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LIPSCHITZ-KILLING CURVATURES OF THE EXCURSION SETS OF
SKEW STUDENT’S t RANDOM FIELDS

Ola Suleiman Ahmad and Jean-Charles Pinoli

Ecale Nationale Supérieure des Mines de Sam{rﬁtienne, Sain#ﬂc‘mne, France

O In many applications relaled wilth geostalistics, biological and medical imaging, malerial
science, and engineering surfaces, the real observations have asymmetric and heavy-lailed
multivariale distributions, These observations are spatially correlated and they could be modeled
by the skew random fields. However, several siatistical analysis problems require studying the
inlegral geometry of these random fields in order io detect the local changes between the different
samples, via the expected Fuler-Poincaré characteristic and the intrinsic volumes (Lipschitz-
Killing curvatures) of the excursion set obtained al a given threshold. This article is interested
in a class of skew random fields, namely, skew Students { random field. The goal is to derive
an explicit formula of Lipschitz-Killing curvatures and the expected Euler-Poincaré characteristic
of the skew Student s t excursion sets on a compact subset S of R?* by extending previous resulls
reported in the literature. The motivation comes from the need lo model the roughness of some
engineering sutfaces in ovder lo delect the local changes of the surface peaks/vaﬁeys during a
specific physical phenomenon. The analylical and empirical Euler-Poincaré characleristics are
compared in order to lest the skew Studenls U random field on the real surface. Simulation
resulls are also presented in the article for illustration and validation,

Keywords Excursion sets; Expected Euler-Poincaré characteristic; Lipschitz-Killing
curvatures; Skewness; Skew Student’s ¢ random [icld; Surface roughness.

Mathematics Subject Classification Primary 60D05; Secondary 60G60, 52A22.

1. INTRODUCTION

In a wide range of real applications, there is a great need to model

observations that have asymmetric behavior and heavy-tailed univariate
or multivariate distributions. Among the most used models that are
developed for this aim, are the skew Gaussian and skew Student’s !
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families." 15151 In many statistical problems, the random observations

are spatially correlated, and the best solution is to represent using the
theory of random fields.!"***] The shape of the sample’s distribution,
skewness and kurtosis, is of special interest since its changes could interpret
certain physical and mechanical phenomenon, as well as capture certain
anomalies or activations inside the region of interest that represents the
random data. Such kinds of samples cannot be modeled by either Gaussian
random fields or skew Gaussian random fields."!*!!! Skew Student’s ¢
random fields arise among the flexible class of stochastic models that could
be used for such real problems. They are characterized by the skewness,
which describes the asymmetry behavior of the sample’s distribution, and
the degree of freedom, which controls the heavy-tailed shape of the
probability density function.

The motivation to study this class of skew random fields is due to the
need to model the roughness topography of certain engineering surfaces
during the wear process; e.g., surfaces involved into hip joint replacement.
The surface topography is represented on a subset § C R? as a 3D map of
correlated heights distributed with respect to a skew Student’s ¢ random
field. One of the interesting issues to describe the roughness of the surface
is the evaluation of the number of peaks and valleys, which is related to
the local maxima and minima of the skew Student’s ¢ random field.

The local maxima or minima indicate the local changes inferred by the
probability that a random field, ¥, exceeds a high threshold % in S. The
regions of the local changes define the excursion set of the random field Y
above h. Furthermore, the geometric properties of the excursion sets are
of great interest in a wide range of applications, since they have a physical
interpretation of many phenomenons.

The integral geometry!'®l  provides interesting characteristic
functions that could be used to measure the N-dimensional volumes
of the excursion sets of a large class of random fields (e.g., area,
boundary length, and Euler-Poincaré characteristic for N = 2), namely,
Minkowski functionals or Lipschitz-Killing curvatures.™¥! Euler-Poincaré
characteristic counts, in two dimensions, the number of connected
components, minus the number of holes of the excursion set, when it
does not touch the boundaries of the subset S.%°! At high thresholds,
the Euler-Poincaré characteristic counts only the number of connected
components (i.e., isolated peaks) inside the excursion set. Hence, it
is considered as an accurate approximation of the probability that the
maxima of the random field will exceed those thresholds.**!

This article considers a class of skew random fields, called skew
Student’'s { random fields with v degrees of freedom (Section 4). This



work focuses on introducing this random field on a subset S C R? and on
deriving the analytical formulae of the Lipschitz-Killing curvatures of its
excursion sets and the expected Euler-Poincaré characteristic (Section 5).
Simulation results are reported (Section 6) for several realizations of a
stationary skew Student’s { random field for validation. The skew Student’s
{ random field has been tested on the roughness topography of a
real engineering surface using the expected Euler-Poincaré characteristic
(Section 7).

2. PRELIMINARIES

A real-valued random field, denoted by {¥ = Y (x) : x € S}, is defined
on a nonempty compact subset S C IR?, with mean uy and variance 3. Y
will be supposed stationary but not necessarily isotropic. The probability
density function of Y is denoted by py and its cumulative distribution
function is denoted by Py.

3. THE SKEW STUDENT’S t DISTRIBUTION

This section briefly reviews the skew Student’s ¢ distribution,®%!!1]
before defining the skew Student’s { random field.

3.1. Univariate Skew Student’s t Distribution

Let us consider a skew Student’s { random variable ¥ with v degrees
of freedom, skewness index o, mean value uy, and variance rr%. Then, the
probability density function of Y is defined as:

2 fv+1
py(}e;sc,v)za—ytl(u; T, (fxu m;v—l—l), (3.1)

where u = (y — puy)/oy, 4(.;v) is the standard Student’s i distribution with
v degrees of freedom, and 7T, is the Student’s ¢ cumulative distribution
function with v+ 1 degrees of freedom. The real parameter o controls
the skewness. For a >0 (resp. a < 0) the distribution has a positive
(resp. negative) skewness. When « = 0 the distribution is symmetric and it
turns back to the known Student’s ¢ distribution.

The stochastic representation of the skew Student’s { random variable
Y, which has the probability density function defined in (3.1), is given by:

Y = py + 0,V 27, (3.2)



where V ~ x?/v is the chisquared random variable independent of Z, and
Z is the known skew Gaussian random variable!’! defined as:

Z=90|X|+v1— %G, (3.3)

where X, G ~ Normal;(0,1) are independent normal random variables,
and 6 = a//1 + o2,
3.2. Multivariate Skew Student’s t Distribution

The d-variate skew Student’s ¢ distribution with v degrees of freedom
for a random vector ¥ = (V),..., ¥,)" has the following probability density
function:

by (y; py, &, 2, v)
= 20,(y; uy, %, V)

o v+d
* (aEE Iﬂ()]_ﬂ")\/w(y—uf)‘kl"(y—ﬂy);v+d)’

(3.4)

where 1,(.; py, 3,v) is the density of the d-variate Student’s ( distribution
with v degrees of freedom, (d x d) covariance matrix 3, and d-dimensions
mean vector gy, Ti(.;v+ d) is the scalar cumuladve distribution of the
standard Student’s ¢ distribution with v+ d degrees of freedom, and «
refers to the skewness vector.

4. SKEW STUDENT’'S t RANDOM FIELD

The skew Student’s { random field introduced in this article is
restricted to be defined on a nonempty compact subset S C IR?.

In order to introduce the skew Student’s { random field, let us recall
the definition of the Student’s ¢ random field,2":

Definition 4.1. Let Gi(x),..., G1(x), x € S, be independent, identically
distributed, homogeneous, realvalued Gaussian random fields with zero
mean, unit variance, and A = Var(dG;/dx), i=1,...,v+ 1. Then, the
Student’s ( random field with v degrees of freedom, denoted 7'(x), is
defined as:

TY(x) = — LG (4.1)

Yo GHw



The following skew Student’s ¢ random field extends the definition of
the Student’s { random field.

Definition 4.2. Let U be a stationary Student’s ¢ random field with v
degrees of freedom defined as above. Let Uy(x) be defined such that:

Up(x) = Ve (4.2)

vl 9
ks Gi (x)

where 2z~ Normal(0,1) is a standard Gaussian random variable. A
stationary random field, ¥, with zero mean, unit variance (5;2 = 1), and
A = Var(dG;/dx), i = 1,...,v+ 1 at any fixed point x € § given by:

Y(x) =06 Up(x) ++/1—02U(x) (4.3)

with a skewness index 6,( 0 < 1), defines a stationary skew Student's !
random field with v degrees of freedom.

Where the family of all finite-dimensional distributions of Y are
multivariate skew Student’s { distributions, and the marginal distribution of
Y at any fixed x is a skew Student’s ¢ distribution with v degrees of freedom
and skewness index 9, py.

In the next section, we will focus on the geometry of the excursion
sets of the skew Student’s { random field defined in (4.3), precisely on the
expectation of their Lipschitz-Killing curvatures.

5. LIPSCHITZ-KILLING CURVATURES OF THE SKEW STUDENT'S
t EXCURSION SETS

5.1. Theory

The direct way to study the geometry of the skew Students !
excursion sets is by Minkowski functionals, or the so-called Lipschitz-Killing
curvatures, for the non-isotropic random fields."”! The excursion set of a
random field ¥, defined on a nonempty compact subset S C R d=1,is
the set of all points in § where the random field exceeds a threshold .
They are expressed as*l;

E,=E(Y,S)={x¢eS,Y(x) > h) (5.1)

The Student’s ¢ random field TY(x) in (4.1) is defined in terms of
stationary independent and identically distributed (i.i.d.) Gaussian random
fields, G;(x), (i=1,...,v+ 1), with zero mean, unit variance, and the



(d x d) matrix, A, of their second spectral moments Ay, (LLk=1,...,d)

whose elements are
dG; 0G.
Aw =1 s 5.2
K [ 635; E}xk] (J )

forall G; (i=1,...,v+1).

The mean jth dimensional LipschitzKilling curvatures are defined
for any random field, expressed in terms of ii.d. nonisotropic Gaussian
random fields, from the basic Gaussian kinematic formulae,'*? such that:

d—j

EL% (E(Y, SN =Y [5" ) "‘] Lu(S)pu(h), (5.3)

k=0

where [-ff] is a flag coefficient Z%£,(S), (k=1,...,d), defines the kth
dimensional Lipschitz-Killing curvatures of S. The functions p,(#) are the
kth dimensional Fuler characteristic (EC) densities for the random field
Y, in our case the skew Student’s 7 random field, and they do not depend
neither on the geometry of S or on the matrix A.

The Lipschitz-Killing curvatures, %£,(S), of § measure its intrinsic
volumes in the Riemannian metric defined by the variogram of the
first-order partial derivatives of the Gaussian components. This means
replacing the local Euclidean distance between any two points of S by
det(A)'. In the case k = d, the d-dimensional Lipschitz-Killing curvatures
£4(S) of § defines the dth volume of § such that

L8 = fdet(Ax)'”dx (5.4)
8

and for k = d — 1, the (d — 1)-dimensional LipschitzKilling curvature of S
is

[ §
(=4

1 ’
L0 (8) = f det(A,)"2dx, (
a8

where A, is the local version of A,®! computed at each point x € S.

When & = 0, %,(8) is the Euler-Poincaré characteristic of S.

The expected Euler-Poincaré characteristic of the excursion set
E.(Y,S) is then defined when j=0 such that I[E[y(FE,(Y,S))]=
E[Zy (L (Y, $))]. At high thresholds, it estimates the number of the
maxima of Y12

Plsup.cs ¥ (x) = A= E[x(E(Y,S))], (h— 00) (5.6)

For j > 0, E'i?j(E,:,(Y,S)) measures the jth size of the excursion set at the
level k. In R?, £,(E,(Y,S)) is the half-boundary length, and %y (E, (Y, S))



is the area of I}, In R®, %s(I5(Y,S)) is the volume, Fo(15(Y, S)) is half
the surface area, and 2 (F, (Y, S)) is the integral mean curvature of the
excursion set fy,.

5.2. Notation

In this article, the skew Student’s { random field is considered
stationary over the two-dimensional subset, S, which is defined as a
rectangle [0, Ri] x [0, ], R, € R, in IR?. Then, the Lipschitz-Killing
curvatures of §, Z,(S), for a stationary skew Student’s { random field with
respect to the Riemannian metric in IR?, are

x(8) = Fo(S) =1,
1 .5 o . 1/2 1/2 -
C(S) =%1(S) = RiA)y + Rodoy s (5.7)
A(S) = Po(8) = R Ry x det(A)'72,
where ,(S) is the Euler-Poincaré characteristic of S, denoted by yx(S);

£,(S) is half the boundary length of S, denoted by C(S); and 2,(S) is the
two-dimensional area of S, denoted by A(S).

5.3. Expectations

The kth dimensional EC density functions of the skew Student’s 1
random field, Y (x), could be calculated using Morse theory.'”! They are
expressed for any twice-differentiable and isotropic random field®192!1 a5
follows:

Pk(h) = E(](yi}‘}dct(—' i}|k) i}”{ = 0') ]P( ?”( = 0')
=E(Yidet(— Y, 1) Yoy =0,Y = k) ps1(0, b), (5.8)
where }"M_] and ¥ w1 are the first- and second-order partial derivatives
of the first (k— 1)th clcmqnts of }"(x) at any point x € § (i.e., the (k —

1) x (k— 1) submatrix of ¥ and Y, respectively). pi-1(0, 2) is Lhe joint
probability density function of Y;_; and Y, whereas }}Jr = max(0, Y,).

Proposition 5.3.1. The k-th dimensional EC densities, py(.), j = 0,1,2, of a

stationary skew Student s t random field, Y, with v degrees of [reedom and skewness
index 6 (3 < 1) on R? for a given threshold h are expressed as:

i =2 LE)[*() }'2) ¥, ' lr1)a
(1) po(h) = «/"’_T(é)ﬁ ( +? 1| oy W’v_l— ay



1 h2 R
(it) pl(h):‘?;(]'_ag)(]'fm) (14"7)

v+ 1

. fz/ .

xh(fx —v+h2,v+l)

9 (1-é&)ir(! h? W2\ 2
o (2)}e(l+—_2)(]+L)

(Qﬁ)f (é);lw(g) v(]—r)) v

[v+1
x 1 (ah fm;v—l*l)
vy T ) G
_ _ 53 E z 2
% [1 925(1 — &) (ﬂ) 1*(i1)h(1+v(1~69)) ] (5.9)

where o = d/4/1 — 62,

Proof. The proof of the proposition is based on the theorems and the
lemmas reported in the literature. #1151

Let us consider the random field Y as defined in (4.3), Y satisfies
the regularity conditions (i.e., Y is twice differentiable inside S and on
the boundaries of S), with the restriction to the condition that Y has the
degree of freedom v > 2.

For simplicity, ¥ will be assumed centered, uy = 0, with unit variance
0% =1 and skewness index & > 0. However, in the case that Y has a
negative skewness, 0 < 0, one can transform Y to have a positive skewness
dealing with —Y.

Since the EC densities, p;(#), in (5.3) do not depend on A, they will
be calculated using the direct formulae in (5.8), assuming Y is normalized
such that A = [.

Using the conditional expectations, and conditioning on U, Y
becomes a Student’s ([ random field with v degrees of freedom. So, the
expected EC densities can be expressed as follows:

(iii) P2(h) =

pu(h) = (—=D* '1[ {E (Y det(Ys) Yt =0,Y = h, Uyp| = u)
0
X plk_l(O;u,h)}pw(u)du x py(h), (5.10)

where f¢, (1) is given by:

b (u)-?ﬂ(]—kf)d (5.11)
TR VT |



The first- and second-order partial derivatives of Y are expressed in
terms of independent random variables (based on worsley,*"! Lemmas 5.1
and 3.2), as follows:

. Y — 6 Up|)?

Y =—6U, V2% +v/%/1 - & (1 4 F =0t yyin,
v(1 — 8?)

Y=06U V' {—(Q—2uz)— V+ V'H]}

Y —dUp)?
— 22 (¥ = 9 )Y -
++/1— &2 (1+ = o0

x { = v (1= 0*)AY = 8 Up )(P — 2m2) — 2z — mzy + W/2HL),

(5.12)

where 2, 20, 3 ~ Normaly(0,1), Q, P ~ Wishart,({1,v—1), V ~ x‘f,, W ~ XE_H,

Hy ~ Normaly, ;(0, M), Hs ~ Normaly, (0, M), with covariance matrix M
defined in Adler,””! are all independent.

Conditioning on Ujy[, V, W, ¥ = h, and on j}lk—I = 0, and applying the
expectations over both V and W, (5.10) becomes

pk(h) = ('—'l)k- IIE|UH|{IE3,V[]E( }.Jk' d(?t(i;k_l) }.}lk—l = ﬂ, Y = h., V, W, UO —t H)
X Pi-1(0; W, V,u, )} g (), (5.13)

where the components ¥, and ¥, ; are both independent under the
conditional expectations. Thus, the term IE(Yk| det(Y;—) Y1 =0,Y =
h, V,W, Uy = u) in (5.13), can be expressed as follows:

E(Vrdet(¥y )| Y1 =0,Y,V, W, )
=E (Y Yuo=0,Y,V, W, Uy)
x B (det(¥, )[Vi 1 =0,Y,V, W, ) (5.14)

Conditioning on Y, V, W, and |} , Y is a Gaussian random field and

E(Y, ¥y =0Y,V,W, 1)

— 5 UN2\? "
— \/% (59{J§V—*+v(1 — &) (1+%) W—') (5.15)

Furthermore, conditional on ¥, =0,...,¥%, ,=0, ¥, , can be
expressed as follows:

Vi1 = aQ + bP + cH, + dHy + ¢ (5.16)



where

a=—38 Uy V!
(Y — 8 Up))? 4 ;

b=—(1+——— )W (Y -6 [

( + 1 =09 ( ol)
¢ =06 Uy V2 (5.17)
_ (¥ =0 )*Y coap
d_(1+7v(]_52) )W
825U0|

Then, using Lemma (A.1) and Lemma (A.2), (in Appendix 8), due to
Worsley®!! we get:
E (det(¥j1) Yer =0,Y, V. W, )
= (dct(aQ + 6P + ¢H, + dF, + e))

[BL ) g1ty (22
Z v—1 v—1 al pe1-2-1
_ ! J\k—1-2j—1
=0 =0 n={) *
DMk - 1!
2" (n + 7)!

L2 s s T B 7 i S S D B
Géjdzﬂbf x Gk 1-2; !gk 1-25—1-2n {5.18)

The joint probability density function, py—(0; V, W, u, i), of the first k — 1
components of Y conditioning on V, W, U/ =u and on Y = h is then:

Pr(0;V, W, u, h)

k-1

Loy 2
(h—éu)) w--') 1510

[ 3. 2 2
= (2n) ? (amzv ‘+v(1_54)(1+m

So,

E (Y det(Y, 1) Ve 1 =0,Y =h, V,W, Uy = u)pu1(0; W, V,u,h)

Lo
B} (h—ow2\* .\ °
2 Qvl - ‘2( Wl
o u + v(1 — 06%) ]+iv(l—52))

Il
—
]
G
—
|
relE
X
—————



( l)k I—Jr+u(2ﬂ)1(k
2?“;(” _|_})|

)( 52 Q)k I—l—j—n u(-l aﬂ)

ST 2n+1
b (1 + %) (fz o 51{)’-W (D 7 kb {;-)2,0]

By computing the expectation over W and V in the last equation, where
E[V/] = 21(v/2+j)/I(v/2) and E[W/] = 2T((v+ 1)/2 + j)/T((v+ 1)/2),
as well integrating over the density of |Uj, and multiplying by the density
of Y, we obtain p,(h).

The density of Y, py(h), at h is a skew Student’s { probability density
with v degrees of freedom such that:

]'1(1!11) hﬂ 'vi‘lr v+ .
py(h) = J_F()(I+ ) Jl(ah1/h2+ ,v+1) (5.21)

Then, for k = 1:

1 -0 h2 hl v—|—l
N==1-)|14——= )11 T | of ; 1
pr(h) = —( J( +v(1_52))( - ) T(az s )

(5.22)

and for k = 2, we obtain:

1— 8%ir (2 2 2\ %
pa(h) = 23 ( 1) (2)h (l+h7‘2)(1+h—)
@i\ )i L L

2

B v+ 1
x 1y (:xh m,v+l)

N 3 =]£ I'( h2 _EI
x[]—?é(l—ag)(?—:) ‘(j;h( m) ] (5.23)

where o = 6/+/1 — 82. For j = 0, po(h) = L(S)P[Y > h],**! where %,(S) =
¥(S) is the FEuler-Poincaré characteristic of the subset S. In our case,

o (S) = 1. O

Corollary 5.3.1.  The expected Luler-Poincaré characteristic, E[x(L,(Y,S))], of
the skew Student s 1 excursion sets, (Y, S), al high thresholds, (h — oc), becomes

- 1 — oz (xtt
E[x(E(Y, S))] ZQRIRE(JM) (( AL (2 ))

2m)*2 v\2 (s
R (3)°T(3)



kE h? —LJE—I
X k(l+—v(]—52)) (l +7)

1
% 1, ah,/%;vﬂ (5.24)

The expected Euler-Poincaré characteristic of the skew Student’s !
excursion set, I (Y, S), can be expressed in terms of the known Euler-
Poincaré characteristic, IE[x(I5(T1", 5))], of Student’s [ excursion sets, such
that:

E[x (£ (Y, )]

N—z v+1 " ) v 1
Tl (e R ) LAY ,S))]I] +O(H)] (5.25)

when i — o00.

{a)

+— Anahtical |1 14 ~ 150
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0.8 ~ % 100
< 10 5
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0 0 ‘3 -100
30 20 10 0 30 20 -0 0 30 -20 10 0
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FIGURE 1 First simulation example: (a) anisotropic skew Student's ( random field with 5 degrees
of freedom and skewness index § = —0.9 realized on a lattice of 500 x 500 points in 0, 1% (b)
the numerical and the analytical LipschitzKilling curvatures, A, €, and y, respectively. (color figure
available online).



6. SIMULATION RESULTS

In this section, simulation examples of the skew Student’s { random
fields are illustrated for positive (resp. negative) values of the skewness
index ¢. An illustration of the analytical expressions of the jth dimensional
Lipschitz-Killing curvatures are given compared to the numerical ones
that are computed from the simulations for validation. For this aim, 50
realizations of the skew Student’s ¢ random field have been generated for
two different examples. The simulations are investigated on a lattice of
500 x 500 points in both x and y directions within the unit square [0, 1] x
[0,1]. Figures 1(a) and 2(a) illustrate two examples of stationary skew
Student’s { random fields with 5 degrees of freedom and with skewness
indexes 6 = —0.9 and J = 0.4, respectively. Their analytical and numerical
Lipschitz-Killing curvatures are represented in Figures 1(b) and 2(b),
respectively.

0 15
01 L 10
0.2 : o
5
0.3
0.4 FL <88 o i 0
» y .
0.5p - z 5 5
08 :
. 10
0.7
15
08
0.8 . . " -20
0 02 04 06 08
x
(a)
+— Analytical 1 20 — 600
numencal -5‘
- A
o8 g " E 400
e S 200
m > 10 5 o
B z ®
< 04 o &
5 g a0
8 5 =3
02 @ & 400
54
0 o o 00
-20 10 L] 10 20 10 0 10 -20 -10 ] 10
h h h
(b)

FIGURE 2 Second simulation example: {a) isotropic skew Student’s ¢ random field with 5 degrees
of freedom and skewness index é = 0.4 realized on a lattice of 500 x 500 points in the unit square
IO,I]Q; (b) the numerical and the analytical LipschitzKilling curvatures, A, C, and g, respectively.
(color figure available online).



7. APPLICATION

The stochastic model has been tested on a real 3D microstructured
rough surface of a (ultra-high-molecular-weight polyethylene)
component.”?! The surface has been measured by a noncontact white
light interferometry (Bruker nanoscope Wyko NT 9100), on a lattice
of 480 x 640 points with a spatial resolution equal to 1.8um in both x
and y directions; see Figure 3(a). There are two main reasons for using
the expected Euler-Poincaré characteristic in such applications: firstly,
at high threshold, it counts the number of connected components that
approximate the number of the local maxima and minima of ¥ such

g

—+— Analtical
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— 000} i
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:
£ 2000} .
2
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-
o
[= o -
&
3
e |
@ _s000] —
8000—5—% 0 5 0 15 20 25 @0

(by

FIGURE 3 An application example: (a) a real 3D surface roughness topography digitized on a
lattice of 480 points with spatial sampling steps equal to 1.8 um in x and y directions; (b) fitting the
empirical and the analytical Euler-Poincaré characteristic functions of the real surface upcrossings
and the skew Student’s { excursion sets for 10 degrees of freedom and skewness index &= 0.7.

{color figure available online).



that!2141;

P[Y,u > h] = E[y(E(Y,S))] -
P Y, < h] 2 Elx(E_i(—Y, S))] '

when (h — 00).

Thus it can describe its roughness. Secondly, its explicit formulae
enable estimating the random field’s parameters, or estimating, for a
specific test of significance, the threshold /i that can detect whether some
materials of the surface are lost.

The results presented in this article concern fitting the surface
roughness stochastic model with the real 3D heights map using the Euler-
Poincaré characteristic function. Figure 3(b) shows the analytical and
numerical Euler-Poincaré characteristic of the skew Student’s | excursion
sets and the real surface upcrossings, respectively, for 10 degrees of
freedom and skewness index ¢ = 0.7.

The results show the ability to use this stochastic model for studying the
morphology and size distribution of the excursion sets at certain significant
thresholds in order to describe the functionality of the surface and to
determine its performance before and maybe after involving it in the hip
replacement surgery.

8. CONCLUSION

A special class of skew Student’s ( random fields with v degrees of
freedom has been introduced and studied geometrically. We derived,
an analytical formulae of the Euler characteristic densities of the skew
Student’s { excursion sets in order to estimate their Lipschitz-Killing
curvatures on a rectangular subset S C RY (d =2), and they can be
extended to higher dimensions d > 2.

Simulations have been performed to validate the analytical formulae.
Then, an application of modeling the roughness topography of a worn
engineering surface has been investigated. The results are promising and
show the ability of using the skew Student’s { random field for describing
the surface roughness changes between the different spatial samples and/or
during a specific temporal process, which is the aim of our future work.

APPENDIX

Lemma A.1 (Ref.®). Let H ~ Normaly,,(0,M) and let B be a fixed
symmetric d x d matrix. I hen:

ld/2] N9
Eldew( B+ H)] = ) %@”dm&_%(m (A.1)

=0



where detr,(B) stands for the sum of the determinant of all k x k principal minors

of B.

Lemma A.2 (RefP®'). Le Q ~ Wishari(Iy,v), P~ Wishari(I;,p), H ~
Normalyy 4(0, M) be independent and let a, b be fixed scalars. Then:

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

d—2j

<] 95 v H k c
de!bjkz_ﬂz(t)(d—Zj—l)a (A.2)

Ledf2] (
E[dei(P + aQ + bH)] =
=0
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