C") N HZ(R™; C™). Thus, it suffices to show that 7% NT% is the subspace of
T¥ of those elements having a T3 atomic decomposition that converges also in T%.
This fact is implicit in the proof of [AMcR, Theorem 4.9, step 3] for p = 1 and the
very same argument applies when p < 1. Again we skip details. A different and
explicit method is in [JY], Proposition 3.1. The density follows from the density of
TYNT? in TY.

The proof of (3) is now simple using (2). To prove the boundedness at ¢ = p,
choose an atomic decomposition Y \;a; for g € HE(R™;C") N HE(R™; C") that
converges also in HZ(R";C"). Then this convergence and boundedness of T" imply
Tg = >_AjTa; and it follows that || Tg||nz@n) < 9]l a2, @nicn) using sup | Nu(T'a) ||, <
oo. It remains to extend by density. The boundedness when p < ¢ < 2 follows by
interpolation. The spaces HE (R™; C") for 5 < p < oo interpolate by the retract
property and the interpolation property of the tent spaces ([CMS], [Be] and [CV]
for p < 1). The result follows by using real interpolation for the sublinear operator
g N(Tg).

We finish with the proof of (4). Remark that 2-atoms for Hg (R™; C") are elements
of HG(R™;C™) as r < 2, so the statement is meaningful. It is enough to prove the
boundedness at ¢ = p as interpolation takes care of the other values of q. Choose
an atomic decomposition Y \ja; for g € HE(R™; C") N HE(R™; C") that converges
also in HE(R™; C™). Of course, one has also the convergence in HZ(R™;C"). In-
terpolation implies that it converges also in HG(R™;C"). Thus T'g = > A\;Ta; by
boundedness of 7" at exponent r and it follows that [|T'g[|xz@n) < |9l 2 gnicny using

sup || NV, (Ta)|l, < oco. It remains to extend by density. O

Proof of Theorem 9.2. We prove (35). By lemma 9.3 it is enough to prove the bound
for 2-atoms for HZ (R™; (C™)") when T =P > P = i with 0 < po < ppe. Fix
such a p. The argument follows a method of Kenig-Pipher [KP]. Let a = Vb be a
2-atom for Hg(R™; (C™)™), with a, b supported in a surface ball A(zg,7). We note
that in this case V;a = V4D;b as both a,b are L? functions. As our techniques are
scale invariant, we assume that xqg = 0 and r = 1 to simplify the exposition. We let

A = A0,2%) and Cp = Agy1 \ Ay for £ € N. We have

INL(V AP zn(ag) < [82] 772NV ADD) | 12(0)
< C||Vb||o| A /P12 < Cynt/p=1/2),
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It remains to show ||N.(VaDb)| 2,y < C27F/2Hm0) = Co-km/po=n/2) wwhen
k > 2, which implies HN*(VADtb)Hip(Ck) < C27km/ro=n/pp  Indeed, summing all
these estimates for £ > 1, yields H]V*(VADtb)Hg S L

Set u(t,r) = D;b(x) be the solution of divAV for (t,z) € R away from the
support of b (identifying R™ with {0} x R") given by the double layer integral in
(31) (which will be shown to converge under the De Giorgi assumption on divAV
and its adjoint). Under these assumptions, we know that u(t, z) = D;b(z) for t > 0
(Proposition 8.6) where D, is the abstract double layer operator. We claim that
(37) u(t, z)| S |t 2)[7 0, |(t @) > 2.

Indeed, using (31), Proposition 2.1 in [AAAHK] for the solution (s, y) — ['A" (s, y; ¢, x)
for L* in (—2,2) x A(0,2), as divA*V is t-independent (this results extends mutatis
mutandi to systems), and then (23), we have

1/2
fut, )] < 1A ]l ( / (V3 DA (0, i, x>|2dy)

1/2
</ / (Ve 04 (s, y5t, x)\%lsdy)
A(0,1)

—n+1 Ko

Remark that a similar strategy gives (bad but finite) pointwise bounds for D;b(z)
for (¢,x) not in the support of b, showing that u is well-defined. As we shall see,
(37) is all we need to run the Kenig-Pipher method.

Fix k > 2, © € C;. We estimate ¢t~(1+7) fW(t’z) |Vu|?. If t > 2% by Caccioppoli

inequality and (37)
t—(l-i—n)/ |VAU|2 < Ct_(3+n)/ ‘u‘2 < 2—2k(n+uo)7
W (t,z) W (t,x)

with W(t, x) a slightly enlarged version of W (t, x).
It remains to consider the case t < 2¥. The argument of [KP], Lemma 8.10, p. 494,
yields the estimate for some C' depending only on ellipticity and dimension,

sup ¢~ / Vaul? <C sup |Gt )] + CM(|Vau(0, )15 ) (),
t<2k W (t,x) t<(1+c0)2k,z€Cy
for some ¢ < 2 (coming from usage of Poincaré inequalities in R™), where M is the

Hardy-Littlewood maximal operator and Cj, is the union of all A(z, ¢;t) for x € Cy
and ¢t < 2%, Thus if ¢; in the definition of W (t,z) is chosen small to start with,

C, is an annulus at distance proportional to 2¥ from the support of b of the form
328 < |x| < e42%. As Ais t-independent, we have that O,u is also a solution. Moser’s
local estimate (20), Caccioppoli inequality and (37) imply that

(14co) 2k+1/2
sup |Oyu(t, ) > < 27H+D) / / |Oyu(t, z)|* dtdx
Ck

t<(14c0)2k,x€Cy, (14co)2k+1/2

1+Co 2k+1
k(n+3) / / u(t,z)|* dtdx
Ch (l+co 2k+1

2 Qk(n-i-p,o
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where C}, C C), C Cy, are annuli of the form || ~ 2F.
For the last term, we have by the Hardy-Littlewood theorem,

M (9,0, )15, ) ()12 ¢y, < C /C Vu(0, ) d,
k

and since u is a weak solution of L away from the support of b and A has t-
independent coefficients, we have by Proposition 2.1 in [AAAHK] and then Cac-
cioppoli inequality

2k
Vou(0, 2) 2 dz < 2- ’f/ / IV u(t, o) 2 deda

2k+1

<23"f/ / lu(t, z)|? dtdx
Ck 2k+1

< 92— k(n+2u0

Cy

where C}, is again a slightly larger version of Ch. N

Gathering all the estimates we have obtained that || N.(V aDib)|| r2(c,) < C27F/2 o)
as desired.

Let us present the proof for the single layer. By [MSV], Theorem 4.1, if p = 1,
and [YZ] if p < 1, and interpolation, it is enough to prove the bound for 2-atoms
for HP(R"™; C™) for p as above.

Let a be a 2-atom for H?(R™; C™), with a supported in a surface ball A(z, ).
Again, we assume that zop = 0 and r = 1 to simplify the exposition. We let A, =
A(0,2%) and C = Ajyq \ A for k € N. We have

[NV 4810 | r(80) < 18] PNV aS,0) | 2252
< Ollal|a]Ag]P~12 < Cgn/p=1/2),

As above, it is enough to show for u(t, x) = S;a(z), which is is a weak solution of
divAV for (t,z) € R away from the support of a, the estimate

(38) u(t, )| S [t )|, |t 2)] > 2.

Indeed, we know from Proposition 8.6 that V ,S;a = V 45;a for t > 0. By the mean
value of a we can write

u(ta) = [ (T0a50,9) — P00, 0)aly) dy
A(0,1)
and conclude using (22). O

10. EXTRAPOLATION OF SOLVABILITY FOR REGULARITY AND NEUMANN
PROBLEMS

We are now ready to attack the extrapolation for solvability by gathering all pieces
of information obtained so far.

Let divAV be a uniformly complex elliptic system with A(x) measurable, bounded,
t-independent on R with the strict Garding inequality on H", namely (10).

In addition, assume that divAV and its adjoint satisfy the De Giorgi condition.
Consider the reflected matrix A*. It is no longer with t-independent coefficients.
However, it is easy to see that it does satisfy the Garding inequality (17) on R!'*™.
We also assume that the second order system with matrix A* and its adjoint satisfy
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the De Giorgi condition. We call ppe € (0, 1] the best exponent that works for all
4 operators.

With these conditions, all results in prior sections apply. Again, this situation
covers dimension 1 +n = 2 or dimensions 1 +n > 3 with A close in L* to a real
and scalar matrix.

Here is a fact we are going to use. Let 25 < p < 2. It is shown in [HMiMo]

(Lemma 6.1) that any weak solution u of divAVu = 0 with ||N*(VAU)HP < o0 ad-
mits a conormal gradient at the boundary in H?(R™; (C™)'*™) with ||V au|i=o|zr <
N, (V 4u) |, and that V 4u(t, -) converges in the sense of distributions to V 4uli—g as
t — 0. The implicit constant depends only on the L*> bound for A and dimension. In
particular, if u is also an energy solution, then the two notions of conormal gradients
at the boundary must coincide from the convergence in the sense of distributions.
As mentioned in the introduction, we shall restrict our attention to solvability
exponents not exceeding 2. See [HKMP2]| for the Regularity problem for exponents

exceeding 2. See also the forthcoming [AS].

10.1. Regularity problem. Slightly modifying the original approach of [KP], we
say that the Regularity problem (R')) is solvable if there exists C, < oo such that
for any f € Hg(R™; (C™)") ﬂH;lm (R™; (C™)™) the energy solution u of divAVu = 0
with regularity data V,u|,—q = f satisfies

1NV au)llp < Cpll fll g @nsemm-

There is a difference between solvability and well-posedness in the class where
|N.(Vau)||, < oo given the data f. See the discussion in [HKMP2] about unique-
ness. Axelsson [Ax] also showed by an explicit example for a real equation in di-
mension 1 4+ n = 2 that there might be solutions not in the energy class, even for
very smooth data, while the energy solution does not satisfy this bound.

Solvability implies well-posedness of the following restricted problem: given f €
HZ.(R™; (C™)™), there exists a unique solution u of divAVu = 0 with || N.(V au)l[, <
Coll £l HE (Rn;(Cm)n) s V. uli—o = f and such that there exists a sequence of energy solu-
tions ug with || N.(Vau—V guy)||, = 0. The constant C,, is the one specified by solv-
ability assumption. This follows from density of H& (R™; (C™)™) N H;l/ (R (C™)™)
in HZ(R™; (C™)"). This fact, which is just a reformulation of the extension by
continuity for linear maps, is left to the reader.

Theorem 10.1. Assume that A is as specified at the beginning of the section with
upa € (0,1]. Let ppe = —2—. Let 1 <r < 2. Assume that the Regularity problem

n+pupa

15 solvable. en the Regularity problem 15 solvable for ppg <p <.
R, lvable. Then the Regul bl R", lvable f

Corollary 10.2. This theorem applies to the following situations for A in addition
to having the assumption at the beginning of the section (t-independence, ellipticity
and De Giorgi conditions):

1) A is constant plus t-independent L> perturbation

2) A is hermitian plus t-independent L™ perturbation

3) A is block upper-triangular plus t-independent L> perturbation

4) A real (non necessarily symmetric) and scalar plus t-independent L pertur-
bation

(
(
(
(
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Proof. We know from [A] that De Giorgi assumption is stable under L> perturba-
tions. It suffices to show that (R) is solvable in the four items for some 1 < r < 2.
From [AAMc], we also know that (R%) is stable under -independent L* perturba-
tion of A and is verified for A constant or hermitian (for real symmetric scalar A,
this was done in [KP]), while [AMcM] proves (R%) for A block upper-triangular (the
block diagonal case is a direct consequence of [AHLMcT]). Hence, the first three
items satisfy (R%). The fourth item is shown on combining [KKPT, KR] and [B]
(who also shows (RY)) if n +1 =2 and [HKMP2] for n+1 > 3. O

Remark 10.3. The block upper-triangular case can be slightly relaxed. Instead of
the lower coefficient ¢ to be 0, we may only assume dive = 0. See [AMcM, Remark
6.7].

Lemma 10.4. Let ppg < p < 2. Then (RY)) is solvable if and only if there exists
C), < 00 such that for any u € £ solution of divAVu = 0,

(39) ||aVAu‘t:0HHp(Rn§(Cm) < CPvau|t=0||H%(Rn;((Cm)”)'

Proof. Let u be the energy solution with regularity data f = V,u|—o. Let a =
Oy, ul¢=o. The solvability of (RY,), together with ||V au|i—o|| gro@n;cmyriny S N (V 400) s
implies the desired inequality. Conversely, assuming this estimate for any energy so-
lution, we can use Theorem 9.1 to conclude that || N, (V 4u)|, < Col Vauli=ol| g2 (mnycmyny.
hence (RY,) is solvable. O

Proof of Theorem 10.1. Let us begin with the case ppg < p < 1. By Lemma 10.4
and Theorem 4.5, it suffices to show that if a is a 2-atom for HZ(R"; (C™)"), then
we obtain a uniform estimate [|c|| grgn,cmy < C where « is the conormal derivative
of the energy solution v produced by the Dirichlet datum b with a = Vb as in the
definition of 2-atoms for HE(R";C™). By scale invariance of our assumptions, we
assume that a and b are supported in the surface ball A(0,1). We shall show that
« is a r-molecule for H?(R"; C™) (see below) with bound independent of a. Hence
there is a constant C' independent of a such that ||| gr@n,cmy < C as desired.

We now prove the r-molecule property for a. As in the proof of Theorem 9.2, set
Ay = A(0,2%) and Cy = A1\ Ay for k € N. Tt suffices to show that [[a|zra, <1

and that o e,y < 27277/ for some 0 < p < ppg with p > -2 with »’

~ n—+p

the conjugate exponent to r. Indeed, 27k#2—nk/r" = 9=hkeg=nk(/p=1/1) for ¢ = —p; +
n(1/p—1) > 0 which is the right decay for being in the Hardy space H?. The local
estimate ||af|zr(a,) S 1 follows from the global bound [lafl, < [lall, < [lalls S1
(here we use that the support of @ is contained in Ay = A(0,1)). The main task
is therefore to obtain the decay on C%. Note that Cj can be covered by boundedly
(in k) many surface balls A with radius proportional to 2% and with distance to A
proportional to 2% and with 4A N Ay = (. Thus it is enough to work on one of
those. Let g € C§°(A;C™) with ||g||» < 1. It suffices to estimate (a, g). Let w be
the energy solution of divA*Vw = 0 on RI*" with w|—g = ¢ (Lemma 2.3). Using
Theorem 3.3, we deduce from (R’}) that

1000 wli=ollvir-1r < G [V gl S Hlgller < 1.
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We deduce from the representation of Corollary 8.8 that sup,.q [|w(t, )| S 1. We
now invoke (15), which tells

gl scr*( [ + uP) " (f + u?) "

with € contained in a box [0, c2¥] x 3A. Hélder’s inequality using 7’ > 2 yields

1/2 C2k 1/7“/
([ 1wp) <o ( / Hw(zs,-w’) L S T)
o 0

Now for u we use the decay estimate from Lemma 6.2 together with the observation
that [|b]] 712 < (|bll2]|VOll2)Y2 < 1, to get |u| < 27F0=141 on ), . Working out the
powers of 2% we obtain the desired bound for |(a, g)|.

We now continue with the case 1 < p < r. Another way to reformulate Lemma
10.4 is to say that the Dirichlet to Neumann operator satisfies ||I'py f|| gr@r.cmy <
Coll fll g, zmycmyny for all f € Hg(R™ (C™") 0 Hg (R (C™)™). Let T, be the
continuous extension from HE(R™; (C™)") into H"(R™; C"). We just showed a uni-
form estimate for || pyal g gn.cmy when @ is a 2-atom for Hg (R™; C™), which are
elements in HL(R™; (C™)") N H;lm(R”; (C™)™). Hence T,a = I'pya. We can apply
the same interpolation procedure as for (4) of Proposition 9.3. Hence, for 1 < p <,
we obtain 7, bounded from Hg(R™; (C™)") into HP(R";C™). In particular, we
obtain ||FDNfHHP(R";(Cm) S CprHH%(Rn;((Cm)n) for all f € Dv(Rn; (Cm)n)’ that is
|10y st |t=0|| rrr (R semy < CpHVzu\t:OHH%(Rn;(Cm)n) for all energy solutions with smooth
Dirichlet data. We conclude using (1) in Theorem 3.5 to waive the restriction on
the data and then Lemma 10.4 again. O

Remark 10.5. When p < 1, the solvability information is used to obtain the decay
for a but in a dual way, not on the solution u attached to . Note that this argument
has the flavor of many of the different steps for Theorem 5.2 of [KP]. But the order
in which they are invoked is completely different trying to use a priori estimates as
much as possible. In particular, we avoid the localization technique there and the
recourse to solvability of dual Dirichlet problem per se. We only use available a
priori estimates. This last point will be important later.

10.2. Neumann problem. Slightly modifying the original approach of [KP], we
say that the Neumann problem (N%) is solvable if there exists C, < oo such that
for any g € HP(R™; C™) N H~"/?(R"*;C™) the (modulo constants) energy solution
of divAVu = 0 with conormal derivative 0, ,u|—o = h satisfies
INA(Vau)llp < Collhl e @nicm)-

Here too, there is a difference between solvability and well-posedness in the class
where [|N,(V4u)||, < oo given the data f. An explicit example for a real equation
in dimension 1+n = 2 in [Ax]| shows that there might be solutions not in the energy
class, even for very smooth data, while the energy solution does not satisfy this
bound. Note that in 2 dimensions, Neumann and Regularity problems are the same
up to taking conjugates.

Solvability implies well-posedness of the following restricted problem: given h €
HP(R™; C™), there exists a unique solution u of divAVu = 0 with ||N,(Vsu)|, <
Copllhll 2 @nycmynys Ovattle=o = h and such that there exists a sequence of energy
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solutions uy with || N, (V 4u — V 4uz) |, = 0. The constant C,, is the one specified by
solvability assumption. This follows from density of HP(R™;C™) N H~'/2(R";C™)
in HP(R™; C™). This fact is left to the reader.

Theorem 10.6. Assume that A is as specified at the beginning of the section with
upa € (0,1]. Let ppg = —2—. Let 1 <r < 2. Assume that the Neumann problem

n+upa

(N7) is solvable. Then the Neumann problem (N%) is solvable for ppe < p <.

Corollary 10.7. This theorem applies to the following situations for A in addition
to having the assumption at the beginning of the section (t-independence, ellipticity
and De Giorgi conditions):

1) A is constant plus t-independent L perturbation

2) A is hermitian plus t-independent L™ perturbation

3) A is block lower-triangular plus t-independent L> perturbation

4) A real (non necessarily symmetric) and scalar if 14+n = 2 plus t-independent
L perturbation

(
(
(
(

Proof. 1t suffices to show that (N7) is solvable in the four items for some 1 < r < 2.
We know from[A] that De Giorgi assumption is stable under L*> perturbations. From
[AAMCc], we also know that (N3) is stable under ¢-independent L> perturbation of
A and is verified for A constant or hermitian (for real symmetric scalar A, this was
done in KP), while [AMcM] proves (N3) for A block upper-triangular (the block
diagonal case is a direct consequence of [AHLMcT]). Hence, the first three items
satisfy (N%). The fourth item is shown on combining [KR] and [B] (who also shows
(N)asn+1=2. O

We note that solvability of the Neumann problems for real (non-symmetric) equa-
tions is still open in dimensions 1 4+ n > 3.

Lemma 10.8. Let ppe < p < 2. Then (N%) is solvable if and only if there exists
C, < 00 such that for any u € & solution of divAVu = 0, ||Vuli=ol| v @n;cmyny <
Copll Oy s utli=ol| 2, (R scm) -

Same proof as Lemma 10.4.

Proof of Theorem 10.6. The case 1 < p < r is exactly as in the proof of Theorem
10.1 once we have done the case ppg < p < 1.

Let us assume ppe < p < 1. By Lemma 10.4 and Theorem 4.5, it suffices to show if
a is a 2-atom for H?(R™; C"), then we obtain a uniform estimate ||f“H%(Rn;((Cm)n) <C
where f is the tangential derivative of any energy solution u produced by the
Neumann datum a. By scale invariance of our assumptions, we assume that a
is supported in the surface ball A(0,1). We shall show that f is a r-molecule for
HP(R™; (C™)™) with bound independent of a. Hence there is a constant C' indepen-
dent of a such that || f||gr@nycm)» < C as desired. Since f is of a gradient form, it
automatically fulfills the Hg (R™; (C™)") estimate.

We now prove the r-molecule property for f. As in the proof of of Theorem 9.2,
set A = A(0,2%) and Cj, = Ay \ Ay for k € N. As before, it suffices to show that
£l as) S 1 and that || f] ey S 275#277%/7 for some 0 < p < ppg with p > o
with 7" the conjugate exponent to r. The local estimate || f||za,) S 1 follows from
the global bound || f|l, < [lall; < Jlall S 1 (here we use that the support of a is
contained in Ag = A(0,1)). The main task is therefore to obtain the decay on C.
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Again it is enough to work on a surface ball A with radius proportional to 2¥ and with
distance to Ay proportional to 2% and with 4ANA, = (). Let g € C5°(A; (C™)™) with
llgll» < 1. It suffices to estimate (f, g). Write f = V,u|i—o with u|,—o being the still
unspecified Dirichlet data as we have not yet chosen the constant of integration. Let
w be one of the energy solutions of divA*Vw = 0 on R with 9,,, w|—o = —divg
(Lemma 2.2). We have, therefore, (f,g) = (u|i=0,0,,.w|i=0). Using Theorem 3.4,
we deduce from (V) that

IVawli=ollyiy-10 < Gl = divgllyp—re ~ gl < 1.

Using Lemma 3.2, we now choose w so that w|,—g € L. We can deduce from the
boundary layer representation of Corollary 8.8 that sup,., ||w(t, )| < 1. Next,
invoke (16), which tells

1/2 1/2
\<u|t:o,aww|t:o>|sm-z’f( / W) ( / \wP) 7
Oy Oy

with €2, contained in a box [0, c2*] x 3A. Hélder’s inequality using r’ > 2 yields

1/r

1/2 c2k
([ ) < e ( / Hw(zs,-)H”) L S RT)
Q4 0

Remark that we have not yet specified the constant of integration for u. We choose
it now so as to use the decay estimate from Lemma 6.4 to get |u| < 27F=1%#) on
Q, since ||al|; < 1. Working out the powers of 2% we obtain the desired bound for

~

[(f, 9)]- O

Remark 10.9. In the block lower-triangular case, when the upper coefficient b to
be 0, or equivalently that the conormal vector field is proportional to the transversal
vector field, one can obtain an L?-molecular decay for the tangential gradient by
a direct integration by parts which does not use at all the initial L? solvability
information. This one is only used for the local estimate. This means that the
difficulty in the study of Neumann problems lies in the upper coefficient of A. It
remains to understand its exact role when it is not 0 or when A is not hermitian in
dimensions 1 +n > 3.

11. EXTRAPOLATION OF SOLVABILITY FOR DIRICHLET PROBLEMS AND OTHER
NEUMANN PROBLEMS

We gather in this section the needed results to prove extrapolation of Dirichlet
problems and of a new type of problems, namely Neumann problems with data in
negative Sobolev spaces.

It is convenient to introduce the following correspondences of spaces to be read
line by line.

exponents Y y-! T | Xt X
l<pg<oo,q=p | L4 W-be | Tt | Whe | LP
a=0p=1 BMO | BMO ' | 75° | 00 | HY
O<a=n(l—1)<1| A° | Al |755 | H'7 | 7
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Here Y, Y ! are the dual spaces of X, X! respectively. They are spaces on the
boundary. Next, 7 are tent spaces on R}f”. For 1 < q < oo, Ty is the tent space of
[CMS]. For ¢ = oo, this is defined via Carleson measures:

dtdx
// Y TN

dtdzx 20
/ / o) < |l AP
Or ><A

Here A are balls in R™ and r is the radius of A.
We next turn to equivalence of boundary norms with interior estimates of tent
space nature.

For 0 < a <1,

Theorem 11.1. Let divAV be a uniformly elliptic system with A(x) measurable,
bounded, t-independent, complex coefficients on R'™™ with the strict Garding in-
equality on H°, namely (10). Assume that divAV and divA*V satisfy the De Giorgi
condition and call 0 < ppe the exponent that works for both. Then for all spaces in
the table with 2 < q and o < ppg and for any weak solution of Lu = 0 on the upper
half-space RLT" 1 +n > 2, in any of the classes &, —1 < s <0, we have

(40) [tV ullr ~ (10, ,uli=olly—1 + [[Vauli=olly—-

Again, we do not consider the case 2 — ¢ < ¢ < 2 which can be handled without
the De Giorgi condition (See the forthcoming [AS]).

Proof. The inequality < follows from the generalized boundary layer representation
of Corollary 8.4 together with the estimates proved in [HMaMo] for the single and
double layer potentials (again in the case of equations and 1 + n > 3 but with
immediate extension to our situation). The converse inequality is a result from
[AS], where the other direction is proved as well in this generality. 0J

Remark 11.2. Remark that in the case 2 < ¢ < 0o, the inequality 2 is akin to the
inequality (3.9) in [HKMP2]. It is more precise though as it does not contain any
non-tangential maximal function. In fact, [AS] will show under the above assump-
tions that the non-tangential maximal function of u is controlled in L? by the Ty
norm of tVu. This was proved for real equations in [HKMP1].

11.1. The Dirichlet problem. Let Y = Y(R™;C™) be one of the spaces from
the above table. We say that the Dirichlet problem (DY) is solvable if there exists
Cy < oo such that for any f € YNH'2(R"; C™) the energy solution v of divAVu = 0
with Dirichlet data u|,—g = [ satisfies

[tVul[r < Cy[[flly-

We remark that we formulate here the Dirichlet problem uniquely in term of the
tent space estimate. From the remark above, the non tangential maximal estimate
comes as a bonus.

Corollary 11.3. For the spaces Y considered in Theorem 11.1, we have that (DY)
is solvable if and only if there exists Cy-1 < 0o such that for any u € £ solution of
divAVu = 0, H81/Au|t:0||Y—1 < C'Y_1 vau‘t=0HY_1'
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The proof is a direct consequence of Theorem 11.1. As before, the solvability is
reduced to a boundary estimate. We obtain a refined version of the main result of
[HKMP2], which treats only the cases X = LP,Y = L?' |1 < p < 2+ ¢, but not the
endpoint spaces.

Corollary 11.4. Consider the spaces Y of Theorem 11.1 and their preduals X.
If (RX) is solvable then (DY.) is solvable. The converse holds when X = LP and
Y =19 qg=p and when X = H' andY = BMO.

Proof. The equivalence in the range X = LP, Y = L4 follows from Corollary 11.3,
Lemma 10.4 and Theorem 3.3. The implication in the other cases and the equivalence
when p = 1 follow from Theorem 3.3, Theorem 4.1 and Corollary 11.3. O

This applies when the conditions of Corollary 10.2 are satisfied for A*. Details
are left to the reader.

Remark that the back and forth proof allows to replace Y = BMO by Y = VMO
in the statement. This fact that the Dirichlet problems for VMO or BMO data are
equivalent was also observed in [DKP] for real equations.

To finish we can state the extrapolation result for the Dirichlet problem. This is
only here that we use more assumptions on A.

Theorem 11.5. Consider an elliptic system with all the assumptions at the begin-
ning of Section 10. Let 2 < q < oo and assume (DY) is solvable for Y = L1(R™; C™).
Then (DY) is solvable for Y = LP(R";C™), ¢ < p < oo, BMO(R™;C™), and
AO‘(R”;C’“) with 0 < a < ppg-

Proof. 1t suffices to combine Corollary 11.4 with Theorem 10.1. 0J

11.2. The Neumann problem in negative Sobolev spaces. Let Y = Y (R"; C™)
be one of the spaces from the above table. We say that the Neumann problem (N} )
is solvable if there exists Cy—1 < oo such that for any f € Y~ N H~Y2(R";C™) the
energy solution u of divAVu = 0 with Neumann data 0, ,ul—o = [ satisfies

[tVullr < Cy [ flly-r.

Corollary 11.6. For the spaces Y considered in Theorem 11.1, we have that (NX_I)
is solvable if and only if there exists Cy—1 < oo such that for any u € £ solution of
divAVu =0, [[Vaul=olly-1 < Cy-1[[0y uli=olly-1-

The proof is a direct consequence of Theorem 11.1. As before, the solvability is
reduced to a boundary estimate.

Corollary 11.7. Consider the spaces Y of Theorem 11.1 and their preduals X . If
(NY) is solvable then (NY.") is solvable. The converse holds when X = L? and
Y '=W ¢g=9p and when X = H* and Y ' = BMO™!.

Proof. The equivalence in the range X = LP, Y = L? follows from Corollary 11.3,
Lemma 10.4 and Theorem 3.4. The implication in the other cases and the equivalence
when p = 1 follow from Theorem 3.4, Theorem 4.2 and Corollary 11.3. 0

This applies when the conditions of Corollary 10.7 are satisfied for A*. Details
are left to the reader.

Remark that the back and forth proof allows to replace Y = BMO by Y = VMO
in the statement.
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To finish we can state the extrapolation result for the Neumann problem in neg-
ative Sobolev spaces. This is only here that we use more assumptions on A.

Theorem 11.8. Consider an elliptic system with all the assumptions at the begin-
ning of Section 10. Let 2 < q < oo and assume (NX_I) is solvable for Y1 =

W—L9(R"™; C™). Then '(NXA) is solvable for Y~' = W-'P(R";C™), ¢ < p < oo,
BMO™}(R™C™), and A*" L (R" ™) with 0 < o < jipg.

Proof. 1t suffices to combine Corollary 11.7 with Theorem 10.6. O
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